
Int. J. Nonlinear Anal. Appl. 14 (2023) 5, 337–348
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.28897.4021

Traveling wave solutions for systems of nonlinear
advection-diffusion-reaction equations with delay and variable
coefficients

M. O. Aibinua,b,c,∗, S. Moyoc,d

aInstitute for Systems Science and KZN e-Skills CoLab, Durban University of Technology, South Africa

bDSI-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa

cNational Institute for Theoretical and Computational Sciences (NITheCS), South Africa

dDepartment of Applied Mathematics and School for Data Science and Computational Thinking, Stellenbosch University, South Africa

(Communicated by Abdolrahman Razani)

Abstract

This paper introduces the methods for constructing the exact solutions of systems of nonlinear Advection-Diffusion-
Reaction (ADR) equations with delay and variable coefficients. ADR systems of equations are coupled models which
can be used to describe a set of interacting processes. Precepts are given for reducing such systems of equations to
simpler systems of delayed ordinary differential equations by using modified methods of functional constraints. New
exact solutions are presented in the form of traveling wave solutions. Exact solutions are prescribed to particular
nonlinear ADR systems of equations for illustration. Significant arbitrary functions are present in the solutions which
justify the suitability of the solutions for solving various modelling problems, validating the potency of numeric,
asymptotic, and approximate analytical methods. The range of applicability of the results in this paper is universal
as the results involve variable coefficients and delay.
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1 Introduction

Abbreviations
ODEs: Ordinary Differential Equations
PDEs: Partial Differential Equations
ADR: Advection-Diffusion-Reaction

Exact solutions of nonlinear Partial Differential Equations (PDEs) are imperative for a proper and accurate analysis
of many phenomena and processes which occur in various fields of natural science. Exact solutions can serve as test
problems to determine the validity of numerical and approximate analytical methods for solving PDEs. The confidence
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which can be placed on various numerical and approximate analytical methods and their range of applicability can be
decided through exact solutions. How to construct the exact solutions has remained a pivotal study for researchers.
Let u = u(x, t) be the unknown function, p > 0 be the diffusion coefficient and H(u) be the arbitrary function which
accounts for local dynamics, how to construct the exact solutions of one-component RD equations of the form

ut = auxx +H(u), (1.1)

and their various generalizations were considered in [18, 17, 26, 12, 13, 9, 11, 14, 2, 3, 24, 8, 23, 25, 5]. A reaction-
diffusion system consists of two nonlinear diffusion equations such as

ut = a1uxx +H1(u, v),
vt = a2vxx +H2(u, v),

(1.2)

where u = u(x, t), v = v(x, t) are two unknown functions denoting the population densities of two interacting species.
Systems of equations which are of the form (1.2) with constant coefficients were considered in [6, 7, 10, 15]. Generalized
forms of (1.2) which involve delay in time and where the coefficients are also constants were considered in [21, 22, 16].
Recently, generalized forms of (1.2) with delays and where variable coefficients are associated with the time derivatives
ut and vt, and also the kinetic functions H1 and H2, were considered in [1, 4].

This study considers systems of nonlinear Advection-Diffusion-Reaction (ADR) equations with delay and variable
coefficients which are of the form

s1(x)ut = p1(x)uxx + q1(x)ux + r1(x)H1(u, ū, v, v̄),
s2(x)vt = p2(x)vxx + q2(x)vx + r2(x)H2(u, ū, v, v̄),

(1.3)

with u = u(x, t), ū = u(x, t − τ), v = v(x, t), v̄ = v(x, t − τ) and τ > 0, which is the delay time. The u and v in (1.3)
represent the state variables concentration at position x ∈ R and time t, e.g, densities of the prey and the predator.
The diffusion coefficients are the functions pi(x) > 0 and the advection rates are qi(x), which are real functions, where
i = 1, 2, (See e.g, [28]). The functions si(x) are respectively associated with the time rate of change of concentration
of state variables while the functions ri(x) are respectively associated with the arbitrary functions Hi(u, ū, v, v̄). Both
ri(x) and si(x) are real functions. The functions Hi(u, ū, v, v̄) account for local dynamics. New exact solutions that
are in the form of traveling wave solutions are presented to systems of delay ADR equations with variable coefficients
which are of the form (1.3). Significant arbitrary functions are present in the solutions which justify the suitability of
the solutions for solving various modelling problems, validating the potency of numeric, asymptotic, and approximate
analytical methods.

