Multi-cubic functional equations in Lipschitz spaces

Mohammad Ali Abolfathi
Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran

(Communicated by Abasalt Bodaghi)

Abstract

In this paper, we prove stability of multi-cubic functional equations in Lipschitz spaces by property multi-symmetric left invariant mean. Indeed, we prove under certain Lipschitz condition a family of Lipschitz mappings can be approximated by multi-cubic mappings.

Keywords: Lipschitz space, Multi-cubic functional equation, Stability
2020 MSC: Primary 39B82; Secondary 39B52

1 Introduction

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability problem of functional equations is as follows: When is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation?
The first stability problem concerning group homomorphisms was raised by Ulam [26] in 1940 and affirmatively solved by Hyers [14]. The result of Hyers was generalized by Aoki [2] for approximate additive mappings and by Th. M. Rassias [23] for approximate linear mappings by allowing the difference Cauchy equation $\|f(x+y)-f(x)-f(y)\|$ to be controlled by $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$. In 1994, a generalization of the Th. M. Rassias' theorem was obtained by Gǎvruta [12], who replaced $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by ageneral control function $\varphi(x, y)$. During the last two decades, the subject has been established and developed by an increasing number of mathematicians in various spaces [1, 9, 22].

In 2002, Jun and Kim [15] introduced the following functional equation

$$
f(2 x+y)+f(2 x-y)=2(f(x+y)+f(x-y))+12 f(x)
$$

and established the general solution and the Hyers-Ulam stability for this functional equation (also see [21]). This functional equation is called cubic functional equation and every solution of cubic equation is said to be a cubic mapping. Obviously, the mapping $f(x)=x^{3}$ satisfies in the functional equation. Bodaghi [3] investigated the solution and the Hyers-Ulam stability for the cubic functional equation

$$
f(m x+n y)+f(m x-n y)=m n^{2}(f(x+y)+f(x-y))+2 m\left(m^{2}-n^{2}\right) f(x)
$$

where m, n are integer numbers with $m \geq 2$.
The stability of multi-quadratic mappings in Banach spaces has been studied for the first time in [20]. Then, X. Zhao et al., characterized them as an equation in [27. Recently, some generalized forms of the multi-quadratic

[^0]mappings and their Hyers-Ulam stability in Banach spaces by a known fixed point method have been studied in 4] and [5]. The Jensen-type multi-quadratic mappings and their characterization can be found in [24]. Ghaemi et al., in [13] introduced the multi-cubic mappings for the first time. Next, a special case of such mappings is studied in [6]. Park and Bodaghi 19 investigated multi-cubic functional equations and some results on the stability in modular spaces. Indeed, a mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is called multi-cubic if it is cubic in each variable, i.e., satisfies 2.1) in each variable. In [6], the authors unified the system of functional equations defining a multi-cubic mapping to a single equation, namely multi-cubic functional equation. The general system of cubic functional equations which was defined in [13], characterized as a single equation in [11].

The algebra of Lipschitz functions on a complete metric space plays a role in non-commutative metric theory similar to that played by the algebra of continuous functions on compact space in non-commutative topology. In 1997, Lipschitz stability-type problems for Cuachy and Jensen functional equations were studied by Tabor [25]. Czerwik and Dlutek [7] investigated the stability of the quadratic functional equations in Lipschitz spaces. The stability of cubic functional equations in Lipschitz spaces was proved by Ebadian et al. [10]. Nikoufar [16, 17, 18] verified Lipschitz stability of bi-quadratic functional equations, multi-quadratic functional equations and quartic functional equations, respectively. Moreover, the stability of generalized multi-quadratic mappings in Lipschitz spaces was investigated in [8].

In this paper, we prove Lipschitz stability of multi-cubic functional equations. Indeed, we prove under certain Lipschitz conditions a family of functions can be approximated by multi-cubic mappings.

