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Abstract

We study a new (3+1)-dimensional novel KP-like equation. We show that this equation admits topological soliton
solutions. These will be attained via the aid of ansatz methods. Furthermore, mixed solutions consisting of singular
and periodic solutions and others are derived. Moreover, other analytical solutions based on modern group analysis
are derived. In addition, low-order conservation laws are constructed.
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1 Introduction

Recently, many research activities [6, 2] on solitary waves theory, predominantly on integrable systems, have
attracted a lot of researchers. This is due to the fact that solitary waves theory has found a lot applications in many
areas of nonlinear science, such as engineering, plasma physics, biology and other fields of mathematical physics. In
the past decade, researchers have confined their application of solitary waves theory to (1 +1) and (2 +1)-dimensional
equations[14]. However, it was later found that solitary waves theory plays a significant role in the study of higher
dimensional integrable equations. It is for this reason, that motivated authors in [8] to establish a new (3+1)-
dimensional novel KP like equation. given by

αutz − β uxxxy − 3 (uxx uy + ux uxy) + γ (uxx + uxy + uxz) = 0, (1.1)

where (α, β, γ) are arbitrary parameters. Authors in [8] used the simplified linear superposition principle to derive
resonant multi-soliton solution of equation (1.1). It can easily be noticed that equation (1.1) is a natural extension of
the famous B-type Kadomtsev–Petviashvili (BKP) equation[8] and references therein. To the best of our knowledge,
topological soliton solutions, singular and periodic solutions and point symmetries of the aforesaid equation have not
be reported in the literature.

The objectives of this work is two fold. Firstly, we will implement the ansatz methods so as to derive topological

∗Corresponding author
Email addresses: muatjetjejab@ub.ac.bw (Ben Muatjetjeja), thabo.moretlo@spu.ac.za (Thabo Moretlo), ademar@unisa.ac.za

(Abdullahi Adem)

Received: June 2022 Accepted: January 2023

http://dx.doi.org/10.22075/ijnaa.2023.27520.3636


2624

soliton solutions. Furthermore, we will employ the Tan-Cot method to attain singular and periodic solutions. In
addition, symmetry method will be invoked to obtain some other analytical solutions and lastly construct some low-
order conservation laws are constructed via the multiplier approach.

2 Soliton solutions

This section aims to compute topological 1-soliton solution of equation (1.1). This will be attained via a hypothesis
method. In order to search for dark soliton solutions or shock waves or kinks, we begin our hypothesis [14, 12, 15, 13]
in the form of

u(t, x, y, z) = λ tanhp τ, (2.1)

where the wave variable τ is defined by τ = ηx+δy+φz−νt while η, δ and φ are unknown free parameters representing
the inverse width of the wave. ν is the velocity of the soliton and p is a positive exponent that will be determined.
The hypothesis (2.1) yields

ux = λ η p(tanhp−1 τ − tanhp+1 τ), (2.2)

uxx = λ η2 p(p+ 1) tanhp+2 τ + λ η2 p(p− 1) tanhp−2 τ − 2λ η2 p2 tanhp τ, (2.3)

uxy = λ η δ p(p+ 1) tanhp+2 τ + λ η δ p(p− 1) tanhp−2 τ − 2λ η δ p2 tanhp τ, (2.4)

uxz = λ η φ p(p+ 1) tanhp+2 τ + λ η φ p(p− 1) tanhp−2 τ − 2λ η φ p2 tanhp τ, (2.5)

utz = −λφν p(p+ 1) tanhp+2 τ − λφν p(p− 1) tanhp−2 τ + 2λφν p2 tanhp τ, (2.6)

uy = λ δ p tanhp−1 τ − λ δ p tanhp+1 τ, (2.7)

uyuxx = −λ2 η2 δ p2(p+ 1) tanh2p+3 τ + λ2 η2 δ p2(p− 1) tanh2p−3 τ

+λ2 η2 δ p2(3p+ 1) tanh2p+1 τ − λ2 η2 δ p2(3p− 1) tanh2p−1 τ, (2.8)

uxuxy = −λ2 η2 δ p2(p+ 1) tanh2p+3 τ + λ2 η2 δ p2(p− 1) tanh2p−3 τ

+λ2 η2 δ p2(3p+ 1) tanh2p+1 τ − λ2 η2 δ p2(3p− 1) tanh2p−1 τ, (2.9)

uxxxy = −λ η3 δ p(p+ 3)(p+ 2)(p+ 1) tanhp+4 τ + λ η3 δ p(p− 1)(p− 2)(p− 3) tanhp−4 τ

−4λ η3 δ p(p+ 1)(p2 + 2p+ 2) tanhp+2 τ − 4λ η3 δ p(p− 1)(p2 − 2p+ 2) tanhp−2 τ

+2λ η3 δ p2(3p2 + 5) tanhp τ. (2.10)