2 Preliminaries

Definition 2.1. Exact solution. In connection with nonlinear PDEs, exact solution signifies the case where the
solution can be displayed in the following forms (see e.g, [12, 13, 26]):

(i) with respect to elementary functions;

(ii) in the form of definite or/and indefinite integrals;

(iii) with respect to solutions of Ordinary Differential Equations (ODEs) or systems of ODEs.

Two or more of the cases listed above could also be combined.

Definition 2.2. Linearly dependent or independent vector functions. A set of n vector functions w1(x),
w2(x), ..., wn(x), are said to be linearly dependent on an interval [α, β] if there exists a set of numbers θ1, θ2, . . . , θn,
with at least one nonzero number, such that

θ1w1(x) + θ2w2(x) + ...+ θnwn(x) ≡ 0 ∀ x ∈ [α, β]. (2.1)

The given n vector functions are said to be linearly independent on the interval if (2.1) is only satisfied provided

θ1 = θ2 = ... = θn = 0.
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Definition 2.3. Commutative property of a matrix. A matrix A(x) is said to be commutative with its integral
provided

A(x) ∗
∫ x

a

A(ψ)dψ =

∫ x

a

A(ψ)dψ ∗A(x). (2.2)

This property is readily satisfied by symmetric and indeed diagonal matrices.

Definition 2.4. Fundamental matrix. Consider the matrix differential equation which is given as

G′(x) = A(x)G(x). (2.3)

A system of linearly independent solutions which satisfies (2.3) is referred to as a fundamental system of solutions.
A square matrix whose columns is formed by linearly independent solutions is called a fundamental matrix. The
fundamental matrix is nonsingular since its columns are formed by linearly independent solutions (See e.g, [27, 29]).
Notice that the fundamental matrix is invertible since it is nonsingular. A system of matrix differential equations
whose coefficient matrix is commutative with its integral has the fundamental matrix Γ(x) which is given as

Γ(x) = e
∫ x
x0
A(ω)dω

. (2.4)

Definition 2.5. Exponential matrix. Let n ∈ N and A be an n× n diagonal matrix with entries

A =


a1

a2
. . .

an

 ,
then

eA =


ea1

ea2

. . .

ean

 .
Two matrices A and B are said to commute if AB = BA. Commutable matrices A and B have the identity that

eAeB = eA+B .

3 Construction of solutions for systems of nonlinear ADR equations

The exact solutions of (1.3) are to be constructed in the form

u = U(y), y = t+
∫
h1(x)dx,

v = V (z), z = t+
∫
h2(x)dx,

(3.1)

where U and V can be explicitly determined if respectively the forms of u and v are known. The equations of the
form (3.1) are conventionally called generalized traveling-wave solutions. The functions h1(x) and h2(x) may be given
or are to be otherwise determined. Whether functions h1(x) and h2(x) are given or not, is determined by the goal in
a particular situation. Substitute (3.1) into (1.3) to obtain

p1(x)h
2
1U

′′
yy + {p1(x)h′1 + q1(x)h1 − s1(x)}U ′

y + r1(x)H1(U, Ū , V, V̄ ) = 0,

(3.2)

p2(x)h
2
2V

′′
zz + {p2(x)h′2 + q2(x)h2 − s2(x)}V ′

z + r2(x)H2(U, Ū , V, V̄ ) = 0,

with h1 = h1(x) and h2 = h2(x).