2 Main results

Let \mathcal{W} be an abelian group and \mathcal{V} a real vector space. A mapping $\mathcal{C}: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is called multi-cubic if \mathcal{C} is cubic in each variable; that is, \mathcal{C} satisfies the system of equations:

$$
\begin{align*}
& 2 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}+y_{i}, \ldots, x_{n}\right)+2 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}-y_{i}, \ldots, x_{n}\right) \\
& \quad=f\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{i}+y_{i}, \ldots, x_{n}\right)+f\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{i}-y_{i}, \ldots, x_{n}\right) \\
& \quad-12 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}, \ldots, x_{n}\right) \tag{2.1}
\end{align*}
$$

for all $x_{i}, y_{i} \in \mathcal{W}, i=1,2,3, \ldots, n$. Let $\mathcal{L}(\mathcal{V})$ be a family of subsets of \mathcal{V}. We say that $\mathcal{L}(\mathcal{V})$ is linearly invariant if it is closed under the addition and scalar multiplication defined as usual sense and translation invariant, i.e., $x+\mathcal{A} \in \mathcal{L}(\mathcal{V})$ for every $\mathcal{A} \in \mathcal{L}(\mathcal{V})$ and every $x \in \mathcal{V}[7]$. By $\mathcal{F}(\mathcal{W}, \mathcal{L}(\mathcal{V}))$ we denote the family of all mappings $f: \mathcal{W} \rightarrow \mathcal{V}$ such that $\operatorname{Im} f \in \mathcal{B}$ for some $\mathcal{B} \in \mathcal{L}(\mathcal{V})$. A mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is said to be symmetric if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ for every permutation $\{\sigma(1), \sigma(2), \ldots, \sigma(n)\}$ of $\{1,2, \ldots, n\}$.

Definition 2.1. Family mappings $\mathcal{F}(\mathcal{W}, \mathcal{L}(\mathcal{V}))$ is called multi-symmetric left invariant mean (briefly MSLIM), if the family $\mathcal{L}(\mathcal{V})$ is linearly invariant and there exists a linear operator
$\Lambda: \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right) \rightarrow \mathcal{V}$, such that
(i) if $\operatorname{Im} f \in \mathcal{B}$ for some $\mathcal{B} \in \mathcal{L}(\mathcal{V})$, then $\Lambda[f] \in \mathcal{B}$,
(ii) if $f_{x_{1}, x_{2}, \ldots, x_{n}} \in \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right)$ and $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{W}$, then

$$
\Lambda\left[f_{x_{1}, x_{2}, \ldots, x_{n}}\right]=\Lambda\left[f_{x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}}\right]
$$

for every permutation $\{\sigma(1), \sigma(2), \ldots, \sigma(n)\}$ of $\{1,2, \ldots, n\}$,
(iii) if $f \in \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right)$ and $a \in \mathcal{W}$, then $\Lambda\left[f^{a}\right]=\Lambda[f]$, where $f^{a}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}+a, x_{2}, \ldots, x_{n}\right)$.

Definition 2.2. Let $\Delta: \mathcal{W}^{n} \times \mathcal{W}^{n} \longrightarrow \mathcal{L}(\mathcal{V})$ be a set-valued function such that

$$
\begin{aligned}
\Delta\left(\left(x_{1}+a_{1}, x_{2}+a_{2}, \ldots, x_{n}+a_{n}\right)\right. & \left.,\left(y_{1}+a_{1}, y_{2}+a_{2}, \ldots, y_{n}+a_{n}\right)\right) \\
& =\Delta\left(\left(a_{1}+x_{1}, a_{2}+x_{2}, \ldots, a_{n}+x_{n}\right),\left(a_{1}+y_{1}, a_{2}+y_{2}, \ldots, a_{n}+y_{n}\right)\right) \\
& =\Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right.
\end{aligned}
$$

for all $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$. A mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is said to be Δ-Lipschitz if

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$.

