Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2771–2786 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.29160.4076

Hybrid iterative algorithms for finding common solutions of a system of generalized mixed quasi-equilibrium problems and fixed point problems of nonexpansive semigroups

A. A. Abd-Allah, Abdullah Ali H. Ahmadini, Salahuddin*

Department of Mathematics, Jazan University, Jazan-45142, KSA

(Communicated by Ali Farajzadeh)

Abstract

In this paper, we introduced a hybrid iterative method for finding the set of common solutions for a system of generalized mixed quasi-equilibrium problems, the set of common fixed points for nonexpansive semigroup and the set of solutions of quasi-variational inclusion problems with multi-valued maximal monotone mappings and inverse strongly monotone mappings in Hilbert spaces. Under suitable assumptions, we prove some strong convergence theorems for the iteration.

Keywords: Generalized mixed quasi-equilibrium problems, nonexpansive semigroup, viscosity approximation method, generalized quasi-variational inclusions problems, multi-valued maximal monotone mappings, α -inverse strongly monotone mappings 2020 MSC: 49J40, 47H09, 47J20

1 Introduction

Let *H* be a real Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, *C* a nonempty closed convex subset of *H* and F(T) denotes the set of all fixed points of the mapping $T: C \to C$.

A bounded linear operator $A: H \to H$ is said to be strongly positive if there exists a constant $\bar{\gamma}$ such that

$$\langle Ax, x \rangle \ge \bar{\gamma} \|x\|^2, \quad \forall x \in H.$$
 (1.1)

Let $B : H \to H$ be a single-valued nonlinear mapping and $M : H \to 2^H$ be a multi-valued mapping. The generalized quasi-variational inclusion problem is to find $u \in H$ such that

$$\theta \in Bu + Mu. \tag{1.2}$$

The set of solutions of problem (1.2) is denoted by VI(H, B, M).

*Corresponding author

Email addresses: anassr@jazanu.edu.sa (A. A. Abd-Allah), aahmadini@jazanu.edu.sa (Abdullah Ali H. Ahmadini), smohammad@jazanu.edu.sa, drsalah12@hotmail.com (Salahuddin)

Example 1.1.

Let C be a nonempty closed convex subset of a Hilbert space H and $\delta_C : H \to [0, \infty)$ be the indicator function of C, *i.e.*,

$$\delta_C = \begin{cases} 0, & x \in C, \\ +\infty, & x \notin C. \end{cases}$$

If M is the subdifferential of δ_C , that is, $M = \partial \delta_C$, then the variational inclusion problem (1.2) is equivalent to find $u \in C$ such that

$$\langle Bu, v - u \rangle \ge 0, \quad \forall u \in C.$$
 (1.3)

(1.3) is called the Hartmann-Stampacchia variational inequality problem ([16]) and the solution set of (1.3) is denoted by VI(B,C).

A mapping $B: H \to H$ is called α -inverse strongly monotone if there exists $\alpha > 0$ such that

$$\langle Bx - By, x - y \rangle \ge \alpha \|Bx - By\|^2, \quad \forall x, y \in H.$$

A multi-valued mapping $M: H \to 2^H$ is called monotone if for all $x, y \in H, u \in Mx$ and $v \in My$ implies that

$$\langle u - v, x - y \rangle \ge 0,$$

and $M: H \to 2^H$ is called maximal monotone if it is monotone and for any $(x, u) \in H \times H$ such that

$$\langle u - v, x - y \rangle \ge 0, \forall (y, v) \in G(M)$$

implies that $u \in Mx$, where G(M) is the graph of mapping M.

We can easily prove the following proposition from the definition.

Proposition 1.2. Let $B: H \to H$ be an α -inverse strongly monotone mapping. Then,

- (i) B is an $\frac{1}{\alpha}$ -Lipschitz continuous and monotone mapping;
- (ii) if λ is any constant in $(0, 2\alpha]$, then the mapping $I \lambda B$ is nonexpansive, where I is the identity mapping on H.

Let $\Theta : C \times C \to \mathbb{R}$ be an equilibrium bifunction and $\varphi : C \to \mathbb{R}$ a real valued function. We consider the following generalized mixed equilibrium problem ([7, 26]) for finding $z \in C$ such that

$$\Theta(z,y) + \langle Az, y - z \rangle + \varphi(y) - \varphi(z) \ge 0, \forall y \in C,$$
(1.4)

where $A: C \to C$ is single-valued mapping and the solution set of (1.4) is denoted by $GMEP(\Theta)$, *i.e.*,

$$GMEP(\Theta) = \{ z \in C : \Theta(z, y) + \langle Az, y - z \rangle + \varphi(y) - \varphi(z) \ge 0, \forall y \in C \}$$

Recently Ceng and Yao ([4]) introduced the following mixed equilibrium problem for finding $z \in C$ such that

$$\Theta(z, y) + \varphi(y) - \varphi(z) \ge 0, \forall y \in C, \tag{1.5}$$

and the set of solutions (1.5) is denoted by $MEP(\Theta)$, *i.e.*

$$MEP(\Theta) = \{ z \in C : \Theta(z, y) + \varphi(y) - \varphi(z) \ge 0, \forall y \in C \}$$

In particular, if $\varphi = 0$, then (1.5) reduces to the equilibrium problem for finding $z \in C$ such that

$$\Theta(z, y) \ge 0, \forall y \in C, \tag{1.6}$$

and the set of solutions of (1.6) is $EP(\Theta)$.

On the other hand Li *et al.* ([15]) introduced two iterative procedures for the approximation of common fixed points of a one parameter nonexpansive semigroup $\{T(s) : 0 \le s < \infty\}$ on a nonempty closed convex subset C in a Hilbert spaces (see [5, 6, 12, 13, 18]).

Very recently Saeidi ([20, 21]) introduced the following general iterative algorithm for finding a common element of the set of solutions of a system of equilibrium problems EP(g) for a family $g = \{F_i : i = 1, 2, \dots, M\}$ of bifunctions and of the set of fixed points of a finite family of nonexpansive mappings $\varphi = \{T_i : i = 1, 2, \dots, N\}$ and a left amenable semigroup $S = \{T(t) : t \in S\}$ of nonexpansive mapping with respect to W-mappings and left regular sequence $\{\mu_n\}$ of means defined on an approximate space of bounded real valued functions of the semigroup S.

$$x_{n+1} = \alpha_n \gamma f(x_n) + \beta x_n + ((1-\beta)I - \alpha_n A)T(\mu_n) W_n J_{r_M,n}^{F_M} \cdots J_{r_2,n}^{F_2} J_{r_1,n}^{F_1} x_n$$

Recall that a family $\Im = \{T(s) : 0 \le s < \infty\} : C \to C$ of a mapping is called a one parameter nonexpansive semigroup if it is satisfied the following conditions:

- (a) $T(s+t) = T(s)T(t), \forall s, t \ge 0 \text{ and } T(0) = I;$
- (b) $||T(s)x T(s)y|| \le ||x y||, \forall x, y \in C;$
- (c) the mapping $T(\cdot)x$ is continuous for each $x \in C$.

Motivated and inspired by the recent works [1, 2, 4, 8, 9, 10, 11, 14, 24, 26], we introduced a hybrid iterative scheme for finding a set of common solutions for a system of mixed equilibrium problems, the set of common fixed point for nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problems with multi-valued maximal monotone mapping and inverse strongly monotone mappings in Hilbert spaces. We also prove some strong convergence theorem under suitable conditions.

2 Preliminaries

In the sequel, we use $x_n \rightarrow x$ and $x_n \rightarrow x$ to denote the weak convergence and strong convergence of the sequence $\{x_n\}$ in H, respectively.