Let the coefficients in the system (3.2) fulfill the conditions

r1(x) = p1(x)a1h
2
1,

r2(x) = p2(x)a2h
2
2,

(3.3)
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and

p1(x)h
′
1 + q1(x)h1 = −b1p1(x)h21 + s1(x),

p2(x)h
′
2 + q2(x)h2 = −b2p2(x)h22 + s2(x),

(3.4)

where ai (ai ̸≡ 0) and bi are constants and i = 1, 2. The conditions (3.3) and (3.4) reduce (3.2) to a coupled ODEs

U ′′
yy − b1U

′
y + a1H1(U, Ū , V, V̄ ) = 0,

V ′′
zz − b2V

′
z + a2H2(U, Ū , V, V̄ ) = 0,

(3.5)

with Ū = U(Y − τ) and V̄ = V (Z − τ).

Remark 3.1. Let V ≡ 0 and H1(U, Ū) = Uh(Ū/U) in (3.5). Then U = Keψy is admitted as the exact solution,
where K is an arbitrary constant and ψ is determined by the transcendental equation (See e.g, [12])

ψ2 − b1ψ + a1h
(
e−τψ

)
= 0. (3.6)

The delay ODE in question can have different roots due to different roots from (3.6) .

Remark 3.2. Let V ≡ 0, H1(U, Ū) = h(U) and b1 ≡ 0 in (3.5). Then the general solution is given for any function
h(U) in the implicit form ∫ [

K1 − 2

∫
h(U)dU

]−1/2

dU = K2 ± y,

for arbitrary constants K1 and K2 with a1 ≡ 1 (See e.g, [20]). An instantaneous system is characterized by the special
case H1(U, Ū) = h(U) and bi ≡ 0 constitute a linear form of (3.4), where i = 1, 2.

The systems of equations (3.3) and (3.4) give the relation which the coefficients functions in (1.3) have with
functions h1 and h2 which are present in (3.1). A system of differential equations in respect of h1 and h2 is formed by
(3.4) and their respective algebraic relations are given by (3.3), in term of pi(x), qi(x), ri(x), and si(x), where i = 1, 2.

3.1 Finding exact solutions when h1 and h2 are not given

Given the functions pi(x), qi(x) as well as si(x) and for bi ̸= 0, i = 1, 2 in (3.4), a system of differential equations
of Riccati type

p1(x)h
′
1 + b1p1(x)h

2
1 + q1(x)h1 − s1(x) = 0,

p2(x)h
′
2 + b2p1(x)h

2
2 + q2(x)h2 − s2(x) = 0,

(3.7)

is obtained. The degenerate and nondegenerate cases will be considered for the system (3.7).

3.1.1 Degenerate case

For b1 = b2 = 0 in (3.7), the corresponding degenerate system in vector form is

H ′(x) =M(x)H(x)− s(x), (3.8)

where

H(x) =

[
h1(x)
h2(x)

]
, s(x) =

[
s1(x)/p1(x)
s2(x)/p2(x)

]
and

M(x) =

[
q1(x)/p1(x) 0

0 q2(x)/p2(x)

]
. (3.9)

The matrix M(x) in (3.9) is observed to be symmetric and indeed, it is diagonal. The homogeneous part of (3.8) is
given by

H ′(x) =M(x)H(x). (3.10)

Therefore the matrix differential equation (3.10) has the fundamental matrix which is given by

Γ(x) = e
∫ x
x0
M(ω)dω

. (3.11)
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Substitution of the fundamental matrix Γ(x) into (3.10) results in

Γ′(x) =M(x)Γ(x). (3.12)

Post-multiply (3.12) by Γ−1(x) (which is the inverse function of the fundamental matrix) to obtain

Γ′(x)Γ−1(x) = M(x)Γ(x)Γ−1(x)

⇒ M(x) = Γ′(x)Γ−1(x).

Remark 3.3. Given a fundamental matrix Γ(x), the coefficient matrix M(x) of a homogeneous matrix differential
equation is uniquely defined by

M(x) = Γ′(x)Γ−1(x).