For a given mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ we consider its multi-cubic difference as follows:

$$
\begin{aligned}
\Theta_{i} f\left(x_{1}, x_{2}, \ldots x_{i}, y_{i}, x_{i+1}, x_{n}\right): & =2 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}+y_{i}, \ldots, x_{n}\right)+2 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}-y_{i}, \ldots, x_{n}\right) \\
& -f\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{i}+y_{i}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{i}-y_{i}, \ldots, x_{n}\right) \\
& +12 f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i}, \ldots, x_{n}\right)
\end{aligned}
$$

for all $x_{i}, y_{i} \in \mathcal{W}$ and $i=1,2, \ldots, n$.
Theorem 2.3. Let \mathcal{W} be an abelian group and \mathcal{V} a vector space. Assume that the family $\mathcal{F}(\mathcal{W}, \mathcal{L}(\mathcal{V}))$ admits MSLIM. If $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is an odd mapping and $\Theta_{1} f(t, ., \ldots,$.$) is \Delta$-Lipschitz for every $t \in \mathcal{W}$, then there exists a multi-cubic mapping $\mathcal{C}: \mathcal{W}^{n} \rightarrow \mathcal{V}$ such that $f-\mathcal{C}$ is $\frac{1}{12} \Delta$-Lipschitz. Moreover, if $\operatorname{Im} \Theta_{1} f \subset \mathcal{A}$ for some $\mathcal{A} \in \mathcal{L}(\mathcal{V})$, then $\operatorname{Im}(f-\mathcal{C}) \subset \frac{1}{12} \mathcal{A}$.

Proof . For every $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{W}^{n}$, we define the mapping $\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right): \mathcal{W} \rightarrow \mathcal{V}$ by the formula

$$
\begin{aligned}
\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right) & =\frac{1}{12} f\left(2 x_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{12} f\left(2 x_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(x_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(x_{1}-\cdot, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

We prove that $\operatorname{Imq}_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right) \subseteq \mathcal{A}$ for some $\mathcal{A} \in \mathcal{L}(\mathcal{V})$. For $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{W}^{n}$, we get

$$
\begin{aligned}
\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right) & =f\left(0, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(2 x_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{12} f\left(2 x_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(x_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(x_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& -f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(0, x_{2}, \ldots, x_{n}\right) \\
& =\frac{1}{12} \mathcal{D}_{1} f\left(0, \cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{12} \mathcal{D}_{1} f\left(x_{1}, \cdot, x_{2}, \ldots, x_{n}\right) \\
& +f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(0, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Hence

$$
\operatorname{Im} \eta_{x_{1}}\left(., x_{2}, \ldots, x_{n}\right) \subseteq \mathcal{A}
$$

where

$$
\mathcal{A}=\frac{1}{12} \Delta\left(\left(0, x_{2}, \ldots, x_{n}\right),\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)+f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(0, x_{2}, \ldots, x_{n}\right)
$$

Since the family $\mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right)$ is MSLIM, so there exists a linear operator $\Lambda: \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right) \rightarrow \mathcal{V}$, such that
(i) $\Lambda\left[\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \in \mathcal{A}$ for some $\mathcal{A} \in \mathcal{L}(\mathcal{V})$ and every $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{W}^{n}$,
(ii) $\Lambda\left[\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]=\Lambda\left[\eta_{x_{\sigma(1)}}\left(\cdot, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)\right]$ for every permutation $\{\sigma(1), \sigma(2), \ldots, \sigma(n)\}$ of $\{1,2, \ldots, n\}$,
(iii) if $a \in \mathcal{W}$ and $\eta_{x_{1}}^{a}\left(\cdot, x_{2}, \ldots, x_{n}\right): \mathcal{W} \rightarrow \mathcal{V}$ is defined by $\eta_{x_{1}}^{a}\left(\cdot, x_{2}, \ldots, x_{n}\right)=\eta_{x_{1}}\left(\cdot+a, x_{2}, \ldots, x_{n}\right)$ for every $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ \mathcal{W}^{n}, then $\eta_{x_{1}}^{a}\left(\cdot, x_{2}, \ldots, x_{n}\right) \in \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right)$ and
$\Lambda\left[\eta_{x_{1}}^{a}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]=\Lambda\left[\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]$.
Define the mapping $\mathcal{C}: \mathcal{W}^{n} \rightarrow \mathcal{V}$ by

$$
\mathcal{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\Lambda\left[\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] .
$$