Definition 2.1. Let $M: H \to 2^H$ be a multi-valued maximal monotone mapping. Then the single-valued mapping $J_{\lambda}^M: H \to H$ defined by

$$J_{\lambda}^{M}(u) = (I + \lambda M)^{-1}(u), \forall u \in H,$$

is called the resolvent operator associated with M, where λ is any positive number and I is the identity mapping.

Proposition 2.2. ([27]) Let J_{λ}^{M} be the resolvent operator associated with M. Then we have:

(i) J^M_{λ} is single-valued and nonexpansive for all $\lambda > 0$, i.e.,

$$\|J_{\lambda}^{M}(x) - J_{\lambda}^{M}(y)\| \le \|x - y\|, \forall x, y \in H.$$

(ii) J_{λ}^{M} is *I*-inverse strongly monotone, i.e.,

$$\|J_{\lambda}^{M}(x) - J_{\lambda}^{M}(y)\|^{2} \leq \langle x - y, J_{\lambda}^{M}(x) - J_{\lambda}^{M}(y) \rangle, \forall x, y \in H.$$

Definition 2.3. A single-valued mapping $P: H \to H$ is said to be hemicontinuous if for any $x, y, z \in H$, the function $t \to \langle P(x+ty), z \rangle$ is continuous at 0^+ .

Remark 2.4. Every continuous mapping must be hemicontinuous.

Lemma 2.5. ([17]) Let E be a real Banach spaces and E^* be the dual space of E. Let $T: E \to 2^{E^*}$ be a maximal monotone mapping and $P: E \to E^*$ be a hemicontinuous bounded monotone mapping with D(T) = X, then the mapping $U := T + P: E \to 2^{E^*}$ is a maximal monotone mapping.

Lemma 2.6. ([22]) Let $\{x_n\}$ and $\{z_n\}$ be bounded sequences in a Banach space E and let $\{\beta_n\}$ be a sequence in [0,1] with $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. Suppose that

$$x_{n+1} = (1 - \beta_n)z_n + \beta_n x_n$$

for all $n \ge 1$ and $\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0$. Then we have

$$\lim_{n \to \infty} \|z_n - x_n\| = 0$$

Lemma 2.7. ([25]) Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - \gamma_n)a_n + \delta_n, \forall n \ge n_0,$$

where n_0 is some nonnegative integer and $\gamma_n \in (0, 1)$ and δ_n are sequences satisfying:

(i) $\sum_{n=1}^{\infty} \gamma_n = \infty$; (ii) $\limsup_{n \to \infty} \frac{\delta_n}{\gamma_n} \le 0$ or $\sum_{n=1}^{\infty} |\delta_n| = \infty$.

Then $\lim_{n \to \infty} a_n = 0.$

Lemma 2.8. ([3]) Let *E* be a real Banach space and $J: E \to 2^{E^*}$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$\|x+y\|^2 \le \|x\|^2 + \langle y, j(x+y) \rangle, \forall j(x+y) \in J(x+y)$$

Especially if E = H is a real Hilbert space, then

$$||x+y||^2 \le ||x||^2 + \langle y, x+y \rangle, \forall x, y \in H.$$

For solving the equilibrium problems for bifunction $\Theta : C \times C \to \mathbb{R}$, we assume that Θ satisfies the following conditions:

(C1) $\Theta(x, x) = 0, \forall x \in C;$

(C2) Θ is monotone *i.e.*,

$$\Theta(x, y) + \Theta(y, x) \le 0, \forall x, y \in C;$$

(C3) for any $y \in C$, $x \to \Theta(x, y)$ is concave and weakly upper semi-continuous;

(C4) for each $x \in C$, $y \to \Theta(x, y)$ is convex and lower semi-continuous.

A mapping $\eta: C \times C \to H$ is called Lipschitz continuous if there exists a constant L > 0 such that

 $\|\eta(x,y)\| \le L\|x-y\|, \forall x, y \in C.$

A differentiable function $K: C \to \mathbb{R}$ on a convex set C is called:

(i) η -convex ([4]) if

$$K(y) - K(x) \ge \langle K'(x), \eta(y, x) \rangle, \forall x, y \in C,$$

where K'(x) is the Frechet derivative of K at x.

(ii) η -strongly convex ([4]) if there exists a constant $\mu > 0$ such that

$$K(y) - K(x) - \langle K'(x), \eta(y, x) \rangle \ge \frac{\mu}{2} ||x - y||^2, \forall x, y \in C.$$

A mapping $F: C \to \mathbb{R}$ is called sequentially continuous at x_0 if $F(x_n) \to F(x_0)$ for each sequence $\{x_n\}$ satisfying $x_n \to x_0$. F is called sequentially continuous on C if it is sequentially continuous at each point of C.

Lemma 2.9. ([4]) Suppose that for each fixed $y \in C, \eta(y, \cdot) : C \to H$ be sequentially continuous from the weak topology to the weak topology and that $K' : C \to H$ is sequentially continuous from the weak topology to the strong topology. Then $g_y : C \to \mathbb{R}$ defined as $g_y(x) = \langle K'(x), \eta(y, x) \rangle$ for each fixed $y \in C$ is sequentially continuous in the weak topology.

If an equilibrium bifunction $\Theta : C \times C \to \mathbb{R}$ satisfies conditions (C1)-(C4) and $A : C \to C$ a single-valued mapping. Let r be a positive parameter. For a given point $x \in C$, consider the auxiliary problem for GMEP (for short, GMEP(x,r)) which consists of finding $y \in C$ such that

$$\Theta(y,z) + \langle Az, y-z \rangle + \varphi(z) - \varphi(y) + \frac{1}{r} \langle K'(y) - K'(x), \eta(z,y) \rangle \ge 0, \forall z \in C$$

where $\eta: C \times C \to H$ and K'(x) is the Frechet derivative of a functional $K: C \to \mathbb{R}$ at x. Let $\mathcal{V}_r^{\Theta}: C \to C$ be the mapping such that for each $x \in C, \mathcal{V}_r^{\Theta}(x)$ is the solution set of GMEP(x, r), *i.e.*, for all $z \in C$

$$\mathcal{V}_r^{\Theta}(x) = \left\{ y \in C : \Theta(y, z) + \langle Az, y - z \rangle + \varphi(z) - \varphi(y) + \frac{1}{r} \langle K'(y) - K'(x), \eta(z, y) \rangle \ge 0 \right\}.$$

We can prove the following lemma by using the same method as Lemma 3.1 in [4].

Lemma 2.10. ([4]) Let C be a nonempty closed convex subset of a Hilbert space H and let $\varphi : C \to \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta : C \times C \to \mathbb{R}$ be an equilibrium bifunction satisfying conditions (C1)-(C4). Assume that

- (1) $\eta: C \times C \to H$ is Lipschitz continuous with constant L > 0 such that
 - (a) $\eta(x,y) + \eta(y,x) = 0, \forall x, y \in C;$
 - (b) $\eta(\cdot, \cdot)$ is affine in the first variable;
 - (c) for each fixed $y \in C, x \to \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
- (2) $K: C \to \mathbb{R}$ is η -strongly convex with constant $\mu > 0$ and its derivative K' is sequentially continuous from the weak topology to the strong topology;
- (3) for each $x \in C$ there exists a bounded subset $D_x \subseteq C$ and $z_x \in C$ such that for any $y \in C \setminus D_x$ we have

$$\Theta(y, z_x) + \langle Az_x, y - z_z \rangle + \varphi(z_x) - \varphi(y) + \frac{1}{r} \langle K'(y) - K'(x), \eta(z_x, y) \rangle < 0.$$

Then we have:

- (i) \mathcal{V}_r^{Θ} is single-valued;
- (ii) \mathcal{V}_r^{Θ} is nonexpansive if K' is Lipschitz continuous with constant v > 0 such that $\mu \ge Lv$;
- (iii) $F(\mathcal{V}_r^{\Theta}) = GMEP(\Theta);$
- (iv) $GMEP(\Theta)$ is closed and convex.

