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Abstract

In this paper, we prove stability of multi-cubic functional equations in Lipschitz spaces by property multi-symmetric
left invariant mean. Indeed, we prove under certain Lipschitz condition a family of Lipschitz mappings can be
approximated by multi-cubic mappings.
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1 Introduction

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability problem
of functional equations is as follows: When is it true that a mapping satisfying a functional equation approximately
must be close to an exact solution of the given functional equation?
The first stability problem concerning group homomorphisms was raised by Ulam [26] in 1940 and affirmatively solved
by Hyers [14]. The result of Hyers was generalized by Aoki [2] for approximate additive mappings and by Th. M.
Rassias [23] for approximate linear mappings by allowing the difference Cauchy equation ∥f(x+ y)− f(x)− f(y)∥ to
be controlled by ε(∥x∥p + ∥y∥p). In 1994, a generalization of the Th. M. Rassias’ theorem was obtained by Gǎvruta
[12], who replaced ε(∥x∥p + ∥y∥p) by ageneral control function φ(x, y). During the last two decades, the subject has
been established and developed by an increasing number of mathematicians in various spaces [1, 9, 22].

In 2002, Jun and Kim [15] introduced the following functional equation

f(2x+ y) + f(2x− y) = 2(f(x+ y) + f(x− y)) + 12f(x),

and established the general solution and the Hyers-Ulam stability for this functional equation (also see [21]). This
functional equation is called cubic functional equation and every solution of cubic equation is said to be a cubic
mapping. Obviously, the mapping f(x) = x3 satisfies in the functional equation. Bodaghi [3] investigated the solution
and the Hyers-Ulam stability for the cubic functional equation

f(mx+ ny) + f(mx− ny) = mn2(f(x+ y) + f(x− y)) + 2m(m2 − n2)f(x)

where m,n are integer numbers with m ≥ 2.

The stability of multi-quadratic mappings in Banach spaces has been studied for the first time in [20]. Then,
X. Zhao et al., characterized them as an equation in [27]. Recently, some generalized forms of the multi-quadratic
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mappings and their Hyers-Ulam stability in Banach spaces by a known fixed point method have been studied in [4]
and [5]. The Jensen-type multi-quadratic mappings and their characterization can be found in [24]. Ghaemi et al.,
in [13] introduced the multi-cubic mappings for the first time. Next, a special case of such mappings is studied in
[6]. Park and Bodaghi [19] investigated multi-cubic functional equations and some results on the stability in modular
spaces. Indeed, a mapping f : Wn → V is called multi-cubic if it is cubic in each variable, i.e., satisfies (2.1) in each
variable. In [6], the authors unified the system of functional equations defining a multi-cubic mapping to a single
equation, namely multi-cubic functional equation. The general system of cubic functional equations which was defined
in [13], characterized as a single equation in [11].

The algebra of Lipschitz functions on a complete metric space plays a role in non-commutative metric theory
similar to that played by the algebra of continuous functions on compact space in non-commutative topology. In 1997,
Lipschitz stability-type problems for Cuachy and Jensen functional equations were studied by Tabor [25]. Czerwik and
Dlutek [7] investigated the stability of the quadratic functional equations in Lipschitz spaces. The stability of cubic
functional equations in Lipschitz spaces was proved by Ebadian et al. [10]. Nikoufar [16, 17, 18] verified Lipschitz
stability of bi-quadratic functional equations, multi-quadratic functional equations and quartic functional equations,
respectively. Moreover, the stability of generalized multi-quadratic mappings in Lipschitz spaces was investigated in
[8].

In this paper, we prove Lipschitz stability of multi-cubic functional equations. Indeed, we prove under certain
Lipschitz conditions a family of functions can be approximated by multi-cubic mappings.