We prove that $f-\mathcal{C}$ is $\frac{1}{12} \Delta$-Lipschitz. Since is Δ-Lipschitz for $t \in \mathcal{W}$,

$$
\Theta_{1} f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)-\Theta_{1} f\left(t, y_{1}, y_{2}, \ldots, y_{n}\right) \in \Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

for all $\left.\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}\right)$ and so

$$
\operatorname{Im}\left(\frac{1}{12} \Theta_{1}\left(\cdot, x_{1}, \ldots, x_{n}\right)-\frac{1}{12} \Theta_{1}\left(\cdot, y_{1}, \ldots, y_{n}\right)\right) \subseteq \frac{1}{12} \Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

Hence

$$
\Lambda\left[\frac{1}{12} \Theta_{1} f\left(\cdot, x_{1}, \ldots, x_{n}\right)-\frac{1}{12} \Theta_{1} f\left(\cdot, y_{1}, \ldots, y_{n}\right)\right] \in \frac{1}{12} \Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$. Note that $\mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(\mathcal{V})\right)$ contains constant mappings. By property (i) of Λ for constant mapping $\mathcal{K}: \mathcal{W}^{n} \rightarrow \mathcal{V}$ we have $\Lambda[\mathcal{K}]=\mathcal{K}$. We define the constant mapping $\mathcal{K}_{x_{1}, \ldots, x_{n}}: \mathcal{W}^{n} \rightarrow \mathcal{V}$ by $\mathcal{K}_{x_{1}, \ldots, x_{n}}(., \ldots,):.=f\left(x_{1}, \ldots, x_{n}\right)$. We see that

$$
\begin{aligned}
\left(f\left(x_{1}, \ldots, x_{n}\right)-\mathcal{C}\left(x_{1}, \ldots, x_{n}\right)\right) & -\left(f\left(y_{1}, \ldots, y_{n}\right)-\mathcal{C}\left(y_{1}, \ldots, y_{n}\right)\right) \\
& =\left(\Lambda\left[\mathcal{K}_{x_{1}, \ldots, x_{n}}(., ., \ldots, .)\right]-\Lambda\left[\Theta_{1} f\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]\right) \\
& -\left(\Lambda\left[\mathcal{K}_{y_{1}, \ldots, y_{n}}(., ., \ldots, .)\right]-\Lambda\left[\Theta_{1} f\left(\cdot, y_{2}, \ldots, y_{n}\right)\right]\right) \\
& =\left(\Lambda\left[\mathcal{K}_{x_{1}, \ldots, x_{n}}(., ., \ldots, .)-\Theta_{1} f\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]\right) \\
& -\left(\Lambda\left[\mathcal{K}_{y_{1}, \ldots, y_{n}}(., ., \ldots, .)-\Theta_{1} f\left(\cdot, y_{2}, \ldots, y_{n}\right)\right]\right) \\
& =\Lambda\left[\frac{1}{12} \eta_{1} f\left(\cdot, x_{1}, \ldots, x_{n}\right)-\frac{1}{12} \eta_{1} f\left(\cdot, y_{1}, \ldots, y_{n}\right)\right]
\end{aligned}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$. This shows that

$$
\begin{aligned}
\left(f\left(x_{1}, \ldots, x_{n}\right)-\mathcal{C}\left(x_{1}, \ldots, x_{n}\right)\right) & -\left(f\left(y_{1}, \ldots, y_{n}\right)-\mathcal{C}\left(y_{1}, \ldots, y_{n}\right)\right) \\
& \in \frac{1}{12} \Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$, therefore $f-\mathcal{C}$ is a $\frac{1}{12} \Delta$-Lipschitz mapping. By property (iii) of Λ, we have

