Existence of solutions to a certain type of non-linear difference-differential equations

B. Narasimha Rao ${ }^{\text {a }}$, Shilpa N. ${ }^{\text {b }}$, Achala L. Nargund ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, CMR Institute of Technology, AECS Layout, Bengaluru, Karnataka-560037, India
${ }^{b}$ Department of Mathematics, School of Engineering, Presidency University, Itagalpur, Bengaluru, Karnataka-560064, India
${ }^{c}$ P. G. Department of Mathematics and Research Centre in Applied Mathematics M. E. S. College of Arts, Commerce and Science 15th cross, Malleswaram, Bangalore, Karnataka-560003, India

(Communicated by Abdolrahman Razani)

Abstract

The purpose of this paper is to investigate the finite-order transcendental entire solutions to specific types of non-linear differential-difference equations. Moreover, our results generalize some of the previous results. Some examples are provided to show that our results are best in certain sense.

Keywords: Entire function, Nevanlinna theory,Non-linear difference equations and Meromorphic function 2020 MSC: 30D35, 39B32, 34M05

1 Introduction

Throughout the paper, we assume that the reader has prior knowledge of the fundamental results and standard notations of Nevanlinna theory. The terms $T(r, f), N(r, f)$ and $m(r, f)$ represents the characteristic function, counting and proximity functions of f. Whenever $S(r, f)$ is defined, it has the property that $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside of any set E of finite logarithmic measure. We say that function $h(z)$ is a small meromorphic with respect to $f(z)$ if and only if $T(r, h)=o(S(r, f))$. Specifically, Nevanlinna's theory plays an extremely important role to analyze the existence and solvability of non-linear differential, difference and differential-difference equations.

In 1964, Hayman [8] investigated the following non-linear differential equation

$$
\begin{equation*}
f^{n}+H_{d}(f)=F(z), \tag{1.1}
\end{equation*}
$$

where d is the degree of the differential polynomial H_{d} and the result is:
Theorem 1.1. [8] If f and $F(z)$ be non-constant meromorphic functions and $n \geq d+1$ in 1.1). If $N(r, f)+N\left(r, \frac{1}{F}\right)=$ $S(r, f)$, then $F=(f+\nu)^{n}$, where ν is small meromorphic function of f.

[^0]An extension of Tumura-Clunie theory is Theorem 1.1 it is based on a theorem suggested by Tumura 18. However, the proof of which was completed by Clunie [5]. Consequently, many studies have been done on the non-linear differential equation 1.1) by considering various forms of $F(z)$. One can refer [10, 13, 12, 16] for more details about non-linear differential equations.

In recent times, several authors have been interested in investigating the solution of the following type of equation

$$
\begin{equation*}
f^{n}+H_{d_{*}}(z, f)=h_{1}(z) e^{v_{1}(z)}+h_{2}(z) e^{v_{2}(z)} \tag{1.2}
\end{equation*}
$$

where d is the degree of the differential polynomial $H_{d_{*}}$ and $v_{1}(z), v_{2}(z), h_{1}$ and h_{2} are polynomials. There are a few works that are relevant to the topics that can be seen in [9, 21, 13, 17, 7, 1]. For instance, Liu et al. [15] studied the existence of meromorphic solution of $(1.2$ and the result is:

Theorem 1.2. 15 Let $n \geq 3$ be an integer and $d_{*} \leq n-2$ be the degree of differential polynomial $H_{d_{*}}$. Consider the polynomials v_{1}, v_{2} of degree $k(\geq 1)$ and h_{1}, h_{2} be two small non-zero meromorphic functions of $e^{z^{k}}$. If $\frac{v_{1}^{(k)}}{v_{2}^{(k)}} \notin$ $\left\{\frac{n}{n-1}, \frac{n-1}{n},-1,1\right\}$,
and any one of the these occur:

1. $H_{d_{*}} \not \equiv 0$.
2. $H_{d_{*}} \equiv 0, \frac{v_{1}^{(k)}}{v_{2}^{(k)}} \notin\left\{\frac{n}{d_{*}}, \frac{d_{*}}{n}\right\}$, then 1.2$)$
does not have the meromorphic transcendental solution f with $N(r, f)=S(r, f)$.
L. W. Liao et al. [13] studied the differential equation of the form

$$
\begin{equation*}
f^{n} f^{\prime}+H_{d_{*}}(z, f)=\xi(z) e^{p(z)} \tag{1.3}
\end{equation*}
$$

and obtained the result by taking $\xi(z)(\neq 0)$ as rational function and $p(z)$ as non-constant polynomial.
Theorem 1.3. [13] Let f be a meromorphic solution of 1.3 with finite number of poles, then

$$
H_{d_{*}} \equiv 0, \quad f(z)=s(z) e^{\frac{p(z)}{n+1}}
$$

for $d_{*} \leq n-1$ and the rational function $s(z)$ satisfies $s^{n}\left[(n+1) s^{\prime}+p^{\prime} s\right]=(n+1) \xi$.
In 2012, Z. T. Wen et al. 19] classified certain non-linear difference equation of the form

$$
\begin{equation*}
f^{n}+h(z) e^{H(z)} f(z+c)=Q(z) \tag{1.4}
\end{equation*}
$$

examined the entire solution of finite order. Later, 2017 M. F. Chen et al. [2] studied the existence of finite-order entire solutions of following non-linear difference equations

$$
f^{n}+q(z) \Delta_{c} f(z)=p_{1} e^{\alpha_{1} z}+p_{2} e^{\alpha_{2} z}, n \geq 2
$$

and

$$
f^{n}+q(z) e^{Q(z)} f(z+c)=p_{1} e^{\lambda z}+p_{2} e^{-\lambda z}, n \geq 3
$$

where q, Q are non-zero polynomials, $c, \lambda, p_{i}, \alpha_{i}(i=1,2)$ are non-zero constants.
In this paper we consider the following non-linear difference equation of the form:

$$
\begin{equation*}
f^{n}+\xi(z) f(z+c) e^{G(z)}=h_{1}(z) e^{v_{1}(z)}+h_{2}(z) e^{v_{2}(z)} \tag{1.5}
\end{equation*}
$$

where n be an integer, $c \in \mathbb{C} \backslash\{0\}, h_{1}(z), h_{2}(z)$ be non-zero small functions of f and $\xi(z), G(z)[G(z)$ is non constant $]$, $v_{1}(z)$ and $v_{2}(z)$ are non-zero polynomials, and the result is:

Theorem 1.4. If f is finite-order transcendental entire solution of 1.5 with $n \geq 3$ and $\operatorname{deg} v_{1} \neq \operatorname{deg} v_{2}$, then the following holds:

1. Suppose deg $v_{1}<\operatorname{deg} v_{2}$ and $\rho(f)=\operatorname{deg} v_{1}$, then every solution of f satisfies $\rho(f)<\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\}=$ $\operatorname{deg} G$ and $f=\beta_{2} e^{\frac{v_{1}}{n}}$, where $\beta_{2}{ }^{n}=p_{1}$.
2. Suppose deg $v_{1}<\operatorname{deg} v_{2}$ and $\rho(f) \geq \operatorname{deg} v_{2}$, then every solution of f satisfies $\rho(f)=\operatorname{deg} G \geq \max \left\{\operatorname{deg} v_{1}\right.$, deg $\left.v_{2}\right\}$. Similarly we can get for $\operatorname{deg} v_{2}<\operatorname{deg} v_{1}, \rho(f) \geq \operatorname{deg} v_{1}$

Following are two examples that illustrate the sharpness of our result.
Example 1.5. Let $f=z e^{\frac{z}{3}}$ be a finite-order transcendental entire solution of the difference equation

$$
f^{3}+z e^{z^{2}} f(z+1)=z^{3} e^{z}+\left(z^{2}+z\right) e^{z^{2}+\frac{z+1}{3}}
$$

Here $n=3, \xi(z)=z, G(z)=z^{2}, c=1(\neq 0), h_{1}(z)=z^{2}, h_{2}(z)=z^{2}+z, v_{1}(z)=2 z$ and $v_{2}(z)=z^{2}+\frac{z+1}{3}$. Then clearly we can see that $\operatorname{deg} v_{1}=1<2=\operatorname{deg} v_{2}$ and $\rho(f)=\operatorname{deg} v_{1}=1, \rho(f)=1<\max \{1,2\}=2=\operatorname{deg} G$ and $f=z e^{z}$. Thus, the conclusion (i) of the Theorem (1.4) holds.