Lemma 2.11. ([23]) Let C be a nonempty bounded closed convex subset of a Hilbert space H and let $\Im = \{T(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C. Then for any $h \ge 0$ and t > 0,

$$\lim_{t \to \infty} \sup_{x \in C} \left\| \frac{1}{t} \int_0^t T(s) x ds - T(h) \left(\frac{1}{t} \int_0^t T(s) x ds \right) \right\| = 0, \text{ for all } x \in C$$

Lemma 2.12. ([15]) Let C be nonempty bounded closed convex subset of a Hilbert space H and $\Im = \{T(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C. If $\{x_n\}$ is a sequence in C satisfying the properties:

- (i) $x_n \rightharpoonup z$;
- (ii) $\limsup_{s \to \infty} \limsup_{n \to \infty} ||T(s)x_n x_n|| = 0.$

Then $z \in F(\mathfrak{F}) := \bigcap_{s \ge 0} F(T(s)).$

3 Main results

In order to prove the main results, we first give the following lemma.

Lemma 3.1. ([20]) We have the following statements for the solutions of the variational inclusion (1.2):

(i) $u \in H$ is a solution of variational inclusion (1.2) if and only if

$$u = J_{\lambda}^{M}(u - \lambda Bu), \forall \lambda > 0,$$

i.e.,

$$VI(H, B, M) = F(J_{\lambda}^{M}(I - \lambda B)), \ \forall \lambda > 0.$$

(ii) If $\lambda \in (0, 2\alpha]$, then VI(H, B, M) is a closed convex subset in H.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, B be an α -inverse strongly monotone mapping from C into H and M be a multi-valued mapping of C. Let $\Im = \{T(s) : 0 \le s < \infty\}$ be an one parameter nonexpansive semigroup and $\Theta_i : C \times C \to \mathbb{R}, (i = 1, 2, \dots, N)$ be a bifunction which satisfies (C1)-(C4) such that

$$\Omega := F(\mathfrak{T}) \cap GMEP(\Theta) \cap VI(H, B, M) \neq \emptyset,$$

where

$$GMEP(\Theta) := \bigcap_{l=1}^{N} GMEP(\Theta_l).$$

Let $\varphi_i : C \to \mathbb{R}, (i = 1, 2, \dots, N)$ be a lower semi-continuous and convex functional. Let A be a strongly positive bounded linear operator with a coefficient $\bar{\gamma} > 0$ and f be a contraction of H into itself with a contractive constant h(0 < h < 1) and $0 < \gamma < \frac{\bar{\gamma}}{h}$. Let $\{x_n\}, \{\varphi_n\}$ and $\{y_n\}$ be implicit iterative sequences generated by $x_1 \in H$ and

$$\begin{cases} x_n = \alpha_n \gamma f\left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds\right) + \beta_n x_n + \left((1 - \beta_n) I - \alpha_n A\right) \frac{1}{t_n} \int_0^{t_n} T(s) \rho_n ds \\ \rho_n = J_\lambda^M (I - \lambda B) \xi_n, \\ \xi_n = J_\lambda^M (I - \lambda B) y_n, \\ y_n = \mathcal{V}_{r_N}^{\Theta_N} \cdots \mathcal{V}_{r_2}^{\Theta_2} \mathcal{V}_{r_1}^{\Theta_1} x_n, \end{cases}$$
(3.1)

where $\{r_i\}(i = 1, 2 \cdots N)$ is a finite family of positive parameters, $\lambda \in (0, 2\alpha], \{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ and $\{t_n\} \subset (0, \infty)$. Assume that the following conditions are hold:

- (i) For each $i = 1, 2, \dots, N, \eta_i : C \times C \to H$ is a Lipschitz continuous mapping with constant $L_i > 0$ such that
 - (a) $\eta_i(x, y) + \eta_i(y, x) = 0, \forall x, y \in C;$
 - (b) $\eta_i(\cdot, \cdot)$ is affine in the first variable;
 - (c) for each fixed $y \in C, x \to \eta_i(y, x)$ is sequentially continuous from the weak topology to the weak topology;
- (ii) For each $i = 1, 2, \dots, N$, $K_i : C \to \mathbb{R}$ is a η_i -strongly convex with constant $\mu_i > 0$ and its derivative K'_i is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $v_i > 0, \mu_i \ge L_i v_i$;
- (iii) For each $x \in C$ there exists a bounded subset $D_x \subseteq C$ and $z_x \in C$ such that for any $y \in C D_x$

$$F_{i}(y,z_{x}) + \langle A_{i}z_{x}, y - z_{x} \rangle + \varphi_{i}(z_{x}) - \varphi_{i}(y) + \frac{1}{r_{i}} \langle K_{i}^{'}(y) - K_{i}^{'}(x), \eta_{i}(z_{x},y) \rangle < 0,$$

(iv) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$ and $\lim_{n \to \infty} t_n = \infty$.

Then $\{x_n\}$ converges strongly to $x^* \in \Omega$ provided that $\mathcal{V}_{r_i}^{\Theta_i}$ is firmly nonexpansive, and x^* is the unique solution of the following variational inequality:

$$\langle (A - \gamma f)x^*, x^* - z \rangle \le 0, \forall z \in \Omega.$$
 (3.2)

Proof. We observe that from conditions (iv), we can assume without loss of generality that $\alpha_n \leq (1 - \beta_n) ||A||^{-1}$. Since A is a bounded linear self-adjoint operator on H, we have

$$||A|| = \sup\{|\langle Au, u \rangle | : u \in H, ||u|| = 1\}.$$

Since

$$\langle ((1 - \beta_n)I - \alpha_n A)u, u \rangle = 1 - \beta_n - \alpha_n \langle Au, u \rangle$$

$$\geq 1 - \beta_n - \alpha_n \|A\|$$

$$\geq 0.$$

this implies that $(1 - \beta_n)I - \alpha_n A$ is positive. Hence we have

$$\|(1-\beta_n)I - \alpha_n A\| = \sup\{|\langle ((1-\beta_n)I - \alpha_n A)u, u\rangle | : u \in H, \|u\| = 1\}$$

$$= \sup\{1-\beta_n - \alpha_n \langle Au, u\rangle : u \in H, \|u\| = 1\}$$

$$\leq 1-\beta_n - \alpha_n \bar{\gamma}.$$
(3.3)

In the sequel, we denote by $\mathcal{V}^l = \mathcal{V}_{r_l}^{\Theta_l} \cdots \mathcal{V}_{r_2}^{\Theta_2} \mathcal{V}_{r_1}^{\Theta_1}$ for $l \in \{1, 2, \cdots, N\}$ and $\mathcal{V}^0 = I$. We divide the proof into serval steps:

Step 1. First prove that sequences $\{x_n\}, \{\rho_n\}, \{\xi_n\}$ and $\{y_n\}$ are bounded.