The general solution for the homogeneous matrix differential equation (3.10) is given by

HC(x) = Γ(x)C, (3.13)

which is in the term of fundamental matrix, where C = (C1, C2)
T , is a column vector that consists of arbitrary

constants. HC(x) in (3.13) is called the complementary solution for the homogeneous part of (3.8). To solve the
nonhomogeneous matrix differential equation (3.8), a method which is known as variation of constants (otherwise
called Lagrange method) will be adopted. The constant vector C in (3.13) is replaced by C(x), which is a continuously
differentiable function with respect to independent variable x. Then the general solution for the nonhomogeneous
matrix differential equation (3.8) takes the form

H(x) = Γ(x)C(x). (3.14)

The unknown vector C(x) can be found by substituting (3.14) into (3.8) to obtain

���Γ′(x)C(x) + Γ(x)C ′
x(x) =(((((((

M(x)Γ(x)C(x)− s(x)

⇒ Γ(x)C ′
x(x) = −s(x). (3.15)

Pre-multiply (3.15) by Γ−1(x) to obtain

Γ−1(x)Γ(x)C ′
x(x) = −Γ−1(x)s(x)

⇒ C ′
x(x) = −Γ−1(x)s(x)

⇒ C(x) = C0 −
∫

Γ−1(x)s(x)dx, (3.16)

where C0 is a column vector that consists of arbitrary constants. Hence, the general solution for nonhomogeneous
matrix differential equation (3.8) is obtained by substituting (3.16) into (3.14) to have

H(x) = Γ(x)C(x)

= Γ(x)

(
C0 −

∫
Γ−1(x)s(x)dx

)
. (3.17)

Using (3.1), the exact solutions for (1.3) are obtained, where ri(x) (i = 1, 2) in (1.3) are determined by applying (3.3).

Example 3.4. This illustration is given by considering the case where p1(x) = cos x, p2(x) = sin x, q1(x) =
sin x, q2(x) = cos x, s1(x) = sin x, and s2(x) = ex, where x ∈ (0, π/2). According to (3.9),

M(x) =

[
cos x/sin x 0

0 sin x/cos x

]
,

and the fundamental matrix is obtained according to (3.11) as

Γ(x) =

[
eln sin x 0

0 e−ln cos x

]
=

[
sin x 0
0 1/cos x

]
,
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with

Γ−1(x) =

[
1/sin x 0

0 cos x

]
.

Using (3.17), we obtain

H(x) =

[
h1(x)
h2(x)

]
=

[
C1sin x+ x

C2/cos x+ ex (cos x+ sin x) /2

]
. (3.18)

Setting C1 = C2 = 0 in (3.18), we have

h1(x) = x,

h2(x) = ex (cos x+ sin x) /2.
(3.19)

Substituting (3.19) into (3.1) gives

u = U(y), y = t+ x2/2,

v = V (z), z = t+ exsin x/2,
(3.20)

and into (3.3) results in

r1(x) = x2cos x,

r2(x) = e2xsin x (sin 2x+ 1) /4,

where we have taken ai ≡ 1, i = 1, 2. Hence for arbitrary functions H1(u, ū, v, v̄) and H2(u, ū, v, v̄), the nonlinear ADR
system

sin x ut = cos x uxx + sin x ux + x2cos x H1(u, ū, v, v̄),

exvt = sin x vxx + cos x vx +
e2xsin x (sin 2x+ 1)

4
H2(u, ū, v, v̄),

admits the generalized traveling-wave solutions (3.20), where U(z) and V (z) are determined by the system of ODEs

U ′′
yy +H1(U, Ū , V, V̄ ) = 0, Ū = U(Y − τ),
V ′′
zz +H2(U, Ū , V, V̄ ) = 0, V̄ = V (Z − τ).

(3.21)

3.1.2 Nondegenerate case

For b1 ̸= 0 and b2 ̸= 0, the substitution

h1 =
1

b1

ω′

ω
,

h2 =
1

b2

ξ′

ξ

(3.22)

into (3.7) gives

p1(x)

b1

(
ω′′

ω
− (ω′)2

ω2

)
+ b1p1(x)

(
1

b1

ω′
x

ω

)2

+
q1(x)

b1

ω′

ω
− s1(x) = 0,

p2(x)

b2

(
ξ′′

ξ
− (ξ′)2

ξ2

)
+ b2p2(x)

(
1

b2

ξ′x
ξ

)2

+
q2(x)

b2

ξ′

ξ
− s2(x) = 0.