The substitution of equations (2.2)–(2.10) into equation (1.1), gives

−λ η3 δ βp(p+ 3)(p+ 2)(p+ 1) tanhp+4 τ − λ η3 δ βp(p− 1)(p− 2)(p− 3) tanhp−4 τ

+(4 η3 δ β(p2 + 2p+ 2)− αφν + γ η(η + δ + φ))λ p(p+ 1) tanhp+2 τ

+(4 η3 δ β(p2 − 2p+ 2)− αφν + γ η(η + δ + φ))λ p(p− 1) tanhp−2 τ

+6λ2 η2 δp2(p+ 1) tanh2p+3 τ − 6λ2 η2 δp2(p− 1) tanh2p−3 τ

−6λ2 η2 δp2(3p+ 1) tanh2p+1 τ + 6λ2 η2 δp2(3p− 1) tanh2p−1 τ

+2(αφν − η3 δ β(3p2 + 5)− γ η(η + δ + φ)) tanhp τ = 0. (2.11)

To seek for the smallest positive integer p, we equate the highest linear term in tanh with the least nonlinear term
in tanh τ . This can be achieved by equating powers tanhp+4 τ and tanh2p+3 τ , to get

p+ 4 = 2p+ 3,
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therefore p = 1. Substituting p = 1 into the powers of tanh τ only, equation (2.11) reduces to

−λ η3 δ βp(p+ 3)(p+ 2)(p+ 1) tanh5 τ − λ η3 δ βp(p− 1)(p− 2)(p− 3) tanh−3 τ

+(4 η3 δ β(p2 + 2p+ 2)− αφν + γ η(η + δ + φ))λ p(p+ 1) tanh3 τ

+(4 η3 δ β(p2 − 2p+ 2)− αφν + γ η(η + δ + φ))λ p(p− 1) tanh−1 τ

+6λ2 η2 δp2(p+ 1) tanh5 τ − 6λ2 η2 δp2(p− 1) tanh−1 τ

−6λ2 η2 δp2(3p+ 1) tanh3 τ + 6λ2 η2 δp2(3p− 1) tanh1 τ

+2(αφν − η3 δ β(3p2 + 5)− γ η(η + δ + φ)) tanh τ = 0. (2.12)

Splitting equation (2.12) with respect to the powers of tanh τ and simplify, yields

λ =
(p+ 2)(p+ 3)βη

6p
(2.13)

and

ν =
−3βδη3((p+ 3)(p+ 2)(3p− 1)− 2p(3p2 + 5))

6pαφ
+

γη(η + δ + φ)

αφ
. (2.14)

Setting p = 1 into (2.13) and (2.14), we obtain

λ = 2βη (2.15)

and

ν =
γη(η + δ + φ)− 4βδη3

αφ
. (2.16)

Consequently, the dark (optical) soliton solution for equation (1.1) is

u = 2β η tanh

(
η x+ δ y + φz − γη (η + δ + φ) t− 4β δ η3t

αφ

)
. (2.17)

Remark 1. We observe that equation (1.1) admits an optical or shock wave soliton solution if and only if αφ ̸= 0.
To the best of our knowledge, this crucial observation is reported here for the first time. This observation cannot be
found anywhere in the literature. We now present the profile solution of equation (2.17) subject to some choice of the
arbitrary parameters.
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Figure 1: Kink shape soliton profile of (2.17) corresponding to η = 1, φ = 1, δ = 0.01, γ = 0.1, α = 0.1, β = 1, t = 1, z = 1.

In a like manner, we can derive the singular kink solution in the form

u = 2β η coth

(
η x+ δ y + φz − γη (η + δ + φ) t− 4β δ η3t

αφ

)
(2.18)

Figure 2: Singular kink shape soliton profile of (2.18) with η = 1, φ = 1, δ = 0.01, γ = 0.1, α = 0.1, β = 1, t = 1, z = 1.

Remark 2. It is worth noting that a singular kink soliton solution do exists for equation (1.1). However, this
singular kink soliton solution can only exist provided that the product of α and φ is not zero. This is a very remarkable
observation that is being mentioned here for the first time. Figure 2 below, gives a graphical presentation of solution
(2.18) with respect to some choice of arbitrary constants.

3 Periodic solutions

In this section, we will implement the Tan-Cot ansatz method to derive periodic solutions of equation (1.1). The
starting hypothesis is of the form

u(x, y, z, t) = λ tan τ, (3.1)
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where the wave variable τ is defined as τ = ηx + δy + φz − νt. Proceeding as before and simplify, we obtain the
amplitude and velocity of the wave as

λ = −2βη, (3.2)

and

ν =
γη(η + δ + φ) + 4βδη3

αφ
, (3.3)

respectively.