For each given $n \ge 1$, define the mapping $W_n : C \to C$ as:

$$W_n = \alpha_n \gamma f \frac{1}{t_n} \int_0^{t_n} T(s) ds + \beta_n I + ((1 - \beta_n)I - \alpha_n A) \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N ds.$$

Then we shall show that the mapping W_n is a contraction. Indeed for any $x, y \in C$, we have

$$\begin{split} \|W_n(x) - W_n(y)\| &= \left\| \alpha_n \gamma f\left(\frac{1}{t_n} \int_0^{t_n} T(s) x ds\right) + \beta_n x \\ &+ \left((1 - \beta_n) I - \alpha_n A \right) \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N x ds \\ &- \alpha_n \gamma f\left(\frac{1}{t_n} \int_0^{t_n} T(s) y ds\right) - \beta_n y \\ &+ \left((1 - \beta_n) I - \alpha_n A \right) \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N y ds \right\| \\ &\leq \alpha_n \gamma \left\| f\left(\frac{1}{t_n} \int_0^{t_n} T(s) x ds\right) - f\left(\frac{1}{t_n} \int_0^{t_n} T(s) y ds\right) \right\| + \beta_n \|x - y\| \\ &+ \left((1 - \beta_n) I - \alpha_n \bar{\gamma} \right) \frac{1}{t_n} \int_0^{t_n} \|T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N x ds \\ &- T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N y \| ds \\ &\leq \alpha_n \gamma h \|x - y\| + \beta_n \|x - y\| + (1 - \beta_n - \alpha_n \bar{\gamma}) \|x - y\| \\ &< \|x - y\|. \end{split}$$

Therefore, $W_n: C \to C$ is a contraction. Let $x_n \in C$ be the unique fixed point of W_n . Then

$$\begin{aligned} x_n &= \alpha_n \gamma f\left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds\right) + \beta_n x_n \\ &+ \left((1-\beta_n)I - \alpha_n A\right) \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I-\lambda B))^2 \mathcal{V}^N x_n ds \end{aligned}$$

is well-defined. Let $p \in \Omega$. Since $y_n = \mathcal{V}^N x_n$, we have

$$||y_n - p|| = ||\mathcal{V}^N x_n - p|| \le ||x_n - p||.$$
(3.4)

(3.5)

Since $p \in VI(H, B, M)$ and $\rho_n = J^M_{\lambda}(I - \lambda B)\xi_n$, we have $p = J^M_{\lambda}(I - \lambda B)p$ and so $\begin{aligned} \|\rho_n - p\| &= \|J^M_{\lambda}(I - \lambda B)\xi_n - J^M_{\lambda}(I - \lambda B)p\| \\ &\leq \|(I - \lambda B)\xi_n - (I - \lambda B)p\| \\ &\leq \|\xi_n - p\| \\ &= \|J^M_{\lambda}(I - \lambda B)y_n - J^M_{\lambda}(I - \lambda B)p\| \\ &\leq \|y_n - p\| \\ &\leq \|x_n - p\|. \end{aligned}$ Let

and

Then we have

$$\|u_n - p\| = \left\| \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds - p \right\|$$

$$\leq \frac{1}{t_n} \int_0^{t_n} \|T(s) x_n - T(s)p\| ds$$

$$\leq \|x_n - p\|.$$
(3.6)

Similarly, we have

$$|q_n - p|| \le ||\rho_n - p||. \tag{3.7}$$

From (3.1)-(3.7), we have

$$\begin{aligned} \|x_n - p\| &= \|\alpha_n \gamma f(u_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)q_n - p\| \\ &= \|\alpha_n \gamma (f(u_n) - f(p)) + \beta_n (x_n - p) + ((1 - \beta_n)I - \alpha_n A)(q_n - p) \\ &+ \alpha_n (\gamma f(p) - Ap)\| \\ &\leq \alpha_n \gamma h \|u_n - p\| + \beta_n \|x_n - p\| + ((1 - \beta_n)I - \alpha_n \bar{\gamma})\|q_n - p\| \\ &+ \alpha_n \|\gamma f(p) - Ap\| \\ &\leq \alpha_n \gamma h \|x_n - p\| + \beta_n \|x_n - p\| + ((1 - \beta_n)I - \alpha_n \bar{\gamma})\|x_n - p\| \\ &+ \alpha_n \|\gamma f(p) - Ap\|. \end{aligned}$$

 $u_n = \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds$

 $q_n = \frac{1}{t_n} \int_0^{t_n} T(s) \rho_n ds.$

And so, we have

$$||x_n - p|| \le \frac{1}{\bar{\gamma} - \gamma h} ||\gamma f(p) - Ap||.$$

This implies that $\{x_n\}$ is a bounded sequence in H. Therefore $\{y_n\}, \{\rho_n\}, \{\xi_n\}, \{\gamma f(u_n)\}$ and $\{q_n\}$ are also bounded. Step 2. Next, we prove that for each $0 \le s < \infty$,

$$\|x_n - T(s)x_n\| \to 0 (n \to \infty). \tag{3.8}$$

Since $x_n = \alpha_n \gamma f(u_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)q_n$, we have

$$||x_n - q_n|| \le \alpha_n ||\gamma f(u_n) - Aq_n|| + \beta_n ||x_n - q_n||.$$

Hence

$$||x_n - q_n|| \le \frac{\alpha_n}{1 - \beta_n} ||\gamma f(u_n) - Aq_n||.$$

From $\alpha_n \to 0$, we have

$$\|x_n - q_n\| \to 0. \tag{3.9}$$

Let

$$K = \left\{ w \in C : \|w - p\| \le \frac{1}{\bar{\gamma} - \gamma h} \|\gamma f(p) - Ap\| \right\}.$$

Then K is a nonempty bounded closed and convex subset of C and T(s)-invariant. Since $\{x_n\} \subset K$, there exists r > 0 such that $K \subset B_r$. It follows from Lemma 2.11 that

$$\lim_{n \to \infty} \|q_n - T(s)q_n\| \to 0.$$
(3.10)

From (3.9) and (3.10), we have

$$\begin{aligned} \|x_n - T(s)x_n\| &= \|x_n - q_n + q_n - T(s)q_n + T(s)q_n - T(s)x_n\| \\ &\leq \|x_n - q_n\| + \|q_n - T(s)q_n\| + \|T(s)q_n - T(s)x_n\| \\ &\leq \|x_n - q_n\| + \|q_n - T(s)q_n\| + \|q_n - x_n\| \\ &\to 0. \end{aligned}$$

Step 3. Next, we prove that

$$\lim_{n \to \infty} \|\mathcal{V}^{l+1}x_n - \mathcal{V}^l x_n\| = 0,$$

for all $l \in \{0, 1, \dots, N-1\}$. Especially,

$$\lim_{n \to \infty} \|\mathcal{V}^N x_n - x_n\| = \lim_{n \to \infty} \|y_n - x_n\| = 0.$$
(3.11)

In fact, since $\mathcal{V}_{r_{l+1}}^{\Theta_{l+1}}$ is firmly nonexpansive, for any given $p \in \Omega$ and $l \in \{0, 1, \dots, N-1\}$, we have

$$\begin{aligned} \|\mathcal{V}^{l+1}x_n - p\|^2 &= \|\mathcal{V}_{r_{l+1}}^{\Theta_{l+1}}(\mathcal{V}^l x_n) - \mathcal{V}_{r_{l+1}}^{\Theta_{l+1}}p\|^2 \\ &\leq \langle \mathcal{V}_{r_{l+1}}^{\Theta_{l+1}}(\mathcal{V}^l x_n) - p, \mathcal{V}^l x_n - p \rangle \\ &= \langle \mathcal{V}^{l+1}x_n - p, \mathcal{V}^l x_n - p \rangle \\ &= \frac{1}{2} \Big(\|\mathcal{V}^{l+1}x_n - p\|^2 + \|\mathcal{V}^l x_n - p\|^2 - \|\mathcal{V}^l x_n - \mathcal{V}^{l+1}x_n\|^2 \Big). \end{aligned}$$

It implies that

$$\|\mathcal{V}^{l+1}x_n - p\|^2 \le \|x_n - p\|^2 - \|\mathcal{V}^l x_n - \mathcal{V}^{l+1}x_n\|^2.$$
(3.12)

