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Abstract

In this paper, we derive some inequalities for linear canonical curvelet transform (LCCT). At the outset, the basic
properties of LCCT including the admissibility condition, and Moyal’s principle are stated. Thereafter, some notable
inequalities and results related to the well-known Heisenberg- type inequalities are derived for linear canonical curvelet
transform.
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1 Introduction

It was in the early 1970s, a promising linear integral transform namely linear canonical transform was independently
introduced by Collins [9] in paraxial optics, and Moshinsky and Quesne [21] in quantum mechanics to study the
conservation of information and uncertainty under linear maps of phase space. It is taken as the generalization of the
classical Fourier transform (FT), Fresnel Transform (FRT) and the fractional Fourier transform (FrFT) [24, 22]. LCT
has been extensively used in many fields like signal processing and optics and serves as a magnanimous analysing tool
[3, 25, 21]. During the last two decades or so, the areal application for LCT has stimulated a vigorous pace and has
been applied in many fields such as time frequency analysis, filter design phase reconstruction, pattern recognition,
radar analysis including many more. For more about LCT and their applications, we refer to [13, 30]. The LCT
is a three free parameter class of linear integral transforms and includes many well-known single transformations
besides signal processing and optics-related mathematical operations as for example the Fourier transform [5], the
fractional Fourier transform [1], the Fresnal transform [16], and the scaling operations. Recently, LCT has become a
focus of contemporary research in signal processing and considerable attention has also been paid for understanding
the mathematical underpinnings of the LCT theory and many relevant theorems, such as sampling theorems [14],
convolution theorems [28], uncertainty principles and others have been well established. This transform can also be
used in scientific computing and filter design.

In the realm of higher dimensional signal processing the quality of wavelet transform tends to decrease because
of the fact that the wavelet transform uses isotropic scaling in dimension n ≥ 2. These isotropic scalings are rather
weak and incompetent to capture the edges and corners in higher dimensional signals appearing due to its spatial
occlusion between different objects, as for example, in medical imaging curves separate bones and various other soft
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tissues. Therefore, the key problem in multidimensional signal analysis is to extract and characterize the relevant and
directional information regarding the occurrence of boundaries and curves in signals. To address these limitations
of wavelet transform, some off-shoots of the wavelet transform, like ridgelet transform [8], curvelet transform [6, 7],
stockwell transform [26], contourlet transform [11] and shearlet transform [19], have been introduced.

Curvelet transform is a new two dimensional multi scale integral transform recently introduced by Candes and
Donoho [6, 7] to overcome the limitations of ridgelet transform in observing the global straight line singularities in real
time applications. This transform is a higher dimensional generalization of the wavelet transform designed to represent
images at different scales and different angles. Beside, it overcomes the difficulties in directionality and is widely applied
in image processing such as image denoising, imaging in astrophysics, morphological component analysis and seismic
imaging. Multiresolution methods are deeply related to image processing, biological and computer vision, scientific
computing among others. The curvelet transform is a multiscale directional transform, which allows almost an optimal
non-adaptive sparse representation of objects with edges. Curvelets are designed to handle curves using only a small
number of coefficients, hence the curvelet handles curve discontinuities well. Curvelets occur at all orientations, scales
and locations. The geometric features of curvelets render it is superior to wavelets for this application. Curvelets obey
the parabolic scale relation, which helps to resolve structures such as edges in the images. Importantly, it provides
for sparsity by reducing redundant information across scale. In addition, the length and width of the ridge obey the
anisotropy scaling relation. In this paper, we derive some Inequalities for linear canonical curvelet transform.

This article is organised as follows: In section 2 we discuss preliminaries and some properties of linear canonical
curvelet transform (LCCT) including admissibility condition, Moyals principle and also prove some inequalities for
linear canonical curvelet transform. In section 3, we prove some results related to Heisenberg- type inequalities
associated with LCCT. Section 4 concludes this paper and points out some future research work.

2 Preliminaries

The present section gives the basic background of the linear canonical transform and curvelet transform. For

notational convenience, we shall write a 2× 2 matrix M =

(
A B
C D

)
as M = (A,B,C,D) The formal definition of

two dimensional LCT is given below [31].