2 Main results

Let W be an abelian group and V a real vector space. A mapping C : Wn → V is called multi-cubic if C is cubic
in each variable; that is, C satisfies the system of equations:

2f(x1, x2, x3, ..., xi + yi, ..., xn) + 2f(x1, x2, x3, ..., xi − yi, ..., xn)

= f(x1, x2, x3, ..., 2xi + yi, ..., xn) + f(x1, x2, x3, ..., 2xi − yi, ..., xn)

− 12f(x1, x2, x3, ..., xi, ..., xn) (2.1)

for all xi, yi ∈ W, i = 1, 2, 3, ..., n. Let L(V) be a family of subsets of V. We say that L(V) is linearly invariant if it is
closed under the addition and scalar multiplication defined as usual sense and translation invariant, i.e., x+A ∈ L(V)
for every A ∈ L(V) and every x ∈ V [7]. By F(W,L(V)) we denote the family of all mappings f : W → V
such that Imf ∈ B for some B ∈ L(V). A mapping f : Wn → V is said to be symmetric if f(x1, x2, ..., xn) =
f(xσ(1), xσ(2), ..., xσ(n)) for every permutation {σ(1), σ(2), ..., σ(n)} of {1, 2, ..., n}.

Definition 2.1. Family mappings F(W,L(V)) is called multi-symmetric left invariant mean (briefly MSLIM), if the
family L(V) is linearly invariant and there exists a linear operator
Λ : F(Wn,L(V)) → V, such that
(i) if Imf ∈ B for some B ∈ L(V), then Λ[f ] ∈ B,
(ii)if fx1,x2,...,xn ∈ F(Wn,L(V)) and x1, x2, ..., xn ∈ W, then

Λ[fx1,x2,...,xn ] = Λ[fxσ(1),xσ(2),...,xσ(n)
]

for every permutation {σ(1), σ(2), ..., σ(n)} of {1, 2, ..., n},
(iii) if f ∈ F(Wn,L(V)) and a ∈ W, then Λ[fa] = Λ[f ], where fa(x1, x2, ..., xn) = f(x1 + a, x2, ..., xn).

Definition 2.2. Let ∆ : Wn ×Wn −→ L(V) be a set-valued function such that

∆((x1 + a1, x2 + a2, ..., xn + an),(y1 + a1, y2 + a2, ..., yn + an))

= ∆((a1 + x1, a2 + x2, ..., an + xn), (a1 + y1, a2 + y2, ..., an + yn))

= ∆((x1, x2, ..., xn), (y1, y2, ..., yn),

for all (a1, a2, ..., an), (x1, x2, ..., xn) and (y1, y2, ..., yn) ∈ Wn. A mapping f : Wn → V is said to be ∆-Lipschitz if

f(x1, x2, ..., xn)− f(y1, y2, ..., yn) ∈ ∆((x1, x2, ..., xn), (y1, y2, ..., yn))

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn.
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For a given mapping f : Wn → V we consider its multi-cubic difference as follows:

Θif(x1, x2, ...xi, yi, xi+1, xn) : = 2f(x1, x2, x3, ..., xi + yi, ..., xn) + 2f(x1, x2, x3, ..., xi − yi, ..., xn)

− f(x1, x2, x3, ..., 2xi + yi, ..., xn)− f(x1, x2, x3, ..., 2xi − yi, ..., xn)

+ 12f(x1, x2, x3, ..., xi, ..., xn)

for all xi, yi ∈ W and i = 1, 2, ..., n.

Theorem 2.3. Let W be an abelian group and V a vector space. Assume that the family F(W,L(V)) admits
MSLIM. If f : Wn → V is an odd mapping and Θ1f(t, ., ..., .) is ∆-Lipschitz for every t ∈ W, then there exists a
multi-cubic mapping C : Wn → V such that f − C is 1

12∆-Lipschitz. Moreover, if ImΘ1f ⊂ A for some A ∈ L(V),
then Im(f − C) ⊂ 1

12A.