Example 1.6. Let $f=z e^{-z^{2}}$ is a transcendental entire solution of finite order of the difference equation

$$
f^{3}+z e^{z^{2}+1} f(z+1)=\left(z^{2}+z\right) e^{-2 z}+z^{3} e^{-3 z^{2}}
$$

Here $n=3, \xi(z)=z, G(z)=z^{2}+1, c=1(\neq 0), h_{1}(z)=z^{2}+z, h_{2}(z)=z^{2}, v_{1}(z)=-2 z$ and $v_{2}(z)=-3 z^{2}$. Clearly $\operatorname{deg} v_{1}=1<2=\operatorname{deg} v_{2}$ and $\rho(f)=2=\operatorname{deg} G \geq \max \{1,2\}$ and $f=z e^{-z^{2}}$. Thus, the conclusion (ii) of the Theorem (1.4) holds.

Later in 2016, K. Liu 14 studied the transcendental finite-order entire solutions to the differential-difference equation

$$
\begin{equation*}
f^{n}+h(z) e^{H(z)} f^{(k)}(z+c)=Q(z) \tag{1.6}
\end{equation*}
$$

where $n \geq 2,(k \geq 1)$ is an integer, $c \in \mathbb{C} \backslash\{0\}$ and $h(z)(\neq 0), Q(z)$ are polynomials and $H(z)$ is a polynomial of degree ≥ 1. Eventually, Chen et. al[2] and Xu et al. [20] replaced $Q(z)$ in (1.4], 1.6) by $p_{1} e^{\eta z}+p_{2} e^{-\eta z}$ and $p_{1} e^{\alpha_{1} z}+p_{2} e^{\alpha_{2} z}$, where $p_{1}, p_{2}, \eta, \alpha_{1}$ and α_{2} are constants, obtained the results. Later, in 2020, W. Chen et al. [3] investigated the following non-linear differential-difference equation

$$
\begin{equation*}
f^{n}+a f^{n-1} f^{\prime}+\xi(z) e^{H(z)} f(z+c)=q(z) e^{p(z)} \tag{1.7}
\end{equation*}
$$

where $n \in I^{+}, q, H, r, p$ are polynomials of degree $\geq 1, c \neq 0$ and a are constants, proved the following result.
Theorem 1.7. [3] Let $n \in I, n \geq 3$ when $a \neq 0$ and $n \geq 2$ when $a=0$. Let f be a entire non-vanishing transcendental solution to 1.7 with finite order. Thus, each solution f yields any of the following

1. $\rho(f)<\operatorname{deg} p=\operatorname{deg} H$ and $f=C e^{\frac{-z}{a}}$, where C is constant.
2. $\rho(f)=\operatorname{deg} H \geq \operatorname{deg} p$.

In the same paper, the author also proved the solutions of equation 1.7 , where $q(z) e^{p(z)}$ replaced by $p_{1} e^{\lambda z}+p_{2} e^{-\lambda z}$, λ, p_{1} and p_{2} are non-zero constants. In 2021, Nan Li et al. obtained the result to the equation (1.7) for the case $n=2$ and $a=0$ and also replaced $q(z) e^{p(z)}$ by $p_{1} e^{\alpha_{1} z}+p_{2} e^{\alpha_{2} z}$, where p_{1}, p_{2}, α_{1} and α_{2} are non-zero constants, and proved the existence of entire solutions.

Theorem 1.8. [11 Let $c, a \neq 0$ be constants, ξ, G, q, p be polynomials such that G, p are not constants and $\xi, q \neq 0$. Suppose that f is a transcendental entire solution with finite order of the equation

$$
\begin{equation*}
f^{2}+a f f^{\prime}+\xi(z) e^{G(z)} f(z+c)=q(z) e^{p(z)} \tag{1.8}
\end{equation*}
$$

satisfying $\lambda(f)<\rho(f)$, then $\operatorname{deg} G=\operatorname{deg} p$, and one among the following relations holds:

1. $\rho(f)<\operatorname{deg} G=\operatorname{deg} p$, and $f=C e^{\frac{-z}{a}}$
2. $\rho(f)=\operatorname{deg} G=\operatorname{deg} p$.

It is also fascinating to explore the finite-order entire solutions of the following differential-difference equation

$$
\begin{equation*}
f^{n}+\eta f^{n-1} f^{\prime}+s(z) e^{G(z)} f^{(k)}(z+c)=h(z) e^{p(z)} \tag{1.9}
\end{equation*}
$$

where $n>0$ be an integer, $\eta \neq 0, c \in \mathbb{C} \backslash\{0\}$ and $h(z), s(z), G(z)(\geq 1)$ and $p(z)$ are non-constant polynomials, and the result is:

Theorem 1.9. Let f be a non-vanishing finite-order transcendental entire solution of $\sqrt{1.9}, \eta \neq 0$ when $n \geq 3$ and $\eta=0$ when $n \geq 2$. Then each solution f satisfies any one of the following:

1. $\rho(f)<\operatorname{deg} p=\operatorname{deg} G$ and $f=C e^{\frac{-z}{\eta}}$.
2. $\rho(f)=\operatorname{deg} G \geq \operatorname{deg} p$.

Following are two examples that illustrate the sharpness of our result.
Example 1.10. Let $f=e^{-z}$ be a finite-order transcendental entire solution of the differential-difference equation

$$
f^{3}+f^{2} f^{\prime}+z f^{(2)}(z+1) e^{z^{2}+z+1}=z e^{z^{2}}
$$

Example 1.11. Let $f=e^{z^{2}}$ is a transcendental entire solution of finite order of the differential-difference equation

$$
f^{3}+f^{2} f^{\prime}+z f^{\prime}(z+1) e^{2 z^{2}-2 z-1}=\left(2 z^{2}+4 z+1\right) e^{3 z^{2}}
$$

Thus, by above examples we can see that the conclusion (i) and (ii) holds.

2 Preliminaries

Lemma 2.1. [22] If $f_{k}(z), 1 \leq k \leq m$, and $g_{k}(z), 1 \leq k \leq m, m \geq 2$ are entire functions that meet conditions listed below

1. $\sum_{k=1}^{m} f_{k}(z) e^{g_{k}(z)} \equiv 0$,
2. The orders of f_{k} are less than that of $e^{g_{l}(z)-g_{n}(z)}$ for $1 \leq k \leq m, 1 \leq k \leq l<n \leq m$, then $f_{k} \equiv 0$ for $1 \leq k \leq m$.