On the other hane, from (3.1), we have

$$\begin{aligned} \|x_{n} - p\|^{2} &= \|\alpha_{n}\gamma f(u_{n}) + \beta_{n}x_{n} + ((1 - \beta_{n})I - \alpha_{n}A)q_{n} - p\|^{2} \\ &= \|\alpha_{n}(\gamma f(u_{n}) - Ap) + \beta_{n}(x_{n} - q_{n}) + (I - \alpha_{n}A)(q_{n} - p)\|^{2} \\ &\leq \|(I - \alpha_{n}A)(q_{n} - p) + \beta_{n}(x_{n} - q_{n})\|^{2} \\ &+ 2\alpha_{n}\langle\gamma f(u_{n}) - Ap, x_{n} - p\rangle \\ &\leq [\|(I - \alpha_{n}A)(q_{n} - p)\| + \beta_{n}\|x_{n} - q_{n}\|]^{2} \\ &+ 2\alpha_{n}\langle\gamma f(u_{n}) - Ap, x_{n} - p\rangle \\ &\leq [(I - \alpha_{n}\bar{\gamma})\|\rho_{n} - p\| + \beta_{n}\|x_{n} - q_{n}\|]^{2} \\ &+ 2\alpha_{n}\langle\gamma f(u_{n}) - Ap, x_{n} - p\rangle \\ &\leq (1 - \alpha_{n}\bar{\gamma})^{2}\|\rho_{n} - p\|^{2} + \beta_{n}^{2}\|x_{n} - q_{n}\|^{2} \\ &+ 2(1 - \alpha_{n}\bar{\gamma})\beta_{n}\|\rho_{n} - p\|\|x_{n} - q_{n}\| \\ &+ 2\alpha_{n}\|\gamma f(u_{n}) - Ap\|\|x_{n} - p\|. \end{aligned}$$

$$(3.13)$$

And note that

$$\rho_n - p \| \le \|\xi_n - p\| \le \|\mathcal{V}^N x_n - p\| \le \|\mathcal{V}^{l+1} x_n - p\|, \quad \forall l \in \{0, 1, \cdots, N-1\}.$$

Substituting (3.12) into (3.13), it yields

 $\|$

$$\begin{aligned} \|x_n - p\|^2 &\leq (1 - \alpha_n \bar{\gamma})^2 \{ \|x_n - p\|^2 - \|\mathcal{V}^l x_n - \mathcal{V}^{l+1} x_n\|^2 \} + \beta_n^2 \|x_n - q_n\|^2 \\ &+ 2(1 - \alpha_n \bar{\gamma})\beta_n \|\rho_n - p\| \|x_n - q_n\| + 2\alpha_n \|\gamma f(u_n) - Ap\| \|x_n - p\| \\ &= (1 - 2\alpha_n \bar{\gamma} + (\alpha_n \bar{\gamma})^2) \|x_n - p\|^2 - (1 - \alpha_n \bar{\gamma})^2 \|\mathcal{V}^l x_n - \mathcal{V}^{l+1} x_n\|^2 \\ &+ \beta_n^2 \|x_n - q_n\|^2 + 2(1 - \alpha_n \bar{\gamma})\beta_n \|\rho_n - p\| \|x_n - q_n\| \\ &+ 2\alpha_n \|\gamma f(u_n) - Ap\| \|x_n - p\|. \end{aligned}$$

Simplifying the above inequaity, we have

$$(1 - \alpha_n \bar{\gamma})^2 \| \mathcal{V}^l x_n - \mathcal{V}^{l+1} x_n \|^2 \le (1 - \alpha_n \bar{\gamma})^2 \| x_n - p \|^2 - \| x_n - p \|^2 + \beta_n^2 \| x_n - q_n \|^2 + 2(1 - \alpha_n \bar{\gamma}) \beta_n \| \rho_n - p \| \| x_n - q_n \| + 2\alpha_n \| \gamma f(u_n) - Ap \| \| x_n - p \|.$$

Since $\alpha_n \to 0, \|x_n - q_n\| \to 0$ from condition (iv). Hence we have

$$\lim_{n \to \infty} \|\mathcal{V}^{l+1}x_n - \mathcal{V}^l x_n\| = 0,$$

for all $l \in \{0, 1, \cdots, N-1\}$.

Step 4. Now, we prove that for any given $p \in \Omega$,

$$\lim_{n \to \infty} \|By_n - Bp\| = 0. \tag{3.14}$$

In fact, it follows from (3.5) that

$$\|\rho_{n} - p\|^{2} \leq \|\xi_{n} - p\|^{2} = \|J_{\lambda}^{M}(I - \lambda B)y_{n} - J_{\lambda}^{M}(I - \lambda B)p\|^{2}$$

$$\leq \|(I - \lambda B)y_{n} - (I - \lambda B)p\|^{2}$$

$$\leq \|y_{n} - p\|^{2} - 2\lambda\langle y_{n} - p, By_{n} - Bp\rangle + \lambda^{2}\|By_{n} - Bp\|^{2}$$

$$\leq \|y_{n} - p\|^{2} + \lambda(\lambda - 2\alpha)\|By_{n} - Bp\|^{2}$$

$$\leq \|x_{n} - p\|^{2} + \lambda(\lambda - 2\alpha)\|By_{n} - Bp\|^{2}.$$
(3.15)

Substituting (3.15) into (3.13), we obtain

$$||x_n - p||^2 \le (1 - \alpha_n \bar{\gamma})^2 \{ ||x_n - p||^2 + \lambda(\lambda - 2\alpha) ||By_n - Bp||^2 \} + \beta_n^2 ||x_n - q_n||^2 + 2(1 - \alpha_n \bar{\gamma})\beta_n ||\rho_n - p|| ||x_n - q_n|| + 2\alpha_n ||\gamma f(u_n) - Ap|| ||x_n - p||.$$

Simplifying this, we have

$$(1 - \alpha_n \bar{\gamma})^2 \lambda (2\alpha - \lambda) \|By_n - Bp\|^2 \le (1 + \alpha_n (\bar{\gamma})^2) \|x_n - p\|^2 - \|x_n - p\|^2 + \beta_n^2 \|x_n - q_n\|^2 + 2(1 - \alpha_n \bar{\gamma})\beta_n \|\rho_n - p\| \|x_n - q_n\| + 2\alpha_n \|\gamma f(u_n) - Ap\| \|x_n - p\| = \alpha_n (\bar{\gamma})^2 \|x_n - p\|^2 + \beta_n^2 \|x_n - q_n\|^2 + 2(1 - \alpha_n \bar{\gamma})\beta_n \|\rho_n - p\| \|x_n - q_n\| + 2\alpha_n \|\gamma f(u_n) - Ap\| \|x_n - p\|.$$

Since $\alpha_n \to 0$, $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$, $||x_n - q_n|| \to 0$, and $\{\gamma f(u_n) - Ap\}$, $\{x_n\}$ are bounded, these imply that

$$\lim_{n \to \infty} \|By_n - Bp\| = 0.$$

Step 5. Next, we prove that

$$\begin{cases} \lim_{n \to \infty} \|y_n - \rho_n\| = 0, \\ \lim_{n \to \infty} \|x_n - \rho_n\| = 0. \end{cases}$$
(3.16)

In fact, since

$$||y_n - \rho_n|| \le ||y_n - \xi_n|| + ||\xi_n - \rho_n||,$$

it is sufficient to prove $||y_n - \xi_n|| \to 0$ and $||\xi_n - \rho_n|| \to 0$. First we have to prove that $||y_n - \xi_n|| \to 0$. In fact, since

$$\begin{aligned} \|\xi_{n} - p\|^{2} &= \|J_{\lambda}^{M}(I - \lambda B)y_{n} - J_{\lambda}^{M}(I - \lambda B)p\|^{2} \\ &\leq \langle y_{n} - \lambda By_{n} - (p - \lambda Bp), \xi_{n} - p \rangle \\ &= \frac{1}{2} \Big\{ \|y_{n} - \lambda By_{n} - (p - \lambda Bp)\|^{2} + \|\xi_{n} - p\|^{2} \\ &- \|y_{n} - \lambda By_{n} - (p - \lambda Bp) - (\xi_{n} - p)\|^{2} \Big\} \\ &\leq \frac{1}{2} \Big\{ \|y_{n} - p\|^{2} + \|\xi_{n} - p\|^{2} - \|y_{n} - \xi_{n} - \lambda (By_{n} - Bp)\|^{2} \Big\} \\ &\leq \frac{1}{2} \Big\{ \|y_{n} - p\|^{2} + \|\xi_{n} - p\|^{2} - \|y_{n} - \xi_{n}\|^{2} \\ &+ 2\lambda \langle y_{n} - \xi_{n}, By_{n} - Bp \rangle - \lambda^{2} \|By_{n} - Bp\|^{2} \Big\}, \end{aligned}$$

we have

$$\|\xi_n - p\|^2 \le \|y_n - p\|^2 - \|y_n - \xi_n\|^2 + 2\lambda\langle y_n - \xi_n, By_n - Bp\rangle - \lambda^2 \|By_n - Bp\|^2.$$
(3.17)