Definition 2.1. For any f ∈ L2(R2), the two dimensional linear canonical transform with respect to real, unimodular
matrix M = (A,B,C,D) is denoted by LM [f ] and is defined as

LM [f ](ω) =



∫
R2

f(x)KM (x,ω)dx, B ̸= 0

√
D exp

{
iCD
∣∣ω∣∣2
2

}
f(Dω), B = 0

where x = (x1, x2)
t,ω = (ω1, ω2)

t and KM (x,ω) denotes the kernel of two dimensional LCT and is given by

KM (x,ω) =
1

2πB
exp

{
i(A|x|2 − 2xtω +D|ω|2)

2B

}
, B ̸= 0

=
1

2πB
exp

{
i

2B
[A(x2

1 + x2
2)− 2(x1ω1 + x2ω2) +D(ω2

1 + ω2
2)]

}
, B ̸= 0

=
1

2πB
exp

{
i

2B
[Axtx− 2xtω +Dωtω]

}
, B ̸= 0.

We note that for the case B = 0, the two dimensional LCT becomes chirp multiplication. Moreover, the case B < 0
is also of no particular interest to us. Throughout this article, we only consider the case B > 0.

Also the inverse LCT is defined by

f(x) = L−1
M

(
LM (f)

)
(x) =

∫
R2

LM (f)(ω)KM (x,ω)dω.
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Remark 2.2. The Linear canonical transform contains many well-known transforms as special cases, some of which
are listed below:

(i) When M = (0, 1,−1, 0), the LCT definition (2.1) reduces to the counterpart of Fourier transform.

(ii) When M = (cosα, sinα,−sinα, cosα), α ̸= nπ, n ∈ Z, The LCT definition reduces to the counterpart of the
fractional Fourier transform.

(iii) Putting the matrix M = (1, B, 0, 1), B ̸= 0 the LCT reduces to the analogue of Fresnel transform.

Definition 2.3. For any pair of functions f, g ∈ L2(R2), the convolution associated with the above definition is
defined as

(f ⋆M g)(b) =

∫
R2

f(x)g(b− x) exp

{
−iA

B
xt(b− x)

}
dx.

From [20, 6, 7] the definition of curvelet and curvelet transform are presented as.

Definition 2.4. For a ∈ (0, a0),b ∈ R2, θ ∈ [−π, π] the curvelet Γa,b,θ generated via scale a, translation b and

rotation Rθ, is defined by Γa,b,θ(x) = Γa,0,0(Rθ(x−b)),x ∈ R2 where, Rθ =

(
cosθ sinθ
−sinθ cos θ

)
is the rotation matrix.

Definition 2.5. For f ∈ L2(R2), the curvelet transform with respect to curvelet Γa,b,θ is defined as the integral
transform

(Γf)(a,b, θ) = ⟨f,Γa,b,θ⟩2

=

∫
R2

f(x)Γa,0,0(Rθ(x− b))dx, (2.1)

where a ∈ (0, a0), a0 < π2, b ∈ R2, θ ∈ [−π, π]

Remark 2.6. The curvelet transform is a function Γ : R2 → (0, ao)× R2 × [−π, π]. We can express (2.1) in terms of
convolution.

(Γf)(a,b, θ) =

∫
R2

f(x)Γa,0,0(Rθ(x− b)dx

=

∫
R2

f(x)Γa,0,θ(x− b)dx

where,

Γ(a,0,θ)(x) = Γa,0,0(Rθx)

=

∫
R2

f(x)Γa,0,θ(−(b− x))dx

=

∫
R2

f(x)Γ̌a,0,θ(b− x)dx,where Γ̌(x) = Γ(−x)

=

(
f(x) ⋆ Γ̌a,0,θ(x)

)
(b).

Now, we recall the definitioin of Linear canonical curvelet transform as [18].

Definition 2.7. For M =

(
A B
C D

)
∈ R2×2 be a matrix with parameters satisfying det(M) = AD − BC = 1.

Then linear canonical curvelet transform of a signal f ∈ L2(R2), is defined as the integral transform

(ΓMf)(a,b, θ) =

∫
R2

f(x)ΓM
a,b,θ(x)dx, (2.2)
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where,

ΓM
a,b,θ(x) = Γa,0,0(Rθ(x− b)) exp

{
iA

B
xt(b− x)

}
.

Now, we shall write the relationship between linear canonical transform and curvelet transform.