(3.23)

Using vector-matrix notation, simplification of (3.23) yields

Ω′′(x) +M(x)Ω′(x)−m(x)Ω(x) = 0, (3.24)

where

Ω(x) =

[
ω(x)
ξ(x)

]
,M(x) =

[
q1(x)/p1(x) 0

0 q2(x)/p2(x)

]
& m(x) =

[
b1s1(x)/p1(x)
b2s2(x)/p2(x)

]
.

The readers who are interested in exact solutions of second-order ODEs, such as (3.24), when associated with different
values of p(x), q(x) and s(x) can consult [20, 19].
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Example 3.5. An illustration will be given by considering pi(x) = bisi(x) in (3.24), for i = 1, 2. Let W =


ω′

ξ′

ω
ξ

 , then

W ′ =


ω′′

ξ′′

ω′

ξ′

 =


−q1(x)/b1s1(x)ω′ + ω
−q2(x)/b2s2(x)ξ′ + ξ

ω′

ξ′

 . Thus,

W ′(x) =


−q1(x)/b1s1(x) 0 1 0

0 −q2(x)/b2s2(x) 0 1
1 0 0 0
0 1 0 0

W (x). (3.25)

The matrix differential equation (3.24), which is a system of second ODEs, has been transformed to the matrix
differential equation (3.25), which is a homogeneous system of first ODEs. The matrix in (3.25) is observed to be
symmetric. For x ∈ (0, π/2) , let q1(x) = −b1s1(x), q2(x) = b2s2(x), s1(x) = sin x and s2(x) = cos x in (3.25). The
fundamental matrix for the matrix differential equation is given by

Γ(x) = e
∫ x
0
M(ψ)dψ,

where M(ψ) =


1 0 1 0
0 −1 0 1
1 0 0 0
0 1 0 0

 . Therefore, the fundamental matrix for matrix differential equation (3.25) is

Γ(x) = eM(x) where M(x) =


x 0 x 0
0 −x 0 x
x 0 0 0
0 x 0 0

 . (3.26)

Notice that the matrixM(x) commutes with itself over any two arguments. A fast route for computing the matrix expo-
nential is through diagonalization. The matrix exponential will be computed by converting the matrix to Jordan form.
Using Matlab 2015a, the eigenvalues for the matrixM(x) are obtained as ∓ 1

2

(√
5− 1

)
x,∓ 1

2

(√
5 + 1

)
x and the corre-

sponding eigenvectors are [0,− 1
2

(√
5 + 1

)
, 0, 1]T , [0, 12

(√
5− 1

)
, 0, 1]T , [ 12

(
1−

√
5
)
, 0, 1, 0]T and [ 12

(√
5 + 1

)
, 0, 1, 0]T ,

respectively. Thus, the matrix of eigenvector which is the transition matrix is given by

G =


0 0 1

2

(
1−

√
5
)

1
2

(√
5 + 1

)
− 1

2

(√
5 + 1

)
1
2

(√
5− 1

)
0 0

0 0 1 1
1 1 0 0

 .
To compute the inverse matrix G−1, firstly the determinant of G is evaluated as

|G| = −5,

and

G−1 =


0 −

√
5
5 0 1

10

√
5(
√
5− 1)

0
√
5
5 0 1

10

√
5(
√
5 + 1)