Substituting (3.17) into (3.13), it yields that

$$||x_n - p||^2 \le (1 - \alpha_n \bar{\gamma})^2 \{ ||y_n - p||^2 - ||y_n - \xi_n||^2 + 2\lambda \langle y_n - \xi_n, By_n - Bp \rangle - \lambda^2 ||By_n - Bp||^2 \} + \beta_n^2 ||x_n - q_n||^2 + 2(1 - \alpha_n \bar{\gamma})\beta_n ||\rho_n - p|| ||x_n - q_n|| + 2\alpha_n ||\gamma f(u_n) - Ap|| ||x_n - p||.$$

Simplifying this, we have

$$\begin{aligned} (1 - \alpha \bar{\gamma})^2 \|y_n - \xi_n\|^2 &\leq \alpha_n \bar{\gamma}^2 \|x_n - p\|^2 + 2(1 - \alpha_n \bar{\gamma}^2) \lambda \langle y_n - \xi_n, By_n - Bp \rangle \\ &- (1 - \alpha \bar{\gamma})^2 \lambda^2 \|By_n - Bp\|^2 \\ &+ \beta_n^2 \|x_n - q_n\|^2 + 2(1 - \alpha_n \bar{\gamma}) \beta_n \|\rho_n - p\| \|x_n - q_n\| \\ &+ 2\alpha_n \|\gamma f(u_n) - Ap\| \|x_n - p\|. \end{aligned}$$

Since $\alpha_n \to 0$, $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$, $||x_n - q_n|| \to 0$, $||By_n - Bp|| \to 0$ $(n \to \infty)$ and $\{\gamma f(u_n) - Ap\}$, $\{x_n\}$, $\{\rho_n\}$ are bounded, these imply that

$$||y_n - \xi_n|| \to 0 (n \to \infty).$$

Next we prove that

$$\lim_{n \to \infty} \|\xi_n - \rho_n\| = 0.$$
 (3.18)

Since

$$\begin{aligned} \|\xi_n - \rho_n\| &= \|J_{\lambda}^M (I - \lambda B) y_n - J_{\lambda}^M (I - \lambda B) \xi_n\| \\ &\leq \|y_n - \xi_n\| \\ &\to 0, \end{aligned}$$

we have

$$||y_n - \rho_n|| = ||y_n - \xi_n + \xi_n - \rho_n||$$

$$\leq ||y_n - \xi_n|| + ||\xi_n - \rho_n||$$

$$\to 0.$$

This together with (3.11) shows that $||x_n - \rho_n|| \to 0$.

Step 6. Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightarrow x^*$. In this case, we will prove that

$$x^* \in \Omega := F(\mathfrak{F}) \cap GMEP(\Theta) \cap VI(H, B, M)$$

and x^* is the unique solution of the variational inequality (3.2).

We first prove that $x^* \in F(\mathfrak{F})$. From Lemma 2.12 and Step 2, we obtain $x^* \in F(\mathfrak{F})$.

Next, we prove that

$$x^* \in GMEP(\Theta) := \bigcap_{l=1}^N GMEP(\Theta_l).$$

Since $x_{n_k} \rightharpoonup x^*$ and noting Step 3, without loss of generality, we may assume that $\mathcal{V}^l x_{n_k} \rightharpoonup x^*$, for all $l \in \{0, 1, 2, \dots, N-1\}$. Hence for any $x \in C$, we have

$$\left\langle \frac{K_{l+1}^{'}(\mathcal{V}^{l+1}x_{n_{k}}) - K_{l+1}^{'}(\mathcal{V}^{l}x_{n_{k}})}{r_{l+1}}, \eta_{l+1}(x, \mathcal{V}^{l+1}x_{n_{k}}) \right\rangle$$

$$\geq -\Theta_{l+1}(\mathcal{V}^{l+1}x_{n_{k}}) - \varphi_{l+1}(x) + \varphi_{l+1}(\mathcal{V}^{l+1}x_{n_{k}}).$$

By the assumptions and the condition (C2), we know that the function φ_i and the mapping $x \to (-\Theta_{l+1}(x, y))$ are convex and lower semi-continuous. Hence they are weakly lower semi-continuous. These together with

$$\frac{K_{l+1}^{'}(\mathcal{V}^{l+1}x_{n_{k}}) - K_{l+1}^{'}(\mathcal{V}^{l}x_{n_{k}})}{r_{l+1}} \to 0$$

and $\mathcal{V}^{l+1}x_{n_k} \rightharpoonup x^*$, we have

$$0 = \liminf_{k \to \infty} \left\langle \frac{K_{l+1}'(\mathcal{V}^{l+1}x_{n_k}) - K_{l+1}'(\mathcal{V}^{l}x_{n_k})}{r_{l+1}}, \eta_{l+1}(x, \mathcal{V}^{l+1}x_{n_k}) \right\rangle$$

$$\geq \liminf_{k \to \infty} \left\{ -\Theta_{l+1}(\mathcal{V}^{l+1}x_{n_k}) - \varphi_{l+1}(x) + \varphi_{l+1}(\mathcal{V}^{l+1}x_{n_k}) \right\}.$$

This implies that for $x \in C$ and $l \in \{0, 1, \dots, N-1\}$,

$$\Theta_{l+1}(x^*, x) + \varphi_{l+1}(x) - \varphi_{l+1}(x^*) \ge 0.$$

Hence, we have

$$x^* \in \bigcap_{l=1}^{N} GMEP(\Theta_l) = GMEP(\Theta).$$

Now, we prove that $x^* \in VI(H, B, M)$. In fact, since B is α -inverse strongly monotone, it follows from Proposition 1.2 that B is an $\frac{1}{\alpha}$ -Lipschitz continuous monotone mapping and D(B) = H, (where D(B) is the domain of B). From Lemma 2.5 that M + B is maximal monotone. Let $(v, g) \in G(M + B)$, *i.e.*, $g - Bv \in Mv$. Since $x_{n_k} \rightharpoonup x^*$ and noting Step 3, without loss of generality, we may assume that $\mathcal{V}^l x_{n_k} \rightharpoonup x^*$, in particular we have $y_{n_k} = \mathcal{V}^N x_{n_k} \rightharpoonup x^*$. From $\|y_n - \rho_n\| \to 0$, we can prove that $\rho_{n_k} \rightharpoonup x^*$. Again since $\rho_{n_k} = J_\lambda^M (I - \lambda B) \xi_{n_k}$, we have $\xi_{n_k} - \lambda B \xi_{n_k} \in (I + \lambda M) \rho_{n_k}$ *i.e.*, $\frac{1}{\lambda} (\xi_{n_k} - \rho_{n_k} - \lambda B \xi_{n_k}) \in M \rho_{n_k}$. By virtue of the maximal monotonicity of M, we have

$$\langle v - \rho_{n_k}, g - Bv - \frac{1}{\lambda} (\xi_{n_k} - \rho_{n_k} - \lambda B\xi_{n_k}) \rangle \ge 0,$$

and so

$$\begin{split} \langle \upsilon - \rho_{n_k}, g \rangle &\geq \langle \upsilon - \rho_{n_k}, B\upsilon + \frac{1}{\lambda} (\xi_{n_k} - \rho_{n_k} - \lambda B \xi_{n_k}) \rangle \\ &= \langle \upsilon - \rho_{n_k}, B\upsilon - B \rho_{n_k} + B \rho_{n_k} - B \xi_{n_k} + \frac{1}{\lambda} (\xi_{n_k} - \rho_{n_k}) \rangle \\ &\geq 0 + \langle \upsilon - \rho_{n_k}, B \rho_{n_k} - B \xi_{n_k} \rangle + \langle \upsilon - \rho_{n_k}, \frac{1}{\lambda} (\xi_{n_k} - \rho_{n_k}) \rangle \end{split}$$