Proposition 2.8. For f ∈ L2(R2) and ΓMf(a,b, θ) be the LCCT of a function f ∈ L2(R2), then we have
LM

(
ΓMf(a,b, θ)

)
(ω)

= 2πB

exp
{

iDωtω
2B

}
LM [f ](ω)LM

(
Γa,0,0(z) exp

{−iAztz
B

})
(Rθω)

 .

Proof. For proof see [18]

Now we state some fundamental properties of the linear canonical curvelet transform. In this direction we have
the following theorem which assembles some of the basic properties of LCCT.

Theorem 2.9. For any f, g ∈ L2(R2) and α, β,∈ C, k ∈ R2, λ ∈ R+, then LCCT satisfies the following properties.

(i) Linearity: ΓM (αf + βg)(a,b, θ) = α[ΓMf ](a,b, θ) + β[ΓMg](a,b, θ).

(ii) Translation: ΓM [f(x− k)](a,b, θ) = exp
{

−iAk(b−k)
B

}
ΓM [exp

{
iAzk
B

}
f(z)]

(a,b− k, θ).

(iii) Scaling : ΓM [f(λx)](a,b, θ) = [ΓMf ]( aλ ,bλ, θ) Provided M = (A, λ2B,C,D) is the unimodular matrix.

(iv) Parity: ΓM [f(−x)](a,b, θ) = ΓM [f(x)](−a,−b, θ).

Proof. The proof of above theorem is quite simple, hence is omitted here.

In the remaining part of the section, we state some important theorems including Moyal’s principles pertaining to
the linear canonical curvelet transform.

Definition 2.10. (Admissibility condition). A given function Γ ∈ L2(R2) is said to be admissible if and only if
it satisfies the following condition

CΓ =

a0∫
0

π∫
−π

∣∣∣∣LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)

∣∣∣∣2 dθda < ∞ a.e

Now we are in a position to state the orthogonality relation for the linear canonical curvelet transform.

Theorem 2.11. (Moyal’s principle). If [ΓMf ](a,b, θ) is the LCCT of f , then for f, g ∈ L2(R2), we have

a0∫
0

∫
R2

π∫
−π

[ΓMf ](a,b, θ)[ΓMg](a,b, θ)dθdbda = 4π2B2 CΓ⟨f, g⟩, (2.3)

where CΓ is the admissibility condition.
Proof. The proof of above theorem is quite simple, hence is omitted here.

Remark 2.12. For f = g, the orthogonality relation (2.3) gives

||ΓMf(a,b, θ)||2 = 4π2B2 CΓ||f ||22 (2.4)
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In the following theorem, we show that the linear canonical curvelet transform satisfies some notable inequalities.

Theorem 2.13. Let f ∈ L2(R2), then the linear canonical curvelet transform satisfy the following inequality:∥∥ΓM [f ](a,b, θ)
∥∥
p
≤ ∥Γa,0,0∥p ∥f∥1

Proof . By integral form of Minkowski inequality, we have

∥∥ΓM [f ](a,b, θ)
∥∥
p
=


∫
R2

∣∣∣∣∣∣
∫
R2

f(x)Γa,0,0(Rθ(x− b)) exp

{
−iA

B
xt(b− x)

}
dx

∣∣∣∣∣∣
P

db


1
p

≤
∫
R2


∫
R2

∣∣∣∣f(x)Γa,0,0(Rθ(x− b)) exp

{
−iA

B
xt(b− x)

}∣∣∣∣P db


1
p

dx

=

∫
R2


∫
R2

∣∣∣f(x)Γa,0,0(Rθ(x− b))
∣∣∣P db


1
p

dx

=

∫
R2


∫
R2

∣∣∣Γa,0,0(z)
∣∣∣P dz


1
p

|f(x)| dx

By Fubini theorem, the above inequality can be written as

∥∥ΓM [f ](a,b, θ)
∥∥
p
=


∫
R2

∣∣∣Γa,0,0(z)
∣∣∣P dz


1
p ∫
R2

|f(x)| dx

= ∥Γa,0,0(z)∥p ∥f∥1

This completes the proof of the theorem. □

Theorem 2.14. The linear canonical curvelet transform of any f ∈ L2(R2) with respect to analysing function
Γ ∈ L2(R2) satisfies:

ao∫
0

π∫
−π

[
NM (a)

]2
dθda = 4π2B2CΓ ∥f∥22

where

NM (a) =


∫
R2

|ΓM [f ](a,b, θ)|2 db


1
2

Proof . Let f ∈ L2(R2), we have

[
NM (a)