Proof . For every (x1, x2, ..., xn) ∈ Wn, we define the mapping ηx1
(·, x2, ..., xn) : W → V by the formula

ηx1(·, x2, ..., xn) =
1

12
f(2x1 + ·, x2, ..., xn)

+
1

12
f(2x1 − ·, x2, ..., xn)−

1

6
f(x1 + ·, x2, ..., xn)−

1

6
f(x1 − ·, x2, ..., xn).

We prove that Imηx1
(·, x2, ..., xn) ⊆ A for some A ∈ L(V). For (x1, x2, ..., xn) ∈ Wn, we get

ηx1
(·, x2, ..., xn) = f(0, x2, ..., xn) +

1

12
f(2x1 + ·, x2, ..., xn)

+
1

12
f(2x1 − ·, x2, ..., xn)−

1

6
f(x1 + ·, x2, ..., xn)−

1

6
f(x1 − ·, x2, ..., xn)

− f(x1, x2, ..., xn) + f(x1, x2, ..., xn)− f(0, x2, ..., xn)

=
1

12
D1f(0, ·, x2, ..., xn)−

1

12
D1f(x1, ·, x2, ..., xn)

+ f(x1, x2, ..., xn)− f(0, x2, ..., xn).

Hence
Imηx1

(., x2, ..., xn) ⊆ A,

where

A =
1

12
∆
(
(0, x2, ..., xn), (x1, x2, ..., xn)

)
+ f(x1, x2, ..., xn)− f(0, x2, ..., xn).

Since the family F(Wn,L(V)) is MSLIM, so there exists a linear operator Λ : F(Wn,L(V)) → V, such that
(i) Λ[ηx1

(·, x2, ..., xn)] ∈ A for some A ∈ L(V) and every (x1, x2, ..., xn) ∈ Wn,
(ii)Λ[ηx1

(·, x2, ..., xn)] = Λ[ηxσ(1)
(·, xσ(2), ..., xσ(n))] for every permutation {σ(1), σ(2), ..., σ(n)}

of {1, 2, ..., n},
(iii) if a ∈ W and ηax1

(·, x2, ..., xn) : W → V is defined by ηax1
(·, x2, ..., xn) = ηx1

(·+a, x2, ..., xn) for every (x1, x2, ..., xn) ∈
Wn, then ηax1

(·, x2, ..., xn) ∈ F(Wn,L(V)) and
Λ[ηax1

(·, x2, ..., xn)] = Λ[ηx1(·, x2, ..., xn)].

Define the mapping C : Wn → V by

C(x1, x2, ..., xn) := Λ[ηx1(·, x2, ..., xn)].

We prove that f − C is 1
12∆-Lipschitz. Since is ∆-Lipschitz for t ∈ W,

Θ1f(t, x1, x2, ..., xn)−Θ1f(t, y1, y2, ..., yn) ∈ ∆
(
(x1, x2, ..., xn), (y1, y2, ..., yn)

)
for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn) and so

Im(
1

12
Θ1(·, x1, ..., xn)−

1

12
Θ1(·, y1, ..., yn)) ⊆

1

12
∆
(
(x1, x2, ..., xn), (y1, y2, ..., yn)

)
.

Hence

Λ
[ 1

12
Θ1f(·, x1, ..., xn)−

1

12
Θ1f(·, y1, ..., yn)] ∈

1

12
∆
(
(x1, x2, ..., xn), (y1, y2, ..., yn)

)
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for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn. Note that F(Wn,L(V)) contains constant mappings. By property (i) of
Λ for constant mapping K : Wn → V we have Λ[K] = K. We define the constant mapping Kx1,...,xn

: Wn → V by
Kx1,...,xn(., ..., .) := f(x1, ..., xn). We see that(

f(x1, ..., xn)− C(x1, ..., xn)
)
−
(
f(y1, ..., yn)− C(y1, ..., yn)

)
=

(
Λ[Kx1,...,xn

(., ., ..., .)]− Λ[Θ1f(·, x2, ..., xn)]
)

