Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2601–2602 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.25650.3077

Corrigendum to "Forms of ϖ -continuous functions between bitopological spaces"

Madhu Ram*, Shallu Sharma

Department of Mathematics, University of Jammu, Jammu-180006, J& K, India

(Communicated by Ali Jabbari)

Abstract

We offer some corrections to the paper "Forms of ϖ -continuous functions between bitopological spaces" [Int. J. Nonlinear Anal. Appl. 13 (1) (2022), 2219-2225].

1 Definition 2.1 in [1]

Looking at the proofs of various results in [1] and checking the validity of results in [1], it is observed that Definition 2.1 and associated results in [1] are not correctly stated, so these need to be corrected. We retain the notation of [1].

1.1 Changing the Definition 2.1

If we change the Definition 2.1 in [1] in the following way, the original results in [1] are valid.

Definition 1.1. Let $(\mathfrak{X}, \mathfrak{T}_1, \mathfrak{T}_2)$ and $(\mathfrak{Y}, \mathfrak{F}_1, \mathfrak{F}_2)$ be two bitopological spaces. A function $f: (\mathfrak{X}, \mathfrak{T}_1, \mathfrak{T}_2) \rightarrow (\mathfrak{Y}, \mathfrak{F}_1, \mathfrak{F}_2)$ is called pairwise ϖ -strongly (resp., pairwise ϖ -closure, pairwise ϖ -weakly) continuous if $f: (\mathfrak{X}, \mathfrak{T}_1) \rightarrow (\mathfrak{Y}, \mathfrak{F}_1)$ is ϖ -strongly (resp., ϖ -closure, ϖ -weakly) continuous and $f: (\mathfrak{X}, \mathfrak{T}_2) \rightarrow (\mathfrak{Y}, \mathfrak{F}_2)$ is ϖ -strongly (resp., ϖ -closure, ϖ -weakly) continuous.

However, the correct form of Definition 2.2 should be as follows:

Definition 1.2. If $(x_{\alpha})_{\alpha \in \Lambda}$ is a net in a space \mathfrak{X} , then (x_{α}) is said to be ϖ -convergent to a point $x \in \mathfrak{X}$, denoted by $x_{\alpha} \xrightarrow{\varpi} x$, if for each neighborhood \mathcal{A} of x, there is some $\alpha_0 \in \Lambda$ such that $x_{\alpha} \in Cl^{\varpi}(\mathcal{A})$ for all $\alpha \geq \alpha_0$. This is equivalent to say that if it is eventually in every ϖ -closure nbd of x.

1.2 Retaining the Definition 2.1

If we retain the Definition 2.1 in [1], the correct form of Theorem 2.3, 2.4 and 2.5 respectively in [1] should be as follows:

^{*}Madhu Ram

Email addresses: madhuram0502@gmail.com, zero.infinityto1@gmail.com (Madhu Ram), shallujamwal09@gmail.com (Shallu Sharma)

Theorem 1.3. For a function $f: (\mathfrak{X}, \mathfrak{T}_1, \mathfrak{T}_2) \to (\mathfrak{Y}, \mathfrak{F}_1, \mathfrak{F}_2)$ between two bitopological spaces, the following are equivalent:

- 1. f is pairwise ϖ -strongly continuous;
- 2. The inverse image of every \mathcal{F}_1 -closed set is $\mathcal{T}_1 \varpi$ -closed or the inverse image of every \mathcal{F}_2 -closed set is $\mathcal{T}_2 \varpi$ -closed;
- 3. The inverse image of every \mathcal{F}_1 -open set is $\mathcal{T}_1 \varpi$ -open or the inverse image of every \mathcal{F}_2 -open set is $\mathcal{T}_2 \varpi$ -open.

Theorem 1.4. For a function $f: (\mathfrak{X}, \mathfrak{T}_1, \mathfrak{T}_2) \to (\mathfrak{Y}, \mathfrak{F}_1, \mathfrak{F}_2)$ between two bitopological spaces, the following are equivalent:

- 1. f is pairwise ϖ -closure continuous;
- 2. The inverse image of every $\mathcal{F}_1 \varpi$ -closed set is $\mathcal{T}_1 \varpi$ -closed or the inverse image of every $\mathcal{F}_2 \varpi$ -closed set is $\mathcal{T}_2 \varpi$ -closed;
- 3. The inverse image of every $\mathcal{F}_1 \varpi$ -open set is $\mathcal{T}_1 \varpi$ -open or the inverse image of every $\mathcal{F}_2 \varpi$ -open set is $\mathcal{T}_2 \varpi$ -open.

Theorem 1.5. For a function $f: (\mathfrak{X}, \mathfrak{T}_1, \mathfrak{T}_2) \to (\mathfrak{Y}, \mathfrak{F}_1, \mathfrak{F}_2)$ between two bitopological spaces, the following are equivalent:

- 1. f is pairwise ϖ -weakly continuous;
- 2. The inverse image of every $\mathcal{F}_1 \varpi$ -closed set is \mathcal{T}_1 -closed or the inverse image of every $\mathcal{F}_2 \varpi$ -closed set is \mathcal{T}_2 -closed;
- 3. The inverse image of every $\mathcal{F}_1 \varpi$ -open set is \mathcal{T}_1 -open or the inverse image of every $\mathcal{F}_2 \varpi$ -open set is \mathcal{T}_2 -open.

References

A.N. Atewi, B.S. Naseer, S.J. Ali and M.A. Harhoosh, Forms of *π*-continuous functions between bitopological spaces, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 2219–2225.