This in turn gives the periodic solution of equation (1.1) as

u = −2β η tan

(
η x+ δ y + φz − γη (η + δ + φ) t+ 4β δ η3t

αφ

)
. (3.4)

The graphical representation of solution (3.4) is presented in figure 3 below.

Figure 3: Periodic profile of solution (3.4) for η = 1, φ = 1, δ = 0.01, γ = 0.1, α = 0.1, β = 1, t = 1, z = 1.

Without loss of generality, the singular solution of equation (1.1) is

u = 2β η cot

(
η x+ δ y + φz − γη (η + δ + φ) t+ 4β δ η3t

αφ

)
. (3.5)

The profile of solution (3.5) is presented in figure 4 subject to choices of arbitrary parameters.
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Figure 4: Periodic profile of solution (3.5) for η = 1, φ = 1, δ = 0.01, γ = 0.1, α = 0.1, β = 1, t = 1, z = 1.

Remark 3. A commendable observation indicate that periodic solutions due exist for equation (1.1). However,
the existence of these solutions imply that the product of the parameters α and φ (αφ ̸= 0). To the authors knowledge,
this outstanding observation is testified for the first time here.

4 Group invariant solutions

In order to derive group-invariant solutions of equation (1.1), one needs to obtained the admitted generators of
equation (1.1). This is attained by considering the vector field of the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ ξ4

∂

∂z
+ η

∂

∂u
, (4.1)

where ξi(i = 1, 2, 3, 4) and η are functions of (t, x, y, z). Applying the fourth extension of equation (4.1) to equation
(1.1) and solve the resulting system of linear partial differential equations, we conclude that equation (1.1) admits
infinitely many point symmetries spanned by

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 =

∂

∂z
,X4 = F1 (z)

∂

∂u
,X5 = F2 (t)

∂

∂u
,X6 =

3 ∂
∂y

3 + γ
+

γ ∂
∂u

3 + γ
,

X7 = αt
∂

∂t
+ γt

∂

∂x
− αz

∂

∂z
,X8 = 3αt

∂

∂t
+ 3γt

∂

∂x
+ 3αy

∂

∂y
+ αγy

∂

∂u
,

X9 = 9αt
∂

∂t
+ (3αx+ 6γt)

∂

∂x
+ (2αγx+ αγy − 3αu)

∂

∂u
.

In the theory of Lie symmetries analysis [1, 10, 7], it is well-known that a combination of symmetries will always
remain symmetries of the problem at hand. Thus, invoke the combination of X1, X2 and X3, and solving the associated
Lagrange systems, we get four invariants, viz.,

f = y, g = t− z, h = x− z ϕ = u.

Using these invariants together with equation (1.1) and treating ϕ as function of (f, g, h), we get

3ϕh ϕfh + 3ϕf ϕhh − γ ϕfh + β ϕfhhh + αϕgg + γ ϕgh + αϕgh = 0.
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This in turn gives the group-invariant solution of equation (1.1) as

u = 2βc4 tanh

(
yc2 +

(γc4 + αc4 − Ω) (t− z)

2α
+ (x− z) c4 + c1

)
+ c5, (4.2)

where

Ω =
√
α2c24 − 16αβc2c34 + 4αγc2c4 + αγc24 + γ2c24

and ci are constants. The graphically representation of this solution is given in figure 5.

Figure 5: Anti-kink shape soliton profile of (4.2) for the values y = 1, z = 1, α = 1, β = −1, µ = 1, δ = 0.001, γ =
0.0001, c1 = 10, c2 = 5, c4 = 20, c5 = 20

We now make use of the generator X6, which yields the following similarity variables

f = x, g = z, h = t ϕ = u− 1

3
γy.

Consequently, equation (1.1) reduces to

γ ϕfg + αϕgh = 0.

Thus, we get

u = F3 (t, x) + F4 (z,−αx+ γt) +
1

3
γy, (4.3)

as the group-invariant solution of equation (1.1) where Fi are arbitrary elements with respect to their arguments.

Thirdly, we employ linear combination of X2 and X4, which leads to four invariants, namely

f = y, g = z, h = t ϕ = u− x, F2(t),

which transform equation(1.1) into

ϕgh = 0,
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and the resulting group-invariant solution of equation (1.1) is

u = xF2 (t) + F5 (y, t) + F6 (y, z) , (4.4)

with Fi being arbitrary functions with respect to their arguments.

Lastly, we consider the symmetry combination of X2 and X6 and we get the following four invariants:

f = z, g = t, h = x− y − 1

3
γy ϕ = u− 1

3
γy,

which in turn reduce equation(1.1) into

6 γ ϕh ϕhh − γ2 ϕhh + β γ ϕhhhh + 3αϕfg + 3 γ ϕfh + 18ϕh ϕhh − 3 γ ϕhh + 3β ϕhhhh = 0.

and the associated solution of equation (1.1) is

u = 2βc4 tanh

(
zc2 +

(
γ2c4 − 4βγc34 − 12βc34 − 3γc2 + 3γc4

)
tc4

3αc2
+

(
x− y − 1

3
γ y

)
c4 + c1

)

+
1

3
γy + c5, (4.5)

while the corresponding profile representation of solution (4.5) is give in figure 6.