$$
\begin{aligned}
& 2 \mathcal{C}\left(x_{1}+y_{1}\right)+2 \mathcal{C}\left(x_{1}-y_{1}\right)+12 \mathcal{C}\left(x_{1}\right) \\
& =2 \Lambda\left[\eta_{x_{1}+y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+2 \Lambda\left[\eta_{x_{1}-y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+12 \Lambda\left[\eta_{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \\
& =\Lambda\left[\eta_{x_{1}+y_{1}}^{2 x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+\Lambda\left[\eta_{x_{1}+x_{1}}^{-2 y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+\Lambda\left[\eta_{x_{1}-y_{1}}^{2 x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+\Lambda\left[\eta_{x_{1}-y_{1}}^{-2 x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \\
& +2 \Lambda\left[\eta_{x_{1}}^{x_{1}+y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+2 \Lambda\left[\eta_{x_{1}-y_{1}}^{x_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+2 \Lambda\left[\eta_{x_{1}}^{-x_{1}-y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \\
& +2 \Lambda\left[\eta_{x_{1}}^{-x_{1}+y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+2 \Lambda\left[\eta_{x_{1}}^{\left.y_{1}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+2 \Lambda\left[\eta_{x_{1}}^{-y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]}\right. \\
& =\Lambda\left[\frac{1}{12} f\left(4 x_{1}+2 y_{1}+., x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(2 y_{1}-., x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(3 x_{1}+y_{1}+,, x_{2}, \ldots, x_{n}\right)\right. \\
& -\frac{1}{6} f\left(y_{1}-x_{1}-\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(2 y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(4 x_{1}+2 y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& -\frac{1}{6} f\left(3 x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(-x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(4 x_{1}-2 y_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{12} f\left(-2 y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(3 x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(-x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{12} f\left(-2 y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(4 x_{1}-2 y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(-x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& -\frac{1}{6} f\left(3 x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(3 x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& -\frac{1}{3} f\left(2 x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(3 x_{1}-y_{1}+\cdot, x_{2},, x_{n}\right) \\
& +\frac{1}{6} f\left(x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(2 x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{6} f\left(x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(3 x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& -\frac{1}{3} f\left(2 x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(3 x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& -\frac{1}{3} f\left(y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(2 x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(2 x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{6} f\left(2 x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right) \\
& +\frac{1}{6} f\left(2 x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{6} f\left(2 x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{3} f\left(x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right) \\
& \left.-\frac{1}{3} f\left(x_{1}+y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\Lambda\left[\frac{1}{12} f\left(4 x_{1}+2 y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(4 x_{1}+2 y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(2 x_{1}+y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)\right. \\
& \left.-\frac{1}{6} f\left(2 x_{1}+y_{1}-., x_{2}, \ldots, x_{n}\right)\right] \\
& +\Lambda\left[\frac{1}{12} f\left(4 x_{1}-2 y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)+\frac{1}{12} f\left(4 x_{1}-2 y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)-\frac{1}{6} f\left(2 x_{1}-y_{1}+\cdot, x_{2}, \ldots, x_{n}\right)\right. \\
& \left.-\frac{1}{6} f\left(2 x_{1}-y_{1}-\cdot, x_{2}, \ldots, x_{n}\right)\right] \\
& =\Lambda\left[\eta_{2 x_{1}+y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right]+\Lambda\left[\eta_{2 x_{1}-y_{1}}\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \\
& =\mathcal{C}\left(2 x_{1}+y_{1}\right)+\mathcal{C}\left(2 x_{1}-y_{1}\right)
\end{aligned}
$$