Lemma 2.2 ([6] Clunie's lemma). Let f be a non-constant finite order meromorphic solution of

$$
f^{n}(z) P(z, f)=Q(z, f)
$$

where $P(z, f)$ and $Q(z, f)$ are difference polynomials in f with small meromorphic function as coefficients, and let $c \in \mathbb{C}, \delta<1$. If the total degree of $Q(z, f)$ is a polynomial in f and its shifts are at most n, then

$$
m(r, P(z, f))=o\left(\frac{T(r+|c|, f)}{r^{\delta}}\right)+o(T(r, f))
$$

for all r outside of a possible exceptional set with finite logarithmic measure.
Lemma 2.3. 10 Assume that $f(z)$ be a transcendental meromorphic function, p, q, r and s are small functions of f with $p r s \not \equiv 0$. If $p f^{2}+q f f^{\prime}+r\left(f^{\prime}\right)^{2}=s$, then

$$
r\left(q^{2}-4 p r\right) \frac{s^{\prime}}{s}+q\left(q^{2}-4 p r\right)-r\left(q^{2}-4 p r\right)^{\prime}+\left(q^{2}-4 p r\right) r^{\prime} \equiv 0
$$

Lemma 2.4. [4] Let f be a non-constant meromorphic function and η_{1}, η_{2} be two complex numbers such that $\eta_{1} \neq \eta_{2}$. Let $f(z)$ be a meromorphic function with finite order σ, then each $\epsilon>0$, then

$$
m\left(r, \frac{f\left(z+\eta_{1}\right.}{f\left(z+\eta_{2}\right)}\right)=O\left(r^{\sigma-1+\epsilon}\right)
$$

Lemma 2.5. 22] Let f be a non-zero meromorphic function. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(\log r) \text { as } r \rightarrow \infty
$$

if f is finite order, and

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(\log r(T(r, f))) \text { as } r \rightarrow \infty
$$

possibly outside a set E of r with finite linear measure if f is of infinite order.
Lemma 2.6. 4] Let $f(z)$ be a meromorphic function with order $\rho(f)<\infty$, and let η be a fixed non-zero complex number, then for each $\epsilon>0$, we have $T(r, f(z+c))=T(r, f)+O\left(r^{\rho-1+\epsilon}\right)+O(\log r)$.

Lemma 2.7. [22] Let f be a meromorphic function in the complex plane that is not constant and k is a positive integer. Then we have the following inequality

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Proof of Theorem 1.4;

Suppose f be a transcendental entire solution of finite order to 1.5 and now, in order to prove the theorem, we will look at the following cases:

Case 1. If $\rho(f)<\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\}$, then from (1.5) and lemma 2.4, it follows that

$$
\begin{aligned}
T\left(r, e^{G}\right) & =m\left(r, e^{G}\right) \\
& =m\left(r, \frac{h_{1} e^{v_{1}}+h_{2} e^{v_{2}}-f^{n}}{\xi f(z+c)}\right) \\
& \leq m\left(r, \frac{f}{\xi f(z+c)}\right)+m\left(r, \frac{1}{f}\right)+m\left(r, h_{1} e^{v_{1}}+h_{2} e^{v_{2}}\right)+n m(r, f)+S(r, f), \\
& =(n+1) T(r, f)+T\left(r, h_{1} e^{v_{1}}+h_{2} e^{v_{2}}\right)+S(r, f)
\end{aligned}
$$

i.e $T\left(r, e^{G}\right) \leq T\left(r, h_{1} e^{v_{1}}+h_{2} e^{v_{2}}\right)+S(r, f)$, which implies

$$
\begin{equation*}
\operatorname{deg} G \leq \max \left\{\operatorname{deg} v_{1}, \operatorname{deg} ; v_{2}\right\} \tag{2.1}
\end{equation*}
$$

Meanwhile, we have from (1.5) and Lemma 2.4 that

$$
\begin{aligned}
T\left(r, h_{1} e^{v_{1}}+h_{2} e^{v_{2}}\right) & =m\left(r, f^{n}+\xi f(z+c) e^{G}\right)+S(r, f), \\
& \leq n m(r, f)+m\left(r, e^{G}\right)+m\left(r, \frac{f(z+c)}{f}\right)+m\left(r, \frac{1}{f}\right)+S(r, f), \\
& =(n+1) T(r, f)+T\left(r, e^{G}\right)+S(r, f), \\
& \leq T\left(r, e^{G}\right)+S(r, f),
\end{aligned}
$$

which implies

$$
\begin{equation*}
\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\} \leq \operatorname{deg} G \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we have

$$
\operatorname{deg} G=\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\} \quad \text { and } \quad \rho(f)<\operatorname{deg} G .
$$

For convenience, we write $f(z+c)=f_{c}, G(z)=G$, similarly for h_{1}, h_{2}, v_{1} and v_{2}, then 1.5 take the form

$$
\begin{equation*}
f^{n}+\xi f_{c} e^{G}=h_{1} e^{v_{1}}+h_{2} e^{v_{2}} \tag{2.3}
\end{equation*}
$$

By differentiating (2.3), we get

$$
\begin{equation*}
n f^{n-1} f^{\prime}+A \xi f_{c} e^{G}=h_{1} A_{1} e^{v_{1}}+h_{2} A_{2} e^{v_{2}} \tag{2.4}
\end{equation*}
$$

where $A=\frac{\xi^{\prime}}{\xi}+\frac{f_{c}^{\prime}}{f_{c}}+G^{\prime}, A_{1}=\frac{h_{1}^{\prime}}{h_{1}}+v_{1}^{\prime}$ and $A_{2}=\frac{h_{2}^{\prime}}{h_{2}}+v_{2}^{\prime}$ are small functions of f. Eliminating $e^{v_{1}}$ and $e^{v_{2}}$ from 2.3) and (2.4), we get

$$
\begin{gather*}
A_{1} f^{n}-n f^{n-1} f^{\prime}+\left(A_{1}-A\right) \xi f_{c} e^{G}=h_{2}\left(A_{1}-A_{2}\right) e^{v_{2}} \tag{2.5}\\
A_{2} f^{n}-n f^{n-1} f^{\prime}+\left(A_{2}-A\right) \xi f_{c} e^{G}=-h_{1}\left(A_{1}-A_{2}\right) e^{v_{1}} \tag{2.6}
\end{gather*}
$$

since $\operatorname{deg} v_{1} \neq \operatorname{deg} v_{2}$, clearly $A_{1}-A_{2} \neq 0$. We have $\operatorname{deg} v_{1}<\operatorname{deg} v_{2}$ and $\operatorname{deg} v_{1}=\rho(f)$, differentiating 2.5 and eliminating $e^{v_{2}}$, we get

$$
\begin{equation*}
B_{3} e^{G}+B_{4}=0, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{3}=\left[A_{4}-\left(\frac{\left(A_{1}-A\right)^{\prime}}{A_{1}-A}+\frac{\xi^{\prime}}{r}+\frac{f_{c}^{\prime}}{f_{c}}+G^{\prime}\right)\right]\left(A_{1}-A\right) \xi f_{c} \\
B_{4}=f^{n-2}\left[\left(A_{1} A_{4}-A_{1}^{\prime}\right) f^{2}-n\left(A_{1}+A_{4}\right) f f^{\prime}+n(n-1)\left(f^{\prime}\right)^{2}+n f f^{\prime \prime}\right]
\end{gathered}
$$

and

$$
A_{4}=\left(\frac{h_{2}^{\prime}}{h_{2}}+v_{2}^{\prime}+\frac{\left(A_{1}-A\right)^{\prime}}{A_{1}-A}\right)
$$

Since $\rho(f)<\operatorname{deg} G$, by 2.7) and lemma 2.1, we get $B_{3} \equiv B_{4} \equiv 0$. From $B_{3} \equiv 0$, we must have either $A_{1}-A \equiv 0$ or $\left[A_{4}-\left(\frac{\left(A_{1}-A\right)^{\prime}}{A_{1}-A}+\frac{\xi^{\prime}}{\xi}+\frac{f_{c}^{c}}{f_{c}}+G^{\prime}\right)\right] \equiv 0$.