]2
=

∫
R2

|ΓM [f ](a,b, θ)|2 db

integrating with respect to the measure dadθ, we have

ao∫
0

π∫
−π

[
NM (a)

]2
dθda =

ao∫
0

∫
R2

π∫
−π

∣∣ΓM [f ](a,b, θ)
∣∣2 dθdbda
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By using orthogonality relation (2.3), we obtain

ao∫
0

π∫
−π

[
NM (a)

]2
dθda = 4π2B2 CΓ ∥f∥22

This completes the proof of the theorem. □

3 Heisenberg-type inequalities for linear canonical curvelet transform

In this section, we shall establish Heisenberg-type inequality for linear canonical curvelet transform. The classical
uncertainty principle states that a non-zero function and its Fourier transform cannot be both sharply localized. It
has been a fundamental principle in mathematics and physics and plays an important role in signal processing.

The linear canonical transform is a generalization of the ordinary Fourier transform and the fractional Fourier
transform. It has been recognized that this transform is an effective tool for chirp signal analysis. Various applications
have been found in signal analysis and optics [29]. Different kinds of uncertainty inequalities associated with the linear
canonical transform have been studied by many researchers in the last two decades [4, 29, 27, 12, 33]. Especially,
the Donoho-Stark uncertainty principle for the linear canonical transform was studied in [32]. Recently, the linear
canonical transform is further generalized to the quaternion domain, which has found several interesting applications
in colour image processing.

Theorem 3.1. If [ΓMf ](a,b, θ) is the linear canonical curvelet transform of any function f ∈ L2(R2), then the fol-
lowing uncertainty inequality holds:

∫
R2

ao∫
0

π∫
−π

|b|2|[ΓMf ](a,b, θ)|2dθdadb


1
2

∫
R2

|ω|2|LM [f ](ω)|2dω


1
2

≥ πB2
√
CΓ||f ||2

Following the idea of M. G. Cowling and J. F. Price [10], we shall derive the generalization of theorem (3.1) for the
space Lp(R2), 1 ≤ p ≤ 2 and p ≥ 2 in the following theorems.

Theorem 3.2. Let Γ ∈ L2(R2) be the analysing function which satisfies the admissibility condition. Then for
arbitrary f ∈ L2(R2), we have

ao∫
0

∫
R2

π∫
−π

|bΓMf(a,b, θ)|pdθdbda


1
p

∫
R2

|ωLM [f ](ω)|pdω


1
p

≥ πB2
√
CΓ||f ||22, 1 ≤ p ≤ 2.

For proof of these theorems see [18].
Next, we derive the generalized inequality for the linear canonical curvelet transform (LCCT) for the case p ≥ 2.

Theorem 3.3. Let Γ ∈ L2(R2) be the analysing function which satisfies the admissibility condition. Then for
arbitrary f ∈ L2(R2), We have

ao∫
0

∫
R2

π∫
−π

|b|p
∣∣ΓMf(a,b, θ)

∣∣2 dθdbda


1
p

∫
R2

|ω|p |LM [f ](ω)|2 dω


1
p

≥ (4π2B2)
1
p−

1
2πB2C

1
p

Γ ||f ||
4
p

2
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Proof . By virtue of Holder’s inequality, we have
ao∫
0

∫
R2

π∫
−π

|b|p
∣∣ΓMf(a,b, θ)

∣∣2 dθdbda


2
p


ao∫
0

∫
R2

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdbda


1− 2

p

=


ao∫
0

∫
R2

π∫
−π

(
|b|2

∣∣ΓMf(a,b, θ)
∣∣ 4p ) p

2 dθdbda


2
p


ao∫
0

∫
R2

π∫
−π

( ∣∣ΓMf(a,b, θ)
∣∣2− 4

p

) 1

1− 2
p
dθdbda


1− 2

p

≥
ao∫
0

∫
R2

π∫
−π

∣∣∣∣∣(|b|2
(
ΓMf(a,b, θ)

) 4
p

)

(
ΓMf(a,b, θ)

)2− 4
p

∣∣∣∣∣ dθdbda
=

ao∫
0

∫
R2

π∫
−π

∣∣bΓMf(a,b, θ)
∣∣2 dθdbda

Therefore ,we have 
ao∫
0

∫
R2

π∫
−π

|b|p
∣∣ΓMf(a,b, θ)