It follows that \mathcal{C} is cubic on its first variable. On the other hand, by property (ii) of Λ, \mathcal{C} is multi-symmetric and hence \mathcal{C} is multi-cubic mapping. Moreover, if $\operatorname{Im} \Theta_{1} f \subset \mathcal{A}$, then

$$
\operatorname{Im}\left(\frac{1}{12} \Theta_{1} f\left(\cdot, x_{2}, \ldots, x_{n}\right)\right) \subset \frac{1}{12} \mathcal{A}
$$

So

$$
\frac{1}{12} \Theta_{1} f\left(., x_{2}, \ldots, x_{n}\right) \in \mathcal{F}\left(\mathcal{W}^{n}, \mathcal{L}(V)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{W}^{n}$. By property (i) of Λ, we get

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\mathcal{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Lambda\left[\frac{1}{12} \Theta_{1} f\left(\cdot, x_{2}, \ldots, x_{n}\right)\right] \in \frac{1}{12} \mathcal{A}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{W}^{n}$. Therefore, $\operatorname{Im}(f-\mathcal{C}) \subset \frac{1}{12} \mathcal{A}$.
Definition 2.4. Consider an Abelian group $\left(\mathcal{W}^{n},+\right)$ with a metric d invariant under translation, that is

$$
d\left(\left(x_{1}+a_{1}, x_{2}+a_{2}, \ldots, x_{n}+a_{n}\right),\left(y_{1}+a_{1}, y_{2}+a_{2}, \ldots, y_{n}+a_{n}\right)\right)=d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{W}^{n}$. A metric D is called a metric pair on $\mathcal{W}^{n} \times \mathcal{W}$ if it is invariant under translation and the following condition holds:

$$
\begin{align*}
D\left(\left(x_{1}, x_{2}, \ldots, x_{n}, a\right),\left(y_{1}, y_{2}, \ldots, y_{n}, a\right)\right) & =D\left(\left(x_{1}, x_{2}, \ldots, x_{n}, a\right),\left(y_{1}, y_{2}, \ldots, y_{n}, a\right)\right) \tag{2.2}\\
& =d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
\end{align*}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$ and $a \in \mathcal{W}$.
Definition 2.5. A mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ is called Lipschitz mapping of order $\alpha>0$ if there exists a constant $L>0$ such that

$$
\left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \leq L d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{\alpha}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$.
Let $\operatorname{Lip}_{\alpha}\left(\mathcal{W}^{n}, \mathcal{V}\right)$ be the Lipschitz space consisting of all bounded Lipschitz of order $\alpha>0$ with the norm:

$$
\|f\|_{L i p}:=\|f\|_{\text {sup }}+\operatorname{lip_{\alpha }}(f)
$$

where $\|f\|_{\text {sup }}$ is the supremum norm and

$$
l i p_{\alpha}(f)=\sup \frac{\left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\|}{d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{\alpha}}
$$

such that $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
Theorem 2.6. Let $\left(\mathcal{W}^{n},+, d, D\right)$ be a metric pair, $(\mathcal{V},\|\cdot\|)$ a normed space. Assume that $\mathcal{S}(\mathcal{V})$ is a family of closed balls such that $\left(\mathcal{W}^{n}, \mathcal{S}(\mathcal{V})\right)$ admits MSLIM. Consider a mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$ and let $\gamma: R^{+} \rightarrow R^{+}$be the module of continuity of the mapping $\Theta_{1} f$. Then there exists a multi-cubic mapping \mathcal{C} such that $\gamma_{f-\mathcal{C}}=\frac{1}{12} \Theta_{1} f$. Moreover, if $\Theta_{1} f \in \operatorname{Lip}_{\alpha}\left(\mathcal{W} \times \mathcal{W}^{n}, \mathcal{V}\right)$, then

$$
\|f-\mathcal{C}\|_{\text {sup }} \leq \frac{1}{12}\left\|\Theta_{1} f\right\|_{\text {sup }}
$$