Subcase 1.1. Suppose $A_{1}-A \equiv 0$, then we have $\frac{\xi^{\prime}}{\xi}+\frac{f_{c}^{\prime}}{f_{c}}+G^{\prime}=\frac{h_{1}^{\prime}}{h_{1}}+v_{1}^{\prime}$, on integrating, we get

$$
\begin{equation*}
\xi f_{c} e^{G}=c_{3} h_{1} e^{v_{1}}, c_{3} \neq 0 . \tag{2.8}
\end{equation*}
$$

If $c_{3}=1$, then substituting (2.8) in 2.3), we get $f^{n}=h_{2} e^{v_{2}}$. Since $\rho(f)<d e g v_{2}$, which is absurd. If $c_{3} \neq 1$, then substituting 2.8 in 2.3), we get

$$
\begin{equation*}
f^{n}+\left(1-\frac{1}{c_{3}}\right) \xi f_{c} e^{G}=h_{2} e^{v_{2}} \tag{2.9}
\end{equation*}
$$

On differentiating 2.9 and eliminating $e^{v_{2}}$, we get

$$
\begin{equation*}
A_{2} f^{n}-n f^{n-1} f^{\prime}+\left(1-\frac{1}{c_{3}}\right)\left(A_{2}-A\right) \xi f_{c} e^{G}=0 \tag{2.10}
\end{equation*}
$$

Equation 2.10) can be written as: $B_{5} e^{G}+B_{6}=0$, where $B_{5}=\left(1-\frac{1}{c_{3}}\right)\left(A_{2}-A\right) \xi f_{c}$ and $B_{6}=f^{n-1}\left(A_{2} f-n f^{\prime}\right)$. Similar to subcase 1.1, we get $B_{5} \equiv B_{6} \equiv 0$, from $B_{5}=0$, we must have $A_{2}-A=0$. Since $c_{3} \neq 1$ and $\xi f_{c} \neq 0$, $A_{1}=A_{2}$. Hence, it is contradictory to $A_{1}-A_{2} \neq 0$.

Subcase 1.2. Suppose $A_{4}-\left(\frac{\left(A_{1}-A\right)^{\prime}}{A_{1}-A}+\frac{\xi^{\prime}}{r}+\frac{f_{c}^{\prime}}{f_{c}}+G^{\prime}\right)=0$, then integrating, we get

$$
\begin{equation*}
\left(A_{1}-A\right) \xi f_{c} e^{G}=c_{4}\left(A_{1}-A_{2}\right) h_{2} e^{v_{2}}, \quad c_{4} \neq 0 \tag{2.11}
\end{equation*}
$$

We claim that $c_{4}=1$, otherwise from 2.11, we have

$$
\begin{equation*}
f(z)=H(z) e^{u(z)}, \quad \text { where } \rho(f)=\operatorname{deg}(u) \tag{2.12}
\end{equation*}
$$

and $H(z)=c_{4}\left[\frac{h_{2}(z-c)\left(A_{1}(z-c)-A_{2}(z-c)\right)}{\xi(z-c)\left(A_{1}(z-c)-A(z-c)\right)}\right] e^{u(z)}, u(z)=v_{2}(z-c)-G(z-c)$. Substituting 2.11) and 2.12) in 2.5), we get $H^{n-1}\left(A_{1} H-n\left(h^{\prime}+H u^{\prime}\right)\right) e^{n u(z)}=\left(1-c_{4}\right) h_{2}\left(A_{1}-A_{2}\right) e^{v_{2}}$. Since $c_{4} \neq 1$, we have deg $u=\operatorname{deg} v_{2}$, which is contradiction. Therefore $c_{4}=1$, putting 2.11) in 2.5, we get $f^{n-1}\left(A_{1} f-n f^{\prime}\right)=0 \Rightarrow A_{1} f-n f^{\prime}=0$, on integrating, we get

$$
\begin{equation*}
f^{n}=c_{5} h_{1} e^{v_{1}}, \quad c_{5} \neq 0 \tag{2.13}
\end{equation*}
$$

We claim $c_{5}=1$. Otherwise, substituting 2.13 in 2.3 and on simple calculation, we get

$$
\begin{equation*}
\left(c_{5}-1\right) h_{1} e^{v_{1}}=h_{2} e^{v_{2}}-\xi f_{c} e^{G} \tag{2.14}
\end{equation*}
$$

Since deg $v_{2}=\operatorname{deg} G>\operatorname{deg} v_{1}$ and by lemma 2.1. we get $\left(c_{5}-1\right) h_{1}=0$, since $h_{1} \neq 0$, therefore we must have $c_{5}=1$. Similarly, we can prove another case as well.

Case 2. If $\rho(f)>\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\}$, it follows from lemma 2.4 and 2.3

$$
\begin{aligned}
T\left(r, e^{G}\right) & =T\left(r, e^{G}\right)+S(r, f) \\
& =m\left(r, \frac{h_{1} e^{v_{1}}+h_{2} e^{v_{2}}-f^{n}}{\xi f_{c}}\right)+S(r, f), \\
& \leq m\left(r, e^{v_{1}}\right)+m\left(r, e^{v_{2}}\right)+(n+1) m(r, f)+S(r, f) .
\end{aligned}
$$

i.e, $T\left(r, e^{G}\right) \leq(n+1) T(r, f)+S(r, f)$, which implies that

$$
\operatorname{deg}(G) \leqslant \rho(f)
$$

We now prove $\operatorname{deg} G=\rho(f)$. Otherwise, if $\operatorname{deg}(G)<\rho(f)$, denoting $R(z)=\xi e^{G}$ and $P(z)=h_{1} e^{v_{1}}+h_{2} e^{v_{2}}$, then $T(r, P)=S(r, f)$ and $T(r, R)=S(r, f)$, substituting $R(z)$ and $P(z)$ in 2.3 , we get $f^{n}=P-R f_{c}$ and using lemma 2.2 we get $m(r, f)=S(r, f)$ and $N(r, f)=S(r, f)$, therefore $T(r, f)=S(r, f)$, which is absurd.

$$
\therefore \operatorname{deg} G=\rho(f)>\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\} .
$$