−
(
Λ[Ky1,...,yn

(., ., ..., .)]− Λ[Θ1f(·, y2, ..., yn)]
)

=
(
Λ[Kx1,...,xn

(., ., ..., .)−Θ1f(·, x2, ..., xn)]
)

−
(
Λ[Ky1,...,yn

(., ., ..., .)−Θ1f(·, y2, ..., yn)]
)

= Λ[
1

12
η1f(·, x1, ..., xn)−

1

12
η1f(·, y1, ..., yn)]

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn. This shows that(
f(x1, ..., xn)− C(x1, ..., xn)

)
−

(
f(y1, ..., yn)− C(y1, ..., yn)

)
∈ 1

12
∆
(
(x1, x2, ..., xn), (y1, y2, ..., yn)

)
for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn, therefore f − C is a 1

12∆-Lipschitz mapping. By property (iii) of Λ, we
have

2C(x1 + y1) + 2C(x1 − y1) + 12C(x1)

= 2Λ[ηx1+y1
(·, x2, ..., xn)] + 2Λ[ηx1−y1

(·, x2, ..., xn)] + 12Λ[ηx1
(·, x2, ..., xn)]

= Λ[η2x1
x1+y1

(·, x2, ..., xn)] + Λ[η−2x1
x1+y1

(·, x2, ..., xn)] + Λ[η2x1
x1−y1

(·, x2, ..., xn)] + Λ[η−2x1
x1−y1

(·, x2, ..., xn)]

+ 2Λ[ηx1+y1
x1

(·, x2, ..., xn)] + 2Λ[ηx1−y1
x1

(·, x2, ..., xn)] + 2Λ[η−x1−y1
x1

(·, x2, ..., xn)]

+ 2Λ[η−x1+y1
x1

(·, x2, ..., xn)] + 2Λ[ηy1
x1
(·, x2, ..., xn)] + 2Λ[η−y1

x1
(·, x2, ..., xn)]

= Λ[
1

12
f(4x1 + 2y1 + ., , x2, ..., xn) +

1

12
f(2y1 − ., x2, ..., xn)−

1

6
f(3x1 + y1 + ., x2, ..., xn)

− 1

6
f(y1 − x1 − ·, x2, ..., xn) +

1

12
f(2y1 + ·, x2, ..., xn) +

1

12
f(4x1 + 2y1 − ·, x2, ..., xn)

− 1

6
f(3x1 + y1 − ·, x2, ..., xn)−

1

6
f(−x1 + y1 + ·, x2, ..., xn) +

1

12
f(4x1 − 2y1 + ·, x2, ..., xn)

+
1

12
f(−2y1 − ·, x2, ..., xn)−

1

6
f(3x1 − y1 + ·, x2, ..., xn)−

1

6
f(−x1 − y1 − ·, x2, ..., xn)

+
1

12
f(−2y1 + ·, x2, ..., xn) +

1

12
f(4x1 − 2y1 − ·, x2, ..., xn)−

1

6
f(−x1 − y1 + ·, x2, ..., xn)

− 1

6
f(3x1 − y1 − ·, x2, ..., xn) +

1

6
f(3x1 + y1 + ·, x2, ..., xn) +

1

6
f(x1 − y1 − ·, x2, ..., xn)

− 1

3
f(2x1 + y1 + ·, x2, ..., xn)−

1

3
f(−y1 − ·, x2, ..., xn) +

1

6
f(3x1 − y1 + ·, x2, ..., xn)

+
1

6
f(x1 + y1 − ·, x2, ..., xn)−

1

3
f(2x1 − y1 + ·, x2, ..., xn)−

1

3
f(y1 − ·, x2, ..., xn)

+
1

6
f(x1 − y1 + ·, x2, ..., xn) +

1

6
f(3x1 + y1 − ·, x2, ..., xn)−

1

3
f(−y1 + ·, x2, ..., xn)

− 1

3
f(2x1 + y1 − ·, x2, ..., xn) +

1

6
f(x1 + y1 + ·, x2, ..., xn) +

1

6
f(3x1 − y1 − ·, x2, ..., xn)