Figure 6: Anti-kink shape soliton profile of (4.5) for the values y = 1, z = 1, α = 1, β = −1, γ = 1, c1 = 10, c2 = 5, c4 =
20, c5 = 20.

5 Local conservation laws

This section is devoted to the construction of low-order conservation laws of equation (1.1). This will be achieved
via the multiplier method[9, 5, 4]. In order to derive the multiplier for equation (1.1), one needs to solve the resulting
system of linear differential equation that arise from the expansion of

δ(ΛE)

δu
= 0, (5.1)

where δ
δu is the Euler Lagrange operator, Λ denotes the multiplier function which in this context is assumed to be of

order zero and E represent equation (1.1)[10, 11]. The analysis of equation (5.1) prompts the following lemma.
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Lemma 1. Let Λ be a zeroth order conservation law multiplier, then a new (3+1)-dimensional novel KP like
equation admits infinitely many zeroth-order multiplier of the form

Λ = C1ux + F (y, z) +G (t, y) ,

with F and G being arbitrary functions with respect to their arguments.

Proof. A straightforward but lengthy computation from εu(ΛE) = 0. □

Remark 4. It is worth pointing out that a new (3+1)-dimensional novel KP like equation admits identical zeroth-
order, first-order and second-order multipliers. This is a commendable observation which is mentioned here for the
first time. In general, if one increases the order of the multiplier, then one aims to get higher-order multipliers which
in turn leads to higher order conservation laws, but this is not the case with the new (3+1)-dimensional novel KP like
equation.

Without loss of generality, we now give the corresponding conserved vectors associated with the above multiplier,
namely

T t
1 =

1

4
αuuxz −

1

4
αuxuz,

T x
1 =

1

2
γu2

x − 3

2
u2
xuy −

1

8
β uxxxuy +

3

8
βuxxuxy −

5

8
βuxuxxy +

1

4
γuuxy +

1

4
γuxuy

+
1

4
γuxuz +

1

4
γuuxz +

1

2
αuutz +

1

4
δutux − 1

8
βuuxxxy,

T y
1 = −1

4
γuuxx +

1

8
βuuxxxx − 1

2
u3
x − 1

4
βuxuxxx +

1

8
βu2

xx +
1

4
γu2

x

T z
1 =

1

4
γu2

x − 1

4
γuuxx − 1

4
αuutx +

1

4
αutux;

T t
F = −1

2
α (u Fz (z, y)− F (z, y)uz) ,

T x
F =

3

4
uux Fy (z, y) +

3

4
uuxyF (z, y)− 9

4
uxuyF (z, y) +

1

4
βuxx Fy (z, y) + γuxF (z, y)

−3

4
βuxxyF (z, y)− 1

2
γuFz (z, y)−

1

2
γuFy (z, y) +

1

2
γuyF (y, z) +

1

2
γuzF (y, z),

T y
F = −3

4
u2
xF (z, y)− 3

4
uuxxF (z, y)− 1

4
βuxxxF (z, y) +

1

2
γuxF (z, y) ,

T z
F =

1

2
αutF (z, y) +

1

2
γuxF (z, y) ;

T t
G =

1

2
αuz G (t, y) ,

T x
G =

3

4
uuxy G (t, y)− 9

4
uxuy G (t, y) + γux G (t, y)− 1

2
γuGy (t, y) +

1

2
γuy (t, y)

+
1

2
γuz (t, y)− 3

4
βuxxy G (t, y) +

3

4
uux Gy (t, y)−

1

4
αβuxx Gy (t, y) ,

T y
G =

1

2
γux G (t, y)− 3

4
u2
x G (t, y)− 3

4
uuxx G (t, y)− 1

4
βuxxx G (t, y) ,

T z
G = −1

2
αuGt (t, y) +

1

2
γux G (t, y) +

1

2
αut G (t, y) .

It is worth mentioning that due to the presence of the arbitrary elements in the conserved vectors, then the new
(3+1)-dimensional novel KP like equation admits an infinite number of local conservation laws.

6 Conclusions

In this paper we obtained topological soliton solutions and periodic solutions of a new (3+1)-dimensional novel KP
like equation. In addition, other analytical solutions based on Lie symmetries method have been attained. Furthermore,



2632

conservation laws for the aforesaid equation were derived using the multiplier method. The correctness of the obtained
solutions have been verified with Maple software package by back substitution. It is anticipated that the solution
obtained can be used as benchmark with the numerical simulation.
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