Case 3: If $\rho(f)=\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\}$, it follows from lemma 2.4 and 2.3 that

$$
\begin{aligned}
T\left(r, e^{G}\right) & =m\left(r, e^{G}\right)+S(r, f) \\
& =m\left(r, \frac{h_{1} e^{v_{1}}+h_{2} e^{v_{2}}-f^{n}}{\xi f_{c}}\right)+S(r, f) \\
& \leq T\left(r, e^{v_{1}}\right)+T\left(r, e^{v_{2}}\right)+(n+1) T(r, f)+S(r, f)
\end{aligned}
$$

i.e, $T\left(r, e^{G}\right) \leq 2 \rho(f)+S(r, f)$, which implies that

$$
\operatorname{deg} G \leq \rho(f)
$$

We now prove deg $G=\rho(f)$. Otherwise, if $\operatorname{deg} G<\rho(f)$, and denoting $L(z)=\xi e^{G}$, then $T(r, L)=S(r, f)$ and (2.3) becomes

$$
\begin{equation*}
f^{n}+L f_{c}=h_{1} e^{v_{1}}+h_{2} e^{v_{2}} \tag{2.15}
\end{equation*}
$$

differentiating 2.15 and eliminate $e^{v_{1}}$ and $e^{v_{2}}$ by using 2.15, we get

$$
\begin{gather*}
A_{1} f^{n}-n f^{n-1} f^{\prime}+R_{1}(z, f)=h_{2} A_{3} e^{v_{2}} \tag{2.16}\\
A_{2} f^{n}-n f^{n-1} f^{\prime}+G_{2}(z, f)=-h_{1} A_{3} e^{v_{1}} \tag{2.17}
\end{gather*}
$$

where $G_{1}(z, f)=A_{1} L f_{c}-\left(L f_{c}\right)^{\prime}, G_{2}(z, f)=A_{2} L f_{c}-\left(L f_{c}\right)^{\prime}$ and $A_{3}=A_{1}-A_{2}$. On differentiating (2.16) and eliminating $e^{v_{2}}$, we get

$$
\begin{equation*}
f^{n-2} \phi(z)=G_{2}(z, f) \tag{2.18}
\end{equation*}
$$

where $G_{2}(z, f)=G_{1}^{\prime}-A_{4} G_{1}$ and $\phi(z)=\left(A_{4} A_{1}-A_{1}^{\prime}\right) f^{2}-n\left(A_{4}+A_{1}\right) f f^{\prime}+n(n-1)\left(f^{\prime}\right)^{2}+n f f^{\prime \prime}$. Suppose $G_{2}=0$, then we have $G_{1}^{\prime}-A_{4} G_{1}=0$.

If $G_{1}=0$, on integrating we get $L f_{c}=c_{6} h_{1} e^{v_{1}}\left(c_{6} \neq 0\right)$, from this $f(z)=H_{1}(z) e^{v_{1}(z-c)}$, where $H_{1}(z)=$ $\frac{c_{6}}{L(z-c)} h_{1}(z-c) e^{v_{1}(z-c)}$ and $\operatorname{deg} v_{1}=\rho(f)$. Since $\operatorname{deg} v_{2}=\rho(f)>\operatorname{deg} v_{1}$, it is a contradiction. Therefore, $G_{1}(z, f) \neq 0$, then we have $G_{1}^{\prime}-A_{4} G_{1}=0$, on integrating $G_{1}=c_{7} A_{3} h_{2} e^{v_{2}}, c_{7} \neq 0$, substituting in 2.16), we get $f^{n-1}\left(A_{1} f-n f^{\prime}\right)=$ $\left(\frac{1}{c_{7}}-1\right) G_{1}(z, f)$. Since $n \geq 3$, whether or not $c_{7}=1$, we get from lemma 2.2 that $A_{1} f-n f^{\prime}=0$, on integrating we get $f^{n}=c_{8} h_{1} e^{v_{1}}, c_{8} \neq 0$ and $\rho(f)=\operatorname{deg} v_{1}$, again which is contradiction. Therefore, $G_{2}(z, f) \neq 0$ and it follows that $\phi(z) \neq 0$. Consider

$$
\begin{equation*}
\phi(z)=m_{1} f^{2}+m_{2} f f^{\prime}+m_{3}\left(f^{\prime}\right)^{2}+m_{4} f f^{\prime \prime} \tag{2.19}
\end{equation*}
$$

where $m_{1}=A_{4} A_{1}-A_{1}^{\prime}, m_{2}=-n\left(A_{4}+A_{1}\right), m_{3}=n(n-1), m_{4}=n$ and m_{1}, m_{2} be a meromorphic functions that are non-zero with $T\left(r, m_{i}\right)=S(r, f), i=1,2$. We now turn to the following cases:

Subcase 3.1. If f has finite number of zeros, then it possible to assume f is of the form $f(z)=R_{1}(z) e^{R_{2}(z)}$, where R_{1} and R_{2} are polynomials, $R_{1} \neq 0$ and $\operatorname{deg} R_{2}=\operatorname{deg} v_{2}$, $\operatorname{deg} R_{2}>\operatorname{deg} G$. Substituting $f(z)$ in 2.16 , we get

$$
\begin{equation*}
\left[A_{1} R_{1}-n R_{1}^{n-1}\left(R_{1}^{\prime}+R_{1} R_{2}^{\prime}\right)\right] e^{n R_{2}(z)}+\left[A_{1} L R_{1}(z+c)-L^{\prime} R_{1}-L\left(R_{1}^{\prime}+R_{2} R_{1}(z+c)\right)\right] e^{R_{2}(z+c)}=h_{2} A_{3} e^{v_{2}} \tag{2.20}
\end{equation*}
$$

If $A_{1} R_{1}-n R_{1}^{n-1}\left(R_{1}^{\prime}+R_{1} R_{2}^{\prime}\right) e^{n R_{2}(z)}=0$, then on integrating we get

$$
c_{8} h_{1} e^{v_{1}}=R_{1}^{n} e^{R_{2}}, \quad c_{8} \neq 0
$$

and since $\operatorname{deg} v_{1}<\operatorname{deg} R_{2}$, it follows from lemma 2.1 that $h_{1}=0$, which is absurd. Therefore

$$
A_{1} R_{1}-n R_{1}^{n-1}\left(R_{1}^{\prime}+R_{1} R_{2}^{\prime}\right) e^{n R_{2}(z)} \neq 0
$$

and suppose

$$
\begin{gathered}
\left.\begin{array}{c}
R_{2}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{0} \\
v_{2}(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots \cdots+b_{0}
\end{array}\right\} \begin{array}{l}
\text { where } a_{i}, b_{i} 0 \leq i \leq n \\
\text { are constants and } \\
a_{n} b_{n} \neq 0
\end{array} \\
{\left[R_{1}^{n-1}\left(A_{1} R_{1}-n\left(R_{1}^{\prime}+R_{1} R_{2}^{\prime}\right)\right)\right] e^{\left(n a_{n}-b_{n}\right) z^{k}}+\cdots \cdots+\left(n a_{0}-b_{0}\right)+} \\
{\left[A_{1} L R_{1}(z+c)-L^{\prime} R_{1}-L\left(R_{1}^{\prime}+R_{2} R_{1}(z+c)\right)\right] e^{\left(a_{k}-b_{k}\right) z^{k}}+\cdots \cdots+\left(a_{0}-b_{0}\right)=h_{2} A_{3} .}
\end{gathered}
$$

From (2.1), we get contradiction.
Subcase 3.2. Suppose f has infinitely many zeors, then proceeding similar to case 3.2 of [3], we get simple zeros of f are infinite. On differentiating 2.19 , we get

$$
\begin{equation*}
\phi^{\prime}=m_{1}^{\prime} f^{2}+\left(2 m_{1}+m_{2}^{\prime}\right) f f^{\prime}+m_{2}\left(f^{\prime}\right)^{2}+m_{2} f f^{\prime \prime}+\left(2 m_{3}+m_{4}\right) f^{\prime} f^{\prime \prime}+m_{4} f f^{\prime \prime \prime} \tag{2.21}
\end{equation*}
$$