−
√
5
5 0 1

2 (
√
5
5 + 1) 0√

5
5 0 1

10

√
5(
√
5− 1) 0

 .
Applying the identity exp

(
G M(x) G−1

)
= G exp(M(x))G−1 gives:
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Γ(x) = exp


x 0 x 0
0 −x 0 x
x 0 0 0
0 x 0 0

 = exp

G

− 1

2

(√
5 + 1

)
x 0 0 0

0 1
2

(√
5− 1

)
x 0 0

0 0 − 1
2

(√
5− 1

)
x 0

0 0 0 1
2

(√
5 + 1

)
x

G−1



= G


e−

1
2 (

√
5+1)x 0 0 0

0 e
1
2 (

√
5−1)x 0 0

0 0 e−
1
2 (

√
5−1)x 0

0 0 0 e
1
2 (

√
5+1)x

G−1

=



1
10

√
5(

√
5 + 1)e

1
2
(
√

5−1)x (
4ex + 1

) 1
10

√
5(

√
5 − 1)e

1
2
(
√

5−1)x (
ex − 1

)
0 0

1
10

√
5(

√
5 + 1)e

1
2
(
√

5−1)x (
ex − 1

) 1
10

√
5(

√
5 − 1)e

1
2
(
√

5−1)x (
4ex + 1

)
0 0

0 0 1
10

√
5(

√
5 − 1)e

− 1
2
(
√

5+1)x (
4ex + 1

) 1
10

√
5(

√
5 + 1)ex− 1

2
(
√

5 + 1)x
(
ex − 1

)
0 0 1

10
(
√

5 − 1)
√

5e
− 1

2
(
√

5+1)x (
ex − 1

) 1
10

√
5(

√
5 + 1)e

− 1
2
(
√

5+1)x (
4ex + 1

)


.

According to (3.13), the general solution for (3.25) takes the form

W (x) = Γ(x)C,

where Γ(x) is the fundamental matrix and C = [C1, C2, C3, C4]
T . This gives the system of solutions for (3.24) as

follows:

ω(x) =
C1

10

√
5(
√
5 + 1)e

1
2 (

√
5−1)x (4ex + 1) +

C2

10

√
5(
√
5− 1)e

1
2 (

√
5−1)x (ex − 1) ,

ξ(x) =
C3

10

√
5(
√
5 + 1)e

1
2 (

√
5−1)x (ex − 1) +

C4

10

√
5(
√
5− 1)e

1
2 (

√
5−1)x (4ex + 1) .

(3.27)

Setting C2 = C4 = 0 in (3.27) leads to

h1(x) =
1

b1

(
1

2

(√
5− 1

)
+

4ex

4ex + 1

)
,

h2(x) =
1

b1

(
1

2

(√
5− 1

)
+

ex

ex − 1

)
.

(3.28)

Apply (3.1) to (3.28) to get

u = U(y), y = t+
1

b1

(
1

2

(√
5− 1

)
x+ ln(4ex + 1)

)
,

v = V (z), z = t+
1

b1

(
1

2

(√
5− 1

)
x+ ln(ex − 1)

)
,

(3.29)

and substitute (3.28) into (3.3) to obtain

r1(x) = − sin x

b1

(
1

2

(√
5− 1

)
+

4ex

4ex + 1

)
,

r2(x) =
cos x

b1

(
1

2

(√
5− 1

)
+

ex

ex − 1

)
,

where we have taken ai ≡ 1, i = 1, 2. Hence for arbitrary functions H1(u, ū, v, v̄) and H2(u, ū, v, v̄), the nonlinear ADR
system

sin x ut = b1 sin x uxx − b1 sin x ux −
sin x

b1

(
1

2

(√
5− 1

)
+

4ex

4ex + 1

)
H1(u, ū, v, v̄),

cos xvt = b2 cos x vxx + b2 cos x vx +
cos x

b1

(
1

2

(√
5− 1

)
+

ex

ex − 1

)
H2(u, ū, v, v̄),

admits the generalized traveling-wave solutions (3.29), where U(z) and V (z) are determined by the system of ODEs
(3.5).
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Example 3.6. This illustration will be given by using Remark 3.3. The fundamental matrix is given as Γ(x) =[
ex 0
0 x+ 2

]
, while s1(x) = x and s2(x) = 1.