∣∣2 dθdbda


1
p

≥


ao∫
0

∫
R2

π∫
−π

∣∣bΓMf(a,b, θ)
∣∣2 dθdbda


1
2


ao∫
0

∫
R2

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdbda


1
2−

1
p

(3.1)

By virtue of orthogonality relation (2.3), and in analogy with above, we have


∫
R2

|ω|p |LM [f ](ω)|2 dω


1
p

≥


∫
R2

|ωLM [f ](ω)|2 dω


1
2


∫
R2

|LM [f ](ω)|2dω


1
2−

1
p

= (4π2B2 CΓ)
1
2−

1
p


∫
R2

|ωLM [f ](ω)|2 dω


1
2

4π2B2 CΓ

∫
R2

|LM [f ](ω)|2 dω


1
2−

1
p

= (4π2B2 CΓ)
1
2−

1
p


∫
R2

|ωLM [f ](ω)|2 dω


1
2


ao∫
0

∫
R2

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdbda


1
2−

1
p

(3.2)
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Multiplying (3.1) and (3.2) and using theorem (3.1), we get
ao∫
0

∫
R2

π∫
−π

|b|p
∣∣ΓMf(a,b, θ)

∣∣2 dθdbda


1
p

∫
R2

|ω|p |LM [f ](ω)|2 dω


1
p

≥ (4π2B2 CΓ)
1
2−

1
p


ao∫
0

∫
R2

π∫
−π

∣∣bΓMf(a,b, θ)
∣∣2 dθdbda


1
2

∫
R2

|ωLM [f ](ω)|2 dω


1
2


ao∫
0

∫
R2

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdbda


1− 2

p

= (4π2B2 CΓ)
1
2−

1
pπB2

√
CΓ||f ||2

(4π2B2CΓ||f ||2)1−
2
p

= (4π2B2)
1
p−

1
2πB2C

1
p

Γ ||f ||
4
p

2

This completes the proof of the theorem. □

For p = 2 Theorem (3.3) boils down to Theorem (3.1). In our next theorem, we prove the logarithmic uncertainty
inequality associated with LCCT.

Theorem 3.4. For any f ∈ L2(R2), the linear canonical curvelet transform satisfies the following logarithm estimate
of uncertainty inequality:

∫
R2

ao∫
0

π∫
−π

ln |b|
∣∣ΓMf(a,b, θ)

∣∣2 dθdadb+ 4π2B2 CΓ

∫
R2

ln |ω| |LM [f ](ω)|2dω

≥ 4π2B2 CΓ||f ||22
[
Γ′(1/2)

Γ(1/2)
− lnπ + ln |B|

]
Where Γ(t) denotes the Euler’s Gamma function.

Proof . The logarithmic uncertainty principle for LCT is given by [2]∫
R2

ln |b| |f(b)|2 db+

∫
R2

ln |ω| |LM [f ](ω)|2 dω

≥
[
Γ′(1/2)

Γ(1/2)
− lnπ + ln |B|

] ∫
R2

|f(b)|2 db (3.3)

Replace the function f by ΓMf(a,b, θ) so that after integration with respect to measure dθda, the above inequality
becomes ∫

R2

ao∫
0

π∫
−π

ln |b|
∣∣ΓMf(a,b, θ)

∣∣2 dθdadb+

∫
R2

ao∫
0

π∫
−π

ln |ω|
∣∣LM [ΓMf(a,b, θ)](ω)

∣∣2 dθdadω
≥
[
Γ′(1/2)

Γ(1/2)
− lnπ + ln |B|

] ∫
R2

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb (3.4)
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Using proposition (2.8), the second integral on the left of (3.4) becomes

∫
R2

ao∫
0

π∫
−π

ln |ω|
∣∣LM [ΓMf(a,b, θ)](ω)

∣∣2 dθdadω
=

∫
R2

ao∫
0

π∫
−π

ln |ω| LM [ΓMf(a,b, θ)](ω)LM [ΓMf(a,b, θ)](ω)dθdadω

= 4π2B2

∫
R2

ao∫
0

π∫
−π

ln |ω| exp
{
iDωtω

2B

}
LM [f ](ω)LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)

× exp

{
−iDωtω

2B

}
LM [f ](ω)LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)dθdadω

= 4π2B2

∫
R2

ln |ω| |LM [f ](ω)|2


ao∫
0

π∫
−π

∣∣∣∣∣LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)