From 2.19 and 2.21, we obtain

$$
\begin{array}{r}
f^{\prime}\left[\left(m_{2} \phi-m_{3} \phi^{\prime}\right) f^{\prime}+\left(2 m_{3}+m_{4}\right) \phi f^{\prime \prime}\right]=f\left[\left(m_{1} \phi^{\prime}-m_{1}^{\prime} \phi\right) f+\right. \tag{2.22}\\
\left.\left(m_{2} \phi^{\prime}-\left(2 m_{1}+m_{2}^{\prime}\right)\right) f^{\prime}+\left(m_{4} \phi^{\prime}-m_{2} \phi\right) f^{\prime \prime}-m_{4} \phi f^{\prime \prime \prime}\right] .
\end{array}
$$

If f has simple zero at z_{0} and not the zero and pole of the coefficients of 2.22 . Putting z_{0} in 2.22 , we observe that z_{0} is zero of $\left(m_{2} \phi-m_{3} \phi^{\prime}\right) f^{\prime}+\left(2 m_{3}+m_{4}\right) \phi f^{\prime \prime}$. Let

$$
\begin{equation*}
\gamma(z):=\frac{\left(m_{2} \phi-m_{3} \phi^{\prime}\right) f^{\prime}+\left(2 m_{3}+m_{4}\right) \phi f^{\prime \prime}}{f} \tag{2.23}
\end{equation*}
$$

Clearly $T(r, \gamma)=O(\log r)$ and we can conclude by lemma 2.5 that γ is rational function. It follows from 2.23)

$$
\begin{equation*}
f^{\prime \prime}=\left[\frac{-m_{2}}{n(2 n-1)}-\frac{n-1}{2 n-1} \frac{\phi^{\prime}}{\phi}\right] f+\frac{\gamma f}{n(2 n-1) \phi} \tag{2.24}
\end{equation*}
$$

Substituting (2.24) in 2.19, we obtain

$$
\begin{equation*}
\phi(z)=u_{1} f^{2}+u_{2} f f^{\prime}+u_{3}\left(f^{\prime}\right)^{2} \tag{2.25}
\end{equation*}
$$

where $u_{1}=m_{1}+\frac{\gamma}{(2 n-1) \phi}, u_{2}=m_{2}(n-1)\left[\left(\frac{2}{2 n-1}\right)-\frac{n}{2 n-1} \frac{\phi^{\prime}}{\phi}\right]$ and $u_{3}=n(n-1)$, $u_{j}, j=1,2$ are rational functions, and

$$
\begin{equation*}
T\left(r, u_{i}\right)=S(r, f) \quad i=1,2 \tag{2.26}
\end{equation*}
$$

By the similar argument of [3] [from the equation (3.19) to (3.20)], we get

$$
\begin{equation*}
u_{3}\left(u_{2}^{2}-4 u_{1} u_{3}\right) \frac{\phi^{\prime}}{\phi}+u_{2} u_{2}^{2}-4 u_{1} u_{3}+u_{3}^{\prime} u_{2}^{2}-4 u_{1} u_{3}=u_{3} u_{2}^{2}-4 u_{1} u_{3} \tag{2.27}
\end{equation*}
$$

Denoting $u_{2}^{2}-4 u_{1} u_{3}=\psi$, now we will discuss the following cases
Subcase 3.2.1. If $\psi \neq 0$, then we get $\frac{u_{2}}{u_{3}}=\frac{\psi^{\prime}}{\psi}-\frac{\phi^{\prime}}{\phi}-\frac{u_{3}^{\prime}}{u_{3}}$, on substituting all the parameters and integrating, we get

$$
e^{v_{1}+v_{2}}=\frac{k}{h_{1} h_{2} A_{3}} \psi^{\frac{-(2 n-1)}{2}} \phi^{n-1} \in S(r, f),
$$

possible only when $v_{1}=-v_{2}$, which is contradiction, since deg $v_{1}<\operatorname{deg} v_{2}$.
Subcase 3.2.2. If $\psi=0$, then 2.25 becomes

$$
\begin{equation*}
\phi=u_{3}\left(f^{\prime}+\frac{u_{2}}{2 u_{3}} f\right)^{2} \tag{2.28}
\end{equation*}
$$

Let $\Psi=f^{\prime}+\frac{u_{2}}{2 u_{3}} f, \Psi \neq 0$ and $T(r, \phi)=S(r, f)$, we have

$$
\begin{equation*}
T(r, \Psi)=S(r, f) \quad \text { and } \quad f^{\prime}=\Psi-\frac{u_{2}}{2 u_{3}} f . \tag{2.29}
\end{equation*}
$$

Putting 2.29) in 2.16 and 2.17, we get

$$
\begin{array}{r}
\left(A_{1}+\frac{u_{2}}{2 u_{3}} n\right) f^{n}-n \Psi f^{n-1}+G_{1}(z, f)=h_{2} A_{3} e^{v_{2}} \\
\left(A_{2}+\frac{u_{2}}{2 u_{3}} n\right) f^{n}-n \Psi f^{n-1}+G_{2}(z, f)=-h_{1} A_{3} e^{v_{1}} \tag{2.30}
\end{array}
$$

If $A_{1}+\frac{u_{2}}{2 u_{3}} n \equiv 0$ and $A_{2}+\frac{u_{2}}{2 u_{3}} n \equiv 0$, then we get $A_{3}=0$ which is absurd. Consequently, we claim

$$
\left(A_{1}+\frac{u_{2}}{2 u_{3}} n\right)\left(A_{2}+\frac{u_{2}}{2 u_{3}} n\right) \equiv 0
$$

Otherwise, since $A_{3} \neq 0$ and $h_{2} \neq 0$, from 2.30, we have

$$
N\left(r, \frac{1}{G_{l}}\right)+N(r, f)=N\left(r, \frac{1}{A_{3}}\right)+N(r, f)=S(r, f), \quad l=1,2 .
$$

From Theorem 1.1, equation 2.26 and 2.29 there exist two small functions ν_{1}, ν_{2} of f such that

$$
\begin{equation*}
H_{1}=\left(A_{1}+\frac{u_{2}}{2 u_{3}} n\right)\left(f-\nu_{1}\right)^{n}=h_{2} A_{3} e^{v_{2}} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}=\left(A_{2}+\frac{u_{2}}{2 u_{3}} n\right)\left(f-\nu_{2}\right)^{n}=-h_{1} A_{3} e^{v_{1}} \tag{2.32}
\end{equation*}
$$

Based on Nevanlinna's second fundamental theorem concerning to small functions that $\nu_{1}=\nu_{2}$, then from 2.31 and 2.32, we get

$$
e^{v_{1}-v_{2}}=-\frac{\left(A_{2}+\frac{n u_{2}}{2 u_{3}}\right)}{\left(A_{1}+\frac{n u_{2}}{2 u_{3}}\right)} \in S(r, f)
$$

possible only when $v_{1}=v_{2}$, which is contradiction to $\operatorname{deg} v_{1}<\operatorname{deg} v_{2}$. Therefore,

$$
\rho(f)=\operatorname{deg} G=\max \left\{\operatorname{deg} v_{1}, \operatorname{deg} v_{2}\right\}
$$

Proof of Theorem 1.9: Assuming $\eta \neq 0$. Suppose that f be a transcendental entire solution of finite order to 1.9) and now, in order to prove the theorem, we will look at the following cases:

