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Abstract

An interval set (or an interval-valued set), is a special set, which is an effective tool for illustrating and describing
obscure information systems and partially known problems. Recently, Kim et al.[5] defined the topological structure for
interval-value sets and studied many properties of them. In this work, we discuss some characteristics and relations
of continuity in interval-valued topological spaces with some necessary illustrative examples. Then we provide a
categorical framework for interval-valued topological spaces IV-T OP. Many functors and subcategories of IV-T OP
are defined and studied. Furthermore, the relationships between the IV-T OP and its subcategories are investigated.
We show that the category T OP is isomorphic to the category IV-T OP1. Moreover, we demonstrate that T OP and
IV-T OP1 are bireflective full subcategories of IV-T OP.
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1 Introduction

In 1993, Yao [12] defined and studied the concept of interval sets as a new kind of sets, represented by a pair of
sets namely, its lower and upper bounds. The interval-valued sets(briefly, IV S) attracts more authors and gradually
develops into a complete theory system and it has been applied to many real-life problems, such as decision making,
machine learning, and expert system as in ([10, 13, 14, 15, 18]).

In the past recent decades, authors have done more work on uncertain concepts at the same time, many methods
for get uncertain knowledge from uncertain information systems appeared. Zadeh introduced fuzzy set and interval-
valued fuzzy set theories as in ([16, 17]). Palwak [6] defined the concept of rough sets. Then intuitionistic (fuzzy)
sets were proposed by Coker and Atanassov as in ([1, 2]) respectively, also, Kandil et al. [3] defined and studied the
double (flou) sets. An IV S is not only considered the appropriate technique to describe the partially known notion,
but also can be used to investigate the approximation set of the uncertain problems. Therefore, the IV S is a more

∗Corresponding author
Email addresses: s_wosabi@yahoo.com (S. Saleh), jmufarij@ksu.edu.sa (Jawaher Al-Mufarrij), eng.abdullahnahi@gmail.com

(Abdullah A. Nahi Alrabeeah )

Received: November 2022 Accepted: January 2023

http://dx.doi.org/10.22075/ijnaa.2023.29326.4241


386 Saleh, Al-Mufarrij, Alrabeeah

general mathematical tool to deal with the uncertain information. Recently, Kim et al. [5] defined the notion of an
interval-valued topological spaces(briefly, IV TS) and studied many properties and concepts of IV Ss and topological
structures for them.

Category theory is a powerful tool for understanding and organizing mathematical concepts, and it has applications
in many areas of topology as in ([7, 8, 11]). This paper is concerned with the theoretical study to investigate some
properties of the continuity and categorical property of interval-valued topological spaces IV-T OP, we define many
functors, subcategories of IV-T OP and investigate some of their properties. The relationships between the category
IV-T OP and its subcategories are studied, We show that the categories T OP and IV-T OP1 are isomorphic. We
also, show that the category of topological spaces T OP and the category IV-T OP1 are bireflective full subcategories
of IV-T OP.

In the next, we give some results and definitions that may be used in the sequel. The notation IV refers to
interval-valued. For categorical terminologies used in section. 3, we refer to [9].

A category is an object ℑ = (ψ, hom, I, ◦) defined by the next conditions:
(1) A family ψ, whose elements are called ℑ-objects,
(2) For every pair (A,B) of ℑ-objects, a set hom(A,B), whose elements are called ℑ-morphisms from A to B,
(3) For every ℑ-object A, a morphism IA : A→ A, called the ℑ-identity on A,
(4) A composition law associating with every ℑ-morphism f : A → B and every ℑ-morphism g : B → C an ℑ-
morphism g ◦ f : A→ C, called the composite of f and g, subject to the next conditions:
(i) composition is associative,
(ii) ℑ-identities act as identities with respect to composition,
(iii) the sets hom(A,B) are pairwise disjoint.

Definition 1.1. [12] Let U be an universal set and 2U be its power set. An IV S is an object having the form
A = [A1, A2] = {A ∈ 2U : A1 ⊆ A ⊆ A2}, where it is assumed A1, A2 ∈ 2U and A1 ⊆ A2. The family of all IV S on

U is denoted by IV S(U). The IV S Ũ = (U,U) (resp. ∅̃ = [∅, ∅])is called the universal IV S (resp. the empty IV S

). Any A ∈ 2U is obviously an IV S in the form Ã = [A,A]. Thus an IV S may be considered as a generalization of
ordinary set.

Definition 1.2. [12] For two IV Ss A = [A1, A2] and B = [B1, B2] on U , we have:

(i) A ⊑ B if and only if A1 ⊆ B1 and A2 ⊆ B2.