The derivative and inverse of Γ are respectively obtained as Γ′(x) =

[
ex 0
0 1

]
and Γ−1(x) =

[
e−x 0
0 1/(x+ 2)

]
.

These yield the product

Γ′(x)Γ−1(x) =

[
1 0
0 1/(x+ 2)

]
=M(x),

according to Remark 3.3. Therefore, it can be deduced that p1 = q1 = q2 = 1 and p2(x) = x+ 2. Let H(x) =

[
h1(x)
h2(x)

]
and s(x) =

[
s1(x)/p1(x)
s2(x)/p2(x)

]
, apply (3.17) to obtain

H(x) = Γ(x)

(
C0 −

∫
Γ−1(x)s(x)dx

)
=

[
ex (C1 + (1− x)ex)

(x+ 2) (C2 − ln(x+ 2))

]
. (3.30)

Setting C1 = C2 = 0 in (3.30) gives

h1(x) = (1− x)e2x,

h2(x) = −(x+ 2) ln(x+ 2).
(3.31)

Apply (3.1) to get

u = U(y), y = t− (x− 2)ex,

v = V (z), z = t− ((x+ 2)2(ln(x+ 2)− 1/2))/2,
(3.32)

and (3.3) to obtain

r1(x) = (1− x)2e4x,

r2(x) = (x+ 2)3 (ln(x+ 2))
2
,

where we have taken ai ≡ 1, i = 1, 2. Hence for arbitrary functions H1(u, ū, v, v̄) and H2(u, ū, v, v̄), the nonlinear ADR
system

xut = uxx + ux + (1− x)2e4xH1(u, ū, v, v̄),

vt = (x+ 2)vxx + vx + (x+ 2)3 (ln(x+ 2))
2
H2(u, ū, v, v̄),

admits the generalized traveling-wave solutions (3.32), where U(z) and V (z) are determined by the system of ODEs
(3.21).

3.2 Finding exact solutions when h1 and h2 are given

Given h1 and h2, a pair of algebraic equations (3.7) is required to be solved simultaneously for the pair pi(x), qi(x)
and ri(x), to obtain the exact solutions of (1.3), where i = 1, 2. Apart from h1 and h2 which are given in (3.7), two
pairs of functions are assumed given from pi(x), qi(x), and ri(x). Using (3.3) and (3.7), the pairs of unknown functions
can be derived. Apply (3.1) to deduce the exact solution of (1.3).

Example 3.7. Given that h1(x) = lnx, h2(x) = sin x, p1 = ex, p2 = e−x, q1 = x, q2 = 1 and bi are arbitrary constants
with i = 1, 2. The task is to find ri(x), si(x) and consequently derive the exact solution of the system of nonlinear
ADR equations with delay and variable coefficients.

(I) Degenerate case: bi = 0, i = 1, 2.
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It can be obtained from (3.7) that

s1(x) = ex lnx+ 1,

s2(x) = cos x
(
e−x + tan x

)
,

and from (3.3) that

r1(x) = ex (lnx)
2
,

r2(x) = e−xsin2x,
(3.33)

where without loss of generality, ai ≡ 1. Thus, the system of nonlinear ADR equations with delay and variable
coefficients

(ex lnx+ 1)ut = exuxx + xux + ex (lnx)H1(u, ū, v, v̄),

e−xsin2x vt = e−xvxx + vx + e−xsin2xH2(u, ū, v, v̄),

for arbitrary functions H1(u, ū, v, v̄) and H2(u, ū, v, v̄), admit the generalized traveling-wave solutions

u = U(y), y = t+ x (lnx− 1) ,

v = V (z), z = t+ sin x,
(3.34)

where U(z) and V (z) are determined by the system of ODEs (3.21).

(II) Nondegenerate case: bi ̸= 0, i = 1, 2.

It can be obtained from (3.7) that

s1(x) = ex
(
1/x+ b1 (lnx)

2
)
+ 1,

s2(x) = e−x
(
cos x+ b2sin

2x
)
+ sin x.