Case 1. If $\rho(f)<\operatorname{deg} p$, then from (1.9) and lemma 2.4) to 2.7), it follows that

$$
\begin{aligned}
T\left(r, e^{G}\right) & =m\left(r, e^{G}\right) \\
& =m\left(r, \frac{h e^{p}-\left(f^{n}+\eta f^{n-1} f^{\prime}\right)}{s(z) f^{(k)}(z+c)}\right) \\
& \leq m\left(r, h e^{p}\right)+m\left(r, f^{n}+\eta f^{n-1} f^{\prime}\right)+m\left(r, \frac{1}{s f^{(k)}(z+c)}\right)+O(1), \\
& \leq T\left(r, e^{p}\right)+n T(r, f)+T\left(r, f^{(k)}(z+c)\right)-N\left(r, \frac{1}{f^{(k)}(z+c)}\right)+S(r, f), \\
& \leq T\left(r, e^{p}\right)+n T(r, f)+T\left(r, \frac{f^{(k)}(z+c)}{f(z+c)}\right)+T(r, f(z+c))-N\left(r, \frac{1}{f(z+c)}\right)-k \bar{N}(r, f(z+c))+S(r, f), \\
& \leq T\left(r, e^{p}\right)+(n+1) T(r, f)+m\left(r, \frac{f^{(k)}(z+c)}{f(z+c)}\right)+N\left(r, \frac{f^{(k)}(z+c)}{f(z+c)}\right)-N\left(r, \frac{1}{f(z+c)}\right)+S(r, f), \\
& \leq T\left(r, e^{p}\right)+(n+1) T(r, f)+N\left(r, f^{(k)}(z+c)\right)+S(r, f) \\
& \leq T\left(r, e^{p}\right)+(n+1) T(r, f)+S(r, f)
\end{aligned}
$$

i.e $T\left(r, e^{G}\right) \leq T\left(r, e^{p}\right)+S(r, f)$, which implies

$$
\begin{equation*}
\operatorname{deg} G \leq \operatorname{deg} p \tag{2.33}
\end{equation*}
$$

Meanwhile, we have from (1.9) and Lemma 2.4 that

$$
\begin{aligned}
T\left(r, e^{p}\right) & =m\left(r, e^{p}\right) \\
& =m\left(r, \frac{f^{n}+\eta f^{n-1} f^{\prime}+s e^{G} f^{(k)}(z+c)}{h}\right) \\
& \leq m\left(r, \frac{s f^{(k)}(z+c)}{f}\right)+m(r, f)+m\left(r, e^{G}\right)+m\left(r, f^{n}+\eta f^{n-1} f^{\prime}\right)+S(r, f), \\
& \leq T\left(r, e^{G}\right)+(n+1) T(r, f)+S(r, f), \\
& \leq T\left(r, e^{G}\right)+S(r, f)
\end{aligned}
$$

which implies

$$
\begin{equation*}
\operatorname{deg} p \leq \operatorname{deg} G \tag{2.34}
\end{equation*}
$$

From 2.33 and 2.34, we have

$$
\operatorname{deg} G=\operatorname{deg} p \quad \text { and } \quad \rho(f)<\operatorname{deg} G
$$

For convenient, we write $\sqrt{1.9}$ as follows

$$
\begin{equation*}
f^{n}+\eta f^{n-1} f^{\prime}+s(z) f_{c}^{(k)} e^{G}=h e^{p} \tag{2.35}
\end{equation*}
$$

Differentiating 2.35) and eliminating e^{p}, we get

$$
\begin{equation*}
H_{1} e^{G}+H_{2}=0 \tag{2.36}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{1}=\left(A-A_{1}\right) s f^{(k)}(z+c) \\
& H_{2}=A f^{n}+(a A-n) f^{n-1} f^{\prime}-a(n-1) f^{n-2}\left(f^{\prime}\right)^{2}-a f^{n-1} f^{\prime \prime}
\end{aligned}
$$

and

$$
\begin{aligned}
A & =\frac{h^{\prime}}{h}+p^{\prime} \\
A_{1} & =\frac{s^{\prime}}{s}+\frac{f_{c}^{(k+1)}}{f_{c}^{(k)}}+G^{\prime}
\end{aligned}
$$

Since $\rho(f)<\operatorname{deg} p$, by lemma 2.1, we get $H_{1} \equiv H_{2} \equiv 0$. From $H_{1} \equiv 0$, it follows that

$$
\frac{s^{\prime}}{s}+\frac{f_{c}^{(k+1)}}{f_{c}^{(k)}}+G^{\prime}=\frac{h^{\prime}}{h}+p^{\prime}
$$

on integrating above expression, we get

$$
\begin{equation*}
s e^{G} f_{c}^{(k)}=C_{1} h e^{p}, \quad C_{1} \neq 0 \tag{2.37}
\end{equation*}
$$

Substituting 2.37 in 2.35, we get

$$
\begin{equation*}
f^{n}+\eta f^{n-1} f^{\prime}=\left(1-C_{1}\right) h e^{p} \tag{2.38}
\end{equation*}
$$

If $C_{1}=1$, then from 2.38, we have $f^{n}+\eta f^{n-1} f^{\prime}=0$. Then easily we get

$$
f=C e^{\frac{-z}{\eta}},
$$

where $C(\neq 0)$ is a constant. Thus, conclusion (1) is true. If $C_{1} \neq 1$, then it follows from (2.38) and lemma 2.5 that

$$
\begin{aligned}
T\left(r, e^{p}\right) & =m\left(r, e^{p}\right) \\
& =m\left(r, \frac{f^{n}+\eta f^{n-1} f^{\prime}}{\left(1-C_{1}\right) h}\right) \\
& \leq m\left(r, f^{n}+\eta f^{n-1} f^{\prime}\right)+S(r, f) \\
& \leq n m(r, f)+S(r, f) \\
& \leq n T(r, f)+S(r, f)
\end{aligned}
$$

which implies deg $p \leq \rho(f)$. Which is contradiction to $\rho(f)<\operatorname{deg} p$. Therefore $C_{1} \neq 0$.
Case 2. If $\rho(f)>\operatorname{deg} p$. By lemma 2.4 to 2.7 and 2.35 , it follows that

$$
\begin{aligned}
T\left(r, e^{G}\right) & =m\left(r, e^{G}\right) \\
& =m\left(r, \frac{h e^{p}-\left(f^{n}+\eta f^{n-1} f^{\prime}\right)}{s f_{c}^{(k)}}\right) \\
& \leq m\left(r, \frac{1}{s f_{c}^{(k)}}\right)+m\left(r, e^{p}\right)+m\left(r, f^{n}+\eta f^{n-1} f^{\prime}+S(r, f)\right. \\
& \leq T\left(r, f_{c}^{(k)}\right)-N\left(r, \frac{1}{f_{c}^{(k)}}\right)+T\left(r, e^{p}\right)+n m(r, f)+S(r, f) \\
& \leq T\left(r, \frac{f_{c}^{(k)}}{f(z+c)}\right)+T(r, f(z+c))-N\left(r, \frac{1}{f(z+c)}\right)-k \bar{N}(r, f(z+c))+T\left(r, e^{p}\right)+n T(r, f) S(r, f), \\
& \leq(n+1) T(r, f)+T\left(r, e^{p}\right)+m\left(r, \frac{f_{c}^{(k)}}{f(z+c)}\right)+N\left(r, \frac{f_{c}^{(k)}}{f(z+c)}\right)-N\left(r, \frac{1}{f(z+c)}\right)+S(r, f), \\
& \leq(n+1) T(r, f)+T\left(r, e^{p}\right)+N\left(r, f_{c}^{(k)}\right)+S(r, f), \\
& \leq(n+1) T(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{equation*}
\text { which implies deg } G \leq \rho(f) \text {. } \tag{2.39}
\end{equation*}
$$