− 1

3
f(y1 + ·, x2, ..., xn)−

1

3
f(2x1 − y1 − ·, x2, ..., xn) +

1

6
f(2x1 + y1 + ·, x2, ..., xn)

+
1

6
f(2x1 − y1 − ·, x2, ..., xn)−

1

3
f(x1 + y1 + ·, x2, ..., xn)−

1

3
f(x1 − y1 − ·, x2, ..., xn)

+
1

6
f(2x1 − y1 + ·, x2, ..., xn) +

1

6
f(2x1 + y1 − ·, x2, ..., xn)−

1

3
f(x1 − y1 + ·, x2, ..., xn)

− 1

3
f(x1 + y1 − ·, x2, ..., xn)]



Multi-cubic functional equations in Lipschitz spaces 1821

= Λ[
1

12
f(4x1 + 2y1 + ·, x2, ..., xn) +

1

12
f(4x1 + 2y1 − ·, x2, ..., xn)−

1

6
f(2x1 + y1 + ·, x2, ..., xn)

− 1

6
f(2x1 + y1 − ., x2, ..., xn)]

+ Λ[
1

12
f(4x1 − 2y1 + ·, x2, ..., xn) +

1

12
f(4x1 − 2y1 − ·, x2, ..., xn)−

1

6
f(2x1 − y1 + ·, x2, ..., xn)

− 1

6
f(2x1 − y1 − ·, x2, ..., xn)]

= Λ[η2x1+y1(·, x2, ..., xn)] + Λ[η2x1−y1(·, x2, ..., xn)]

= C(2x1 + y1) + C(2x1 − y1).

It follows that C is cubic on its first variable. On the other hand, by property (ii) of Λ, C is multi-symmetric and hence
C is multi-cubic mapping. Moreover, if ImΘ1f ⊂ A, then

Im(
1

12
Θ1f(·, x2, ..., xn)) ⊂

1

12
A.

So
1

12
Θ1f(., x2, ..., xn) ∈ F(Wn,L(V ))

for all (x1, x2, ..., xn) ∈ Wn. By property (i) of Λ, we get

f(x1, x2, ..., xn)− C(x1, x2, ..., xn) = Λ[
1

12
Θ1f(·, x2, ..., xn)] ∈

1

12
A

for all (x1, x2, ..., xn) ∈ Wn. Therefore, Im(f − C) ⊂ 1
12A. □

Definition 2.4. Consider an Abelian group (Wn,+) with a metric d invariant under translation, that is

d((x1 + a1, x2 + a2, ..., xn + an), (y1 + a1, y2 + a2, ..., yn + an)) = d((x1, x2, ..., xn), (y1, y2, ..., yn))

for all (x1, x2, ..., xn), (y1, y2, ..., yn), (a1, a2, ..., an) ∈ Wn. A metric D is called a metric pair on
Wn ×W if it is invariant under translation and the following condition holds:

D((x1, x2, ..., xn, a), (y1, y2, ..., yn, a)) = D((x1, x2, ..., xn, a), (y1, y2, ..., yn, a)) (2.2)

= d((x1, x2, ..., xn), (y1, y2, ..., yn))

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn and a ∈ W.

Definition 2.5. A mapping f : Wn → V is called Lipschitz mapping of order α > 0 if there exists a constant L > 0
such that

∥f(x1, x2, ..., xn)− f(y1, y2, ..., yn)∥ ≤ Ld((x1, x2, ..., xn), (y1, y2, ..., yn))
α

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn.

Let Lipα(Wn,V) be the Lipschitz space consisting of all bounded Lipschitz of order α > 0 with the norm:

∥f∥Lip := ∥f∥sup + lipα(f),

where ∥f∥sup is the supremum norm and

lipα(f) = sup
∥f(x1, x2, ..., xn)− f(y1, y2, ..., yn)∥
d((x1, x2, ..., xn), (y1, y2, ..., yn))α

such that (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn and (x1, x2, ..., xn) ̸= (y1, y2, ..., yn).