(3.35)

and from (1.3) that [
ex

(
1/x+ b1 (lnx)

2
)
+ 1

]
ut = exuxx + xux + ex (lnx)H1(u, ū, v, v̄),[

e−x
(
cos x+ b2sin

2x
)
+ sin x

]
vt = e−xvxx + vx + e−xsin2xH2(u, ū, v, v̄).

(3.36)

Hence, for arbitrary functions H1(u, ū, v, v̄) and H2(u, ū, v, v̄), the system of nonlinear ADR equations with delay and
variable coefficients (3.36) are solved by (3.34), where U(z) and V (z) are determined by the system of ODEs (3.5).

4 Modification for exact solutions of more sophisticated ADR systems of equations

The results which have been presented are applicable to any form of ADR systems of equations with delay and
variable coefficients. The required set of modifications for application of the results to obtain the exact solutions of
more sophisticated ADR systems of equations are presented in this section.

4.1 Nonlinear multifaceted PDEs with delay and variable coefficients

Let u = u(x, t), v = v(x, t), ū = u(x, t − τ) and v̄ = v(x, t − τ), where τ denotes the delay in time. A nonlinear
ADR system of the form

s1(x)ut = p1(x)uxx + q1(x)ux + r1(x)h1(x)H1 (h1, u, ū, v, v̄, ux/h1) ,

s2(x)vt = p2(x)vxx + q2(x)vx + r2(x)h2(x)H2 (h2, u, ū, v, v̄, vx/h2) ,
(4.1)

where each of the arbitrary functions H1 (h1, u, ū, v, v̄, θ1) and H2 (h2, u, ū, v, v̄, θ2) take six arguments, which include
the derivatives ux and vx. The exact solutions for the system (4.1) are given by

u = U(y), y = t+

∫
h1(x)dx,

v = V (z), z = t+

∫
h2(x)dx,

(4.2)
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where U(z) and V (z) are determined by the system

U ′′
yy − b1U

′
y + a1H1(h1, U, Ū , V, V̄ , U

′
y) = 0,

V ′′
zz − b2V

′
z + a2H2(h2, U, Ū , V, V̄ , V

′
z ) = 0,

with Ū = U(Y − τ) and V̄ = V (Z − τ). This is straight forward by substituting (4.2) into (4.1) and taking (3.3) and
(3.4) into consideration.

4.2 Nonlinear PDEs without delay

Sometimes consideration is given to systems of equations that take place in the media with local equilibrium where
reference is not made to inertial properties. Such systems of equations can be described by H (u, v) , which is a special
case of H (u, ū, v, v̄) where the time delay τ = 0. The response of such systems of equations to action at any time t is
spontaneous.

Consider

s1(x)ut = p1(x)uxx + q1(x)ux + r1(x)H1 (u, v) ,

s2(x)vt = p2(x)vxx + q2(x)vx + r2(x)H2 (u, v) ,
(4.3)

where H1 (u, v) and H2 (u, v) are arbitrary functions with u = u(x, t) and v = v(x, t). The exact solutions for the
system (4.3)are given by

u = U(y), y = t+

∫
h1(x)dx,

v = V (z), z = t+

∫
h2(x)dx,

(4.4)

where U(z) and V (z) are determined by the system

U ′′
yy − b1U

′
y + a1H1(U, V ) = 0,

V ′′
zz − b2V

′
z + a2H2(U, V ) = 0,

with U = U(Y ) and V = V (Z). This is straight forward by substituting (4.4) into (4.3) and taking (3.3) and (3.4)
into consideration.

Conclusion: A system of ADR equations allows any number of equations to be posed simultaneously to repre-
sent a set of interacting processes. The presence of delay in nonlinear PDEs generally makes them more difficult to
solve and analyze. This study has considered nonlinear PDEs of ADR equations with delay and variable coefficients.
Precepts for reducing such systems of equations to simpler systems of delayed ODEs by using modified methods of
functional constraints are presented. Illustrations are given for clarification on how to apply the precepts. The required
modifications to obtain the exact solutions of more sophisticated ADR systems of equations are elucidated.
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