Proof. We consider the set-valued function $\Delta: \mathcal{W} \times \mathcal{W}^{n} \rightarrow \mathcal{S}(\mathcal{V})$ defined by

$$
\Delta\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right):=\inf _{d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \leq \delta} \gamma_{\Theta_{1} f}(\delta) \mathcal{B}(0,1),
$$

where $\mathcal{B}(0,1)$ is the closed unit ball with center at zero. We have

$$
\begin{aligned}
\| \Theta_{1} f\left(t,\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\Theta_{1} f\left(t, y_{1}, y_{2}, \ldots, y_{n}\right) \|\right. & \leq \inf _{D\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \leq \delta} \gamma_{\Theta_{1} f}(\delta) \\
& =\inf _{d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \leq \delta} \gamma_{\Theta_{1} f}(\delta)
\end{aligned}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$ and so $\Theta_{1} f(t,(., \ldots,$.$) is \Delta$-Lipschitz. Now, by Theorem 2.3 there exists a multi-cubic mapping \mathcal{C} such that $f-\mathcal{C}$ is $\frac{1}{12}$-Lipschitz and consequently

$$
\begin{equation*}
\left\|(f-\mathcal{C})\left(x_{1}, x_{2}, \ldots, x_{n}\right)-(f-\mathcal{C})\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \leq \inf _{d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \leq \delta} \frac{1}{12} \gamma_{\Theta_{1} f}(\delta) \tag{2.3}
\end{equation*}
$$

This shows that $\gamma_{f-\mathcal{C}}=\frac{1}{12} \gamma_{\Theta_{1} f}$. Moreover, $\left\|\Theta_{1} f\right\|_{\text {sup }}<\infty$ and clearly $\operatorname{Im} \Theta_{1} f \subset\left\|\Theta_{1} f\right\|_{\text {sup }} \mathcal{B}(0,1)$. By Theorem 2.3. we have

$$
\|f-\mathcal{C}\|_{\text {sup }} \leq \frac{1}{12}\left\|\Theta_{1} f\right\|_{\text {sup }}
$$

Theorem 2.7. Let $\left(\mathcal{W}^{n},+, d, D\right)$ be a metric pair, $(\mathcal{V},\|\cdot\|)$ a normed space. Assume that $\mathcal{S}(\mathcal{V})$ is a family of closed balls such that $\left(\mathcal{W}^{n}, \mathcal{S}(\mathcal{V})\right)$ admits MSLIM. Consider a mapping $f: \mathcal{W}^{n} \rightarrow \mathcal{V}$.
If $\Theta_{1} f \in \operatorname{Lip}_{\alpha}\left(\mathcal{W} \times \mathcal{W}^{n}, \mathcal{V}\right)$, then there exists a multi-cubic mapping \mathcal{C} such that

$$
\|f-\mathcal{C}\|_{L i p} \leq \frac{1}{12}\left\|\Theta_{1} f\right\|_{L i p}
$$

Proof. Define the function $\omega: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by the formula $\omega(t):=l i p_{\alpha}\left(\Theta_{1} f\right) t^{\alpha}$. Since $\Theta_{1} f \in \operatorname{Lip}_{\alpha}\left(\mathcal{W} \times \mathcal{W}^{n}, \mathcal{V}\right)$, we obtain

$$
\left\|\Theta_{1} f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)-\Theta_{1} f\left(t, y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \leq \omega\left(D\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$ and $t \in \mathcal{W}$, which means that ω is the module of continuity of $\Theta_{1} f$. In view of 2.6. there exists a multi-cubic mapping \mathcal{C} such that $\gamma_{f-\mathcal{C}}=\frac{1}{12} \omega$. Then

$$
\begin{aligned}
&\left\|(f-\mathcal{C})\left(x_{1}, x_{2}, \ldots, x_{n}\right)-(f-\mathcal{C})\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \leq \frac{1}{12} \omega\left(d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right) \\
& \frac{1}{12} \operatorname{lip}_{\alpha}\left(\Theta_{1} f\right) d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{\alpha}
\end{aligned}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{W}^{n}$, which means that $f-\mathcal{C}$ is a Lipschitz mapping of order α and

$$
\operatorname{lip}_{\alpha}(f-\mathcal{C}) \leq \frac{1}{12} \operatorname{lip}_{\alpha}\left(\Theta_{1} f\right)
$$