Theorem 2.6. Let (Wn,+, d,D) be a metric pair, (V, ∥.∥) a normed space. Assume that S(V) is a family of closed
balls such that (Wn,S(V)) admits MSLIM. Consider a mapping f : Wn → V and let γ : R+ → R+ be the module
of continuity of the mapping Θ1f . Then there exists a multi-cubic mapping C such that γf−C = 1

12Θ1f . Moreover, if
Θ1f ∈ Lipα(W ×Wn,V), then

∥f − C∥sup ≤ 1

12
∥Θ1f∥sup.
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Proof . We consider the set-valued function ∆ : W ×Wn → S(V) defined by

∆((x1, x2, ..., xn), (y1, y2, ..., yn)) := inf
d((x1,x2,...,xn),(y1,y2,...,yn))≤δ

γΘ1f (δ)B(0, 1),

where B(0, 1) is the closed unit ball with center at zero. We have

∥Θ1f(t, (x1, x2, ..., xn)−Θ1f(t, y1, y2, ..., yn)∥ ≤ inf
D((x1,x2,...,xn),(y1,y2,...,yn))≤δ

γΘ1f (δ)

= inf
d((x1,x2,...,xn),(y1,y2,...,yn))≤δ

γΘ1f (δ)

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn and so Θ1f(t, (., ..., .) is ∆-Lipschitz. Now, by Theorem 2.3, there exists a
multi-cubic mapping C such that f − C is 1

12 -Lipschitz and consequently

∥(f − C)(x1, x2, ..., xn)− (f − C)(y1, y2, ..., yn)∥ ≤ inf
d((x1,x2,...,xn),(y1,y2,...,yn))≤δ

1

12
γΘ1f (δ). (2.3)

This shows that γf−C = 1
12γΘ1f . Moreover, ∥Θ1f∥sup < ∞ and clearly ImΘ1f ⊂ ∥Θ1f∥supB(0, 1). By Theorem 2.3,

we have

∥f − C∥sup ≤ 1

12
∥Θ1f∥sup.

□

Theorem 2.7. Let (Wn,+, d,D) be a metric pair, (V, ∥.∥) a normed space. Assume that S(V) is a family of closed
balls such that (Wn,S(V)) admits MSLIM. Consider a mapping f : Wn → V.
If Θ1f ∈ Lipα(W ×Wn,V), then there exists a multi-cubic mapping C such that

∥f − C∥Lip ≤ 1

12
∥Θ1f∥Lip.

Proof . Define the function ω : R+ → R+ by the formula ω(t) := lipα(Θ1f)t
α. Since

Θ1f ∈ Lipα(W ×Wn,V), we obtain

∥Θ1f(t, x1, x2, ..., xn)−Θ1f(t, y1, y2, ..., yn)∥ ≤ ω(D((x1, x2, ..., xn), (y1, y2, ..., yn)))

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn and t ∈ W, which means that ω is the module of continuity of Θ1f. In view
of 2.6, there exists a multi-cubic mapping C such that γf−C = 1

12ω. Then

∥(f − C)(x1, x2, ..., xn)− (f − C)(y1, y2, ..., yn)∥ ≤ 1

12
ω(d((x1, x2, ..., xn), (y1, y2, ..., yn)))

1

12
lipα(Θ1f)d((x1, x2, ..., xn), (y1, y2, ..., yn))

α,

for all (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Wn, which means that f − C is a Lipschitz mapping of order α and

lipα(f − C) ≤ 1

12
lipα(Θ1f).

Therefore by 2.6, we get

∥f − C∥Lip = ∥f − C∥sup + lipα(f − C)

≤ 1

12
∥Θ1f∥sup +

1

12
lipα(Θ1f)

≤ 1

12
∥Θ1f∥Lip.

□
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