We will show now $\operatorname{deg} G=\rho(f)$. Otherwise $\operatorname{deg} G<\rho(f)$, let us denote $U_{1}(z)=h e^{p}, U_{2}(z)=s e^{G}$, clearly $T\left(r, U_{1}\right)=S(r, f), T\left(r, U_{2}\right)=S(r, f)$. And substituting U_{1}, U_{2} in 2.35), we get

$$
\begin{equation*}
f^{n-1}\left(f+\eta f^{\prime}\right)=U_{1}+U_{2} f_{c}^{(k)} \tag{2.40}
\end{equation*}
$$

Since $n \geq 3$, it follows from lemma 2.2 that

$$
\begin{equation*}
m\left(r, f+\eta f^{\prime}\right)=S(r, f), \quad m\left(r, f\left(f+\eta f^{\prime}\right)\right)=S(r, f) \tag{2.41}
\end{equation*}
$$

Since f is an entire function, as a result, it's simple to infer,

$$
\begin{aligned}
T(r, f) & =m(r, f) \leq m\left(r, \frac{1}{f+\eta f^{\prime}}\right)+m\left(r,\left(f+\eta f^{\prime}\right) f\right) \\
& \leq T\left(r, f+\eta f^{\prime}\right)+S(r, f)=m\left(r, f+\eta f^{\prime}\right)+S(r, f)=S(r, f)
\end{aligned}
$$

which is absurd. As a result, we have $\operatorname{deg} p<\operatorname{deg} G=\rho(f)$.
Case 3. If $\rho(f)=\operatorname{deg} p$, in the same way as the proof in case 2, we can conclude that $\operatorname{deg} G \leq \rho(f)=\operatorname{deg} p$. We will now show that $\operatorname{deg} G=\rho(f)$. Suppose $\operatorname{deg} G<\rho(f)$ and let $D(z)=s e^{G}$, then $T(r, D)=S(r, f)$. Therefore 2.35 becomes

$$
\begin{equation*}
f^{n}+\eta f^{n-1} f^{\prime}+D f_{c}^{(k)}=h e^{p} . \tag{2.42}
\end{equation*}
$$

On differentiating 2.42 and eliminating e^{p}, we get

$$
\begin{equation*}
f^{n-2}\left(A f^{2}+(\eta A-n) f f^{\prime}-\eta(n-1)\left(f^{\prime}\right)^{2}-\eta f f^{\prime \prime}\right)=\Psi(f), \tag{2.43}
\end{equation*}
$$

where $\Psi(f)=D f_{c}^{(k+1)}+D^{\prime} f_{c}^{(k)}-A D f_{c}^{(k)}$ is a differential-difference polynomial in f, where the coefficients are small functions of f and degree at most 1 . We will examine whether Ψ equivalent to zero or not. If $\Psi \equiv 0$, then we have

$$
\begin{equation*}
\frac{f_{c}^{(k+1)}}{f_{c}^{(k)}}=\frac{h^{\prime}}{h}+p^{\prime}-\frac{s^{\prime}}{s}-G^{\prime} \tag{2.44}
\end{equation*}
$$

which implies

$$
\begin{equation*}
s e^{G} f_{c}^{(k)}=C_{2} h e^{p} \tag{2.45}
\end{equation*}
$$

where $C_{2}(\neq 0)$ constant. Substituting 2.45 in 2.42, we get $f^{n-1}\left(f+\eta f^{\prime}\right)=\left(\frac{1}{C_{3}}-1\right) D f_{c}^{(k)}$, whether or not $C_{3}=1$, we get $f+\eta f^{\prime}=0$, which impish $f=C e^{-\frac{z}{\eta}}$, here $\rho(f)=1$. Since deg $G<\rho(f)=1$, thus G is constant, which is contradiction.

If $\Psi \not \equiv 0$, preceding similar to the case 3 of Theorem 1.4 [3], we can obtain a contradiction, the proof is skipped in this case.

If $\eta=0$, we can obtain the conclusion of Theorem 4 by having a similar conversation as above, we skip the proof here.

References

[1] F. Behboudi, A. Razani and M. Oveisiha, Existence of a mountain pass solution for a nonlocal fractional (p; q)-Laplacian problem, Boundary Value Prob. 2020 (2020), 14 pages.
[2] M.F. Chen and Z.S. Gao and J.L. Zhang, Entire solutions of certain type of non-linear difference equations, Comput. Meth. Funct. Theory 19 (2019), no. 1, 17-36.
[3] W. Chen, P. Hu and Q. Wang, Entire solutions of two certain types of non-linear differential-difference equations, Comput. Methods Funct. Theory. 21 (2021), 199-218.
[4] Y.M. Chiangand and S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), 105-129.
[5] J. Clunie, On integral and meromorphic functions, J. Lond. Math. Soc. 37 (1962), 17-27.
[6] R.G. Halburd and R.J. Korhonen, Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477-4877.
[7] S. Heidari and A. Razani, Infinitely many solutions for $(p(x), q(x))$-Laplacian-like systems, Commun. Korean Math. Soc. 36 (2021), no. 1, 51-62.
[8] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[9] B.Q. Li, On certain non-linear differential equations in complex domains, Arch. Math. 91 (2008), 344-353.
[10] P. Li, Entire solutions of certain type of differential equations II, J. Math. Anal. Appl. 375 (2011), 310-319.
[11] N. Li, J. Geng and L. Yang, Some results on transcendental entire solutions to certain nonlinear differentialdifference equations, AIMS Math. 6 (2021), no. 8, 8107-8126.
[12] L. Liao, Non-linear differential equations and Hayman's theorem on differential polynomials, Complex Var. Elliptic Equ. 60(2015), no. 6, 748-756.
[13] L.W. Liao, C.C. Yang and J.J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Acad. Sci. Fenn. Math. 38 (2013), 581-593.
[14] K. Liu, Exponential polynomials as solutions of differential-difference equations of certain types, Mediterr. J. Math. 13 (2016), no. 5, 3015-3027.
[15] H. Liu and Z. Mao, On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations, Comput. Meth. Funct. Theory 19 (2019), 383-389.
[16] X.Q. Lu, L.W. Liao and J. Wang, On meromorphic solutions of a certain type of non-linear differential equations, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 12, 1597-1608.
[17] M.A. Ragusa and A. Razani and F. Safari, Existence of positive radial solutions for a problem involving weighted Heisenberg p (X)-Laplacian operator, AIMS Math. 8 (2022), no. 1, 404-422.
[18] Y. Tumura, On the extensions of Borel's theorem and Saxer-Csillag's theorem, Proc. Phys. Math. Soc. Jpn. 19 (1937), 29-35.
[19] Z.T. Wen, J. Heittokangas and I. Laine, Exponential polynomials as solutions of certain non-linear difference equations, Acta Math. Sci. Ser. 28 (2012), no. 7, 1295-1306.
[20] J. Xu and J. Rong, Exponential polynomials and nonlinear differential-difference equations, J. Funct. Spaces 2020 (2020).
[21] C.C. Yang, On the entire solutions of certain class of non-linear differential equations, J. Math. Anal. Appl. 33 (1971), 644-649.
[22] C.C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 2003.

[^0]: *Corresponding author
 Email addresses: narasimha.r@cmrit.ac.in (B. Narasimha Rao), shilpajaikumar@gmail.com (Shilpa N.), anargund1960@gmail.com (Achala L. Nargund)