∣∣∣∣∣
2

dθda

 dω

= 4π2B2CΓ

∫
R2

ln |ω| |LM [f ](ω)|2 dω

Using this in (3.4) and noting that Γ is admissible, we obtain

∫
R2

ao∫
0

π∫
−π

ln |b|
∣∣ΓMf(a,b, θ)

∣∣2 dθdadb+ 4π2B2 CΓ

∫
R2

ln |ω| |LM [f ](ω)|2dω

≥ 4π2B2 CΓ||f ||22
[
Γ′(1/2)

Γ(1/2)
− lnπ + ln |B|

]
This completes the proof of theorem. □

The classical Heisenberg Uncertainty principle measures the localization in terms of dispersions of the respective
function. By considering alternate criterion of localization , i.e., smallness of support, in 1993 Nazarov’s Uncertainty
principle was first proposed by F. L Nazarov [23]. It states that what happens if a non-zero function and its Fourier
transform are small outside a compact set?

Motivated by Nazarov’s UP in the classical Fourier domain [17, 23] and offset linear canonical transform domain
[15]. We extend Nazarov’s UP to the LCCT domain. If E1, E2 are two subsets of R2 with finite measure, then for
any f ∈ L2(R2), we have

∫
R2

|f(b)|2 db ≤ CeC|E1||E2|


∫

R2\E1

|f(b)|2 db+

∫
R2\E2

|LM [f ](ω)|2 dω

 (3.5)

Where C is a positive constant and |E1|and |E2| denotes the measure of E1 and E2 respectively.

Theorem 3.5. For any f ∈ L2(R2), the linear canonical curvelet transform satisfies the following uncertainty in-
equality:

∫
R2\E1

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb+ 4π2B2CΓ

∫
R2\E2

|LM [f ](ω)|2 dω

≥ 4π2B2CΓ||f ||22
CeC|E1||E2|

Where E1, E2 are two subsets of R2 with finite measure and C is a positive constant.
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Proof . Replace the function f in (3.5) by ΓMf(a,b, θ), we obtain

∫
R2

∣∣ΓMf(a,b, θ)
∣∣2 db ≤ CeC|E1||E2|


∫

R2\E1

∣∣ΓMf(a,b, θ)
∣∣2 db

+

∫
R2\E2

∣∣LM [ΓMf(a,b, θ)](ω)
∣∣2 dω

 (3.6)

Integrating (3.6) with respect to measure dθda, we obtain∫
R2

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb ≤ CeC|E1||E2|

×


∫

R2\E1

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb

+

∫
R2\E2

ao∫
0

π∫
−π

∣∣LM [ΓMf(a,b, θ)](ω)
∣∣2 dθdadω


Using proposition (2.8), together with (2.4), the above inequality becomes∫

R2\E1

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb+ 4π2B2

×
∫

R2\E2

ao∫
0

π∫
−π

∣∣∣∣∣∣exp
{
iDωtω

2B

}
LM [f ](ω)LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)

∣∣∣∣∣∣
2

dθdadω

≥ 4π2B2CΓ||f ||22
CeC|E1||E2|

=

∫
R2\E1

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb+ 4π2B2

∫
R2\E2

|LM [f ](ω)|2

×


ao∫
0

π∫
−π

∣∣∣∣∣LM

(
Γa,0,0(z) exp

{
−iAztz

B

})
(Rθω)

∣∣∣∣∣
2

dθda

 dω

≥ 4π2B2CΓ||f ||22
CeC|E1||E2|

=

∫
R2\E1

ao∫
0

π∫
−π

∣∣ΓMf(a,b, θ)
∣∣2 dθdadb+ 4π2B2CΓ

∫
R2\E2

|LM [f ](ω)|2 dω

≥ 4π2B2CΓ||f ||22
CeC|E1||E2|

This completes the proof of the theorem. □

4 Conclusion and Future Work

In the present study, first we state some properties of linear canonical curvelet transform like admissibility condi-
tion and Moyals principle. Using these properties, we proved some notable inequalities for linear canonical curvelet
transform. Finally, we proved some Heisenberg-type inequalities for linear canonical curvelet transform. These results
are of great importance in signal and image processing. In our future works, we will generalize linear canonical curvelet
transform to quaternion domain and establish these results for quaternion linear canonical curvelet transform.
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