Since $\|\xi_n - \rho_n\| \to 0$, $\|B\xi_n - B\rho_n\| \to 0$ and $\rho_{n_k} \rightharpoonup x^*$, we have

$$\lim_{k \to \infty} \langle v - \rho_{n_k}, g \rangle = \langle v - x^*, g \rangle \ge 0$$

It follows from the maximal monotonicity of M + B that $\theta \in (M + B)(x^*)$, that is, $x^* \in VI(H, B, M)$. Consequently, we have

$$x^* \in \Omega$$
.

Finally, we prove that x^* is the unique solution of variational inequality (3.2). We first prove that $x_{n_k} \to x^*$. Since for all $z \in \Omega$,

$$\begin{aligned} \|x_n - z\|^2 &= \langle x_n - z, x_n - z \rangle \\ &= \langle \alpha_n \gamma f(u_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)q_n - z, x_n - z \rangle \\ &= \langle \alpha_n (\gamma f(u_n) - Az) + \beta_n (x_n - z) + ((1 - \beta_n)I - \alpha_n A)(q_n - z), x_n - z \rangle \\ &\leq \alpha_n \langle \gamma f(u_n) - Az, x_n - z \rangle + \beta_n \|x_n - z\|^2 \\ &+ (1 - \beta_n - \alpha_n \bar{\gamma}) \|q_n - z\| \|x_n - z\| \\ &= (1 - \alpha_n \bar{\gamma}) \|x_n - z\|^2 + \alpha_n \langle \gamma f(u_n) - Az, x_n - z \rangle, \end{aligned}$$
(3.19)

it follows that

$$\|x_n - z\|^2 \le \frac{1}{\bar{\gamma}} \langle \gamma f(u_n) - Az, x_n - z \rangle$$

$$\le \frac{1}{\bar{\gamma}} \langle \gamma f(u_n) - \gamma f(z) + \gamma f(z) - Az, x_n - z \rangle$$

$$\le \frac{1}{\bar{\gamma}} \Big\{ \gamma h \|x_n - z\|^2 + \langle \gamma f(z) - Az, x_n - z \rangle \Big\}.$$

Therefore

$$||x_n - z||^2 \le \frac{1}{\bar{\gamma} - \gamma h} \Big\langle \gamma f(z) - Az, x_n - z \Big\rangle.$$
(3.20)

Now replacing n in (3.20) with n_k and letting $k \to \infty$ and $x_{n_k} \rightharpoonup x^*$, we have $x_{n_k} \to x^*$.

On the other hand, since

$$x_n = \alpha_n \gamma f\left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds\right) + \beta_n x_n + \left((1 - \beta_n)I - \alpha_n A\right) \frac{1}{t_n} \int_0^{t_n} T(s) \rho_n ds,$$

we have

$$\begin{aligned} \alpha_n (A - \gamma f) \Big(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds \Big) &= -\Big\{ (1 - \beta_n) (x_n - \frac{1}{t_n} \int_0^{t_n} T(s) \rho_n ds) \Big\} \\ &+ \alpha_n A \frac{1}{t_n} \int_0^{t_n} (T(s) x_n - T(s) \rho_n) ds \\ &= -(1 - \beta_n) \Big(I - \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N ds \Big) x_n \\ &+ \alpha_n A \frac{1}{t_n} \int_0^{t_n} (T(s) x_n - T(s) \rho_n) ds. \end{aligned}$$

Hence for any $z \in \Omega$, we have

$$\begin{aligned} &\alpha_n \Big\langle (A - \gamma f) \Big(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds \Big), x_n - z \Big\rangle \\ &= -(1 - \beta_n) \Big\langle \Big(I - \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N ds \Big) x_n \\ &- \Big(I - \frac{1}{t_n} \int_0^{t_n} T(s) (J_\lambda^M (I - \lambda B))^2 \mathcal{V}^N ds \Big) z, x_n - z \Big\rangle \\ &+ \alpha_n \Big\langle A \frac{1}{t_n} \int_0^{t_n} (T(s) x_n - T(s) \rho_n) ds, x_n - z \Big\rangle. \end{aligned}$$

Then

$$\left\langle (A - \gamma f) \left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds \right), x_n - z \right\rangle$$

= $-\frac{1 - \beta_n}{\alpha_n} \left\langle \left(I - \frac{1}{t_n} \int_0^{t_n} T(s) (J^M_\lambda (I - \lambda B))^2 \mathcal{V}^N ds \right) x_n$
 $- \left(I - \frac{1}{t_n} \int_0^{t_n} T(s) (J^M_\lambda (I - \lambda B))^2 \mathcal{V}^N ds \right) z, x_n - z \right\rangle$
 $+ \left\langle A \frac{1}{t_n} \int_0^{t_n} (T(s) x_n - T(s) \rho_n) ds, x_n - z \right\rangle.$ (3.21)

It is easily seen that $I - \frac{1}{t_n} \int_0^{t_n} T(s) (J_{\lambda}^M (I - \lambda B))^2 \mathcal{V}^N ds$ is monotone. Thus from (3.21) we have that

$$\left\langle (A - \gamma f) \left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n ds \right), x_n - z \right\rangle \le \left\langle A \frac{1}{t_n} \int_0^{t_n} (T(s) x_n - T(s) \rho_n) ds, x_n - z \right\rangle.$$
(3.22)

Now in (3.22) replacing n by n_k and letting $k \to \infty$ and $x_{n_k} \to x^*$, from Step 3 and Step 5, we have

$$||x_n - \rho_n|| \to 0.$$

Then

$$\frac{1}{t_{n_k}} \int_0^{t_{n_k}} (T(s)x_{n_k} - T(s)\rho_{n_k}) ds \to 0$$

So, we have for all $z \in \Omega$,

$$\langle (A - \gamma f)x^*, x^* - z \rangle \le 0.$$

That is, x^* is the solution of the variational inequality (3.2). It follows from [19] that x^* is a unique solution of (3.2).