Therefore by 2.6, we get

$$
\begin{aligned}
\|f-\mathcal{C}\|_{L i p} & =\|f-\mathcal{C}\|_{\text {sup }}+\operatorname{lip_{\alpha }}(f-\mathcal{C}) \\
& \leq \frac{1}{12}\left\|\Theta_{1} f\right\|_{\text {sup }}+\frac{1}{12} l i p_{\alpha}\left(\Theta_{1} f\right) \\
& \leq \frac{1}{12}\left\|\Theta_{1} f\right\|_{\text {Lip }} .
\end{aligned}
$$

References

[1] M.A. Abolfathi, A. Ebadian and R. Aghalary, Stability of mixed additive-quadratic Jensen type functional equation in non-Archimedean ℓ-fuzzy normed spaces, Ann. Univ. Ferrara 60 (2014), no. 2, 307-319.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn. 2 (1950), 64-66.
[3] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317.
[4] A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021), Paper No. 145.
[5] A. Bodaghi, H. Moshtagh and H. Dutta, Characterization and stability analysis of advanced multi-quadratic functional equations, Adv. Diff. Equ. 2021 (2021), Paper No. 380.
[6] A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22 (2021), no. 1, 83-92.
[7] S. Czerwik and K. Dlutek, Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl. 293 (2004) 79-88.
[8] M. Dashti and H. Khodaei, Stability of generalized multi-quadratic mappings in Lipschitz spaces, Results Math. 74 (2019), 163.
[9] A. Ebadian, R. Aghalary and M.A. Abolfathi, On approximate dectic mappings in non-Archimedean spaces: a fixed point approah, Int. J. Nonlinear Anal. Appl. 5 (2014), no. 2, 111-122.
[10] A. Ebadian, N. Ghobadipour, I. Nikoufar and M. Eshaghi Gordji, Approximation of the cubic functional equations in Lipschitz spaces, Anal. Theory. Appl. 30 (2014), 354-362.
[11] N. Ebrahimi Hoseinzadeh, A. Bodaghi and M.R. Mardanbeigi, Almost multi-cubic mappings and a fixed point application, Sahand Commun. Math. Anal. 17 (2020), no. 3, 131-143.
[12] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[13] M.B. Ghaemi, M. Majani and M. Eshaghi Gordji, General system of cubic functional equations in nonArchimedean spaces, Tamsui Oxford J. Inf. Math. Sci. 28 (2012), no. 4, 407-423.
[14] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[15] K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[16] I. Nikoufar, Lipschitz criteria for bi-quadratic functional equations, Commun. Korean. Math. Soc. 31 (2016), no. 4, 819-825.
[17] I. Nikoufar, Stability of multi-quadratic functions in Lipschitz spaces, Iran J. Sci. Technol. Tranc. Sci. 43 (2019), 621-625.
[18] I. Nikoufar, Erratum to: Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo. 65 (2016), 345-350.
[19] C. Park and A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces, J Inequal Appl. 2020 (2020), no. 6.
[20] C.G. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2002), 2501-2504.
[21] K.H. Park and Y.S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004), 347-357.
[22] W.G. Park and J.H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (2005), 643-654.
[23] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[24] S. Salimi and A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings, J. Fixed Point Theory Appl. 22 (2020), no. 9.
[25] J. Tabor, Lipschitz stability of the Cauchy and Jensen equation, Results Math. 32 (1997), 133-144.
[26] S.M. Ulam, Problem in modern mathematics, chapter VI, Science Editions, Wiley, New York, 1964.
[27] X. Zhao, X. Yang and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp.

[^0]: Email address: m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi)