Step 7. Next, we prove that

$$\limsup_{n \to \infty} \langle \gamma f(x^*) - Ax^*, x_n - x^* \rangle \le 0.$$
(3.23)

First, we prove that

$$\limsup_{n \to \infty} \left\langle \frac{1}{t_n} \int_0^{t_n} T(s)\rho_n ds - x^*, \gamma f(x^*) - Ax^* \right\rangle \le 0.$$
(3.24)

Indeed, there exists a subsequence $\{\rho_{n_i}\}$ of $\{\rho_n\}$ such that

$$\limsup_{n \to \infty} \left\langle \frac{1}{t_n} \int_0^{t_n} T(s)\rho_n ds - x^*, \gamma f(x^*) - Ax^* \right\rangle$$
$$= \lim_{i \to \infty} \left\langle \frac{1}{t_{n_i}} \int_0^{t_{n_i}} T(s)\rho_{n_i} ds - x^*, \gamma f(x^*) - Ax^* \right\rangle.$$

We may also assume that $\rho_{n_i} \rightharpoonup w$. This together with (3.9) and (3.16) show that

$$q_{n_i} = \frac{1}{t_{n_i}} \int_0^{t_{n_i}} T(s)\rho_{n_i} ds \to w.$$

Since $||x_n - q_n|| \to 0$, we have $x_{n_i} \rightharpoonup w$. Again by the same way as given in Step 6, we can prove that $w \in \Omega$. Hence, we have

$$\begin{split} \limsup_{n \to \infty} \left\langle \frac{1}{t_n} \int_0^{t_n} T(s) \rho_n ds - x^*, \gamma f(x^*) - Ax^* \right\rangle \\ &= \lim_{i \to \infty} \left\langle \frac{1}{t_{n_i}} \int_0^{t_{n_i}} T(s) \rho_{n_i} ds - x^*, \gamma f(x^*) - Ax^* \right\rangle \\ &= \lim_{i \to \infty} \left\langle q_{n_i} - x^*, \gamma f(x^*) - Ax^* \right\rangle \\ &= \left\langle w - x^*, \gamma f(x^*) - Ax^* \right\rangle \\ &\leq 0. \end{split}$$

On the other hand, from $||x_n - q_n|| \to 0$ and (3.24), we have

$$\limsup_{n \to \infty} \langle \gamma f(x^*) - Ax^*, x_n - x^* \rangle = \limsup_{n \to \infty} \langle \gamma f(x^*) - Ax^*, x_n - q_n + q_n - x^* \rangle$$
$$\leq \limsup_{n \to \infty} \langle \gamma f(x^*) - Ax^*, x_n - q_n \rangle$$
$$+ \limsup_{n \to \infty} \langle \gamma f(x^*) - Ax^*, q_n - x^* \rangle$$
$$< 0.$$

Step 8. Finally, we prove that $x_n \to x^*$. Indeed from (3.1),(3.5) and (3.7), we have

$$\begin{aligned} \|x_n - x^*\|^2 &= \|\alpha_n(\gamma f(u_n) - Ax^*) - \beta_n(x_n - x^*) + ((1 - \beta_n)I - \alpha_n A)(q_n - x^*)\|^2 \\ &\leq \|\beta_n(x_n - x^*) + ((1 - \beta_n)I - \alpha_n A)(q_n - x^*)\|^2 \\ &+ 2\alpha_n\langle\gamma f(u_n) - Ax^*, x_n - x^*\rangle \\ &\leq [\beta_n\|x_n - x^*\| + \|((1 - \beta_n)I - \alpha_n A)(q_n - x^*)\|]^2 \\ &+ 2\alpha_n\gamma\langle f(u_n) - f(x^*), x_n - x^*\rangle + 2\alpha_n\langle\gamma f(x^*) - Ax^*, x_n - x^*\rangle \\ &\leq [\beta_n\|x_n - x^*\| + \|(1 - \beta_n - \alpha_n\bar{\gamma})\|\rho_n - x^*\|]^2 \\ &+ 2\alpha_n\gamma h\|x_n - x^*\|^2 + 2\alpha_n\langle\gamma f(x^*) - Ax^*, x_n - x^*\rangle \\ &\leq ((1 - \alpha_n\bar{\gamma})^2 + 2\alpha_n\gamma h)\|x_n - x^*\|^2 + 2\alpha_n\langle\gamma f(x^*) - Ax^*, x_n - x^*\rangle. \end{aligned}$$

This implies that

$$x_n - x^* \|^2 \le \frac{2}{2(\bar{\gamma} - \gamma h) - \bar{\gamma}^2} \Big\langle \gamma f(x^*) - Ax^*, x_n - x^* \Big\rangle.$$
(3.25)

Combining (3.23) and (3.25), we obtain that $x_n \to x^*$. This completes the proof. \Box

Acknowledgements

The authors wish to thank the anonymous referees for the careful reports and valuable comments that helped significantly improve the presentation of the paper.

References

- M.K. Ahmad and Salahuddin, Perturbed three step approximation process with errors for a general implicit nonlinear variational inequalities, Int. J. Math. Math. Sci. 2006 (2006), Article ID 43818, 1–14.
- [2] M.K. Ahmad and Salahuddin, A stable perturbed algorithms for a new class of generalized nonlinear implicit quasi variational inclusions in Banach spaces, Adv. Pure Math. 2 (2012), no. 2, 139–148.
- [3] S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (1997), 4197–4208.
- [4] L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), 186–201.
- [5] R. Chen and H. He, Viscosity approximation of common fixed points of nonexpansive semigroups in Banach spaces, Appl. Math. Lett. 20 (2007), 751–757.
- [6] M.M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–514.
- [7] J.K. Kim and S.S. Chang, Generalized mixed equilibrium problems for an infinite family of quasi-φ-nonexpansive mappings in Banach spaces, Nonlinear Anal. Convex Anal. RIMS Kokyuroku, Kyoto Univ. 1923 (2014), 28–41.
- [8] J.K. Kim, S.Y. Cho and X.L. Qin, Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings, J. Inequal. Appl. 2010 (2010), Article ID 312062, 17 pages.
- J.K. Kim, Salahuddin and W.H. Lim, An iterative algorithm for generalized mixed equilibrium problems and fixed points of nonexpansive semigroups, J. Appl. Math. Phys. 5 (2017), 276–293.

- [10] J.N. Ezeora, Approximating solution of generalized mixed equilibrium problem and fixed point of multi valued strongly pseudocontractive mappings, Nigerian Math. Soc. 38 (2019), no. 3, 515–532.
- [11] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), 191–201.
- [12] A.T.M. Lau and W. Takahashi, Invariant means and fixed point properties for nonexpansive representations of topological semigroups, Topological Meth. Nonlinear Anal. 5 (1995), 39–57.
- [13] A.T.M. Lau, H. Miyake and W. Takahashi, Approximation of fixed points for semigroups of nonexpansive mappings in Banach spaces, Nonlinear Anal. TMA, 67 (2007), 1211–1225.
- [14] A.T.M. Lau, N. Shioji and W. Takahashi, Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorem in Banach spaces, J. Funct. Anal. 161 (1999), 62–75.
- [15] S. Li, L. Li, L. Cao, X. He and X. Yue, Hybrid extragradient method gor generalized mixed equilibrium problems and fixed point problems in Hilbert spaces, Fixed point Theo. Appl. 2013 (2013), 240.
- [16] J. L. Lions and G. Stampacchia, Variational Inequalities, Comm. Pure Appl. Math. 20 (1967), 493–517.
- [17] D. Pascali, Nonlinear mappings of monotone type, Sijthoff and Noordhoff International Publishers, The Netherlands 1978.
- [18] I. Inchan, Hybrid extragradient method for general equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Anal.: Hybrid Syst. 5 (2011), 467–478.
- [19] G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43–52.
- [20] S. Saeidi, Iterative algorithms for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of family and semigroups of nonexpansive mappings, Nonlinear Anal. 70 (2009), 4195– 4209.
- [21] S. Saeidi, Existence of ergodic retractions for semigroups in Banach spaces, Nonlinear Anal. 69 (2008), 3417–3422.
- [22] T. Suzuki, Strong convergence of Krasnoselski and Mann type sequence for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), 227–239.
- [23] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71–83.
- [24] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506–515.
- [25] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theo. Appl. 116(3) (2003), 659–678.
- [26] L. Yang, F. Zhao and J.K. Kim, Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinity family of asymptotically quasi φ-nonexpansive mappings in Banach spaces, Appl. Math. Comput. 218 (2012), 6072–6082.
- [27] S. Zhang, J.H. Joseph Lee and C.K. Chan, Algorithm of common solutions for quasi variational inclusions and fixed point problems, Appl. Math. Mech. 29 (2008), 1–11.