(ii) A = B if and only if A ⊑ B and B ⊑ A, i.e. A = B ⇐⇒ A1 = B1 and A2 = B2,

(iii) A ⊔ B = [ A1 ∪B1, A2 ∪B2] ,

(iii) A ⊓ B = [ A1 ∩B1, A2 ∩B2] ,

(iv) Ac = [Ac
2, A

c
1] , where A

c
i = U −Ai, i = 1, 2

(v) A− B = [A1 −B2, A2 −B1].

Definition 1.3. [5] Let IV S (U) and IV S(V ) be two classes of IV Ss on U and V respectively. The map f :
IV S(U) −→ IV S(V ) is called an IV -map. If A ∈ IV S(U), then f (A) is an IV S in V , given by f (A) =
[f (A1) , f (A2)] .And if B ∈ IV S(V ), then the preimage f−1 (B) of B is an IV S in U , given by f−1 (B) =

[
f−1 (B1) , f

−1 (B2)
]
.

For more details about the properties of the IV -maps see [? ].

Definition 1.4. [5] The family η ⊂ IV S(U) is called an interval valued topology (briefly, IV T ) on U if it is satisfies
the next conditions:
(i) ϕ̃, Ũ ∈ η,
(ii) The union of any number of IV Ss in η is in η,
(iii) The intersection of any two IV Ss in η is in η.
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In this case (U, η) is called an interval valued topological space (briefly, IV TS). The class of all IV TSs on U , denoted
by IV TS(U). Any A ∈ η is called an IV -open set (briefly, IV OS) and the complement of A, denoted by Ac, is called
IV -closed set (briefly, IV CS). ηc refers to the set of all IV CSs.

Definition 1.5. (i) For an IV TS (U, η) and any A ∈ IV S(U). The IV -closure (resp. IV -interior) of A is denoted
by A (resp. A◦

) and defined by A = ⊓{B ∈ ηc:A ⊑ B} ( resp. A◦
= ⊔{B ∈ η : B ⊑ A}) [5].

(ii) Let η1, η2 ⊆ 2U . The IV -product of η1 and η1 is denoted by η1×̂η2 and defined by η1×̂η2 = {[A1, A2] ∈ η1 × η2 :
A1 ⊆ A2} [7].

Theorem 1.6. [3] For any IV TS (U , η). The next collections are topologies on U generated by η:

(1) τ1 = {A1 : A = [A1, A2] ∈ η},

(2) τ2 = {A2 : A = [A1, A2] ∈ η},

(3) τ3 = {A : Ã = [A,A] ∈ η}. Moreover, τ3 ⊆ τ1 ∩ τ2.

Definition 1.7. An IV TS (U, η) is called G-IV TS iff η = τ1×̂τ2 which is the greatest IV T constructed by IV -
product of τ1, τ2. Moreover in general η ⊆ τ1×̂τ2.

Theorem 1.8. [3] Let (U, τ) be a topological space. The next collections are G-IV TSs on U induced by τ :

(1) η1 = {A = [A1, A2] : A1 ∈ τ, A2 ∈ 2U},

(2) η2 = {A = [A1, A2] : A1 ∈ 2U , A2 ∈ τ},

(3) η3 = {A = [A,U ] : A ∈ τ} ∪ {∅̃},

(4) η4 = {A = [∅, A] : A ∈ τ} ∪ {Ũ},

(5) η̃ = {Ã = [A,A] : A ∈ τ}.

Remark 1.9. For ηi , i = 1, 2, 3, 4, we have η3 ⊆ η1, η4 ⊆ η2, and η̃ ⊆ η1 ∩ η2.

2 Some properties of continuity in IV TSs

Definition 2.1. [5] Let (U, η) and (V, δ) be two IV TSs. An IV -map f : (U, η) −→ (V, δ) is said to be:
(i) IV -continuous iff f−1 (B) ∈ η whenever B ∈ δ [or equivalently, f−1 (B) ∈ ηc for all IV CS B in V ],
(ii) IV -open(resp. IV -closed) iff f(A) ∈ δ whenever A ∈ η (resp. f (A) ∈ δc whenever A ∈ ηc),
(iii) IV -homeomorphism iff f is bijective, f and f−1 are IV -continuous.

Theorem 2.2. Let f : (U, η) −→ (V, δ) be an IV -map. The next statements are equivalent:
(1) f is an IV -continuous map.
(2) f−1 (B) ⊑ f−1(B) for any B in (V, δ),

(3) f−1(B◦
) ⊑ (f−1 (B))

◦

for any B in (V, δ),
(4) f

(
A
)
⊑f (A) for any A in (U, η).

Proof .The proofs for (1) ⇐⇒ (2) ⇐⇒ (3) are similar to that in an ordinary setting.
For the case (1) ⇐⇒ (4). Let f be an IV -continuous and A ∈ IV S(U). Since f

(
A
)
∈ δc and f−1(f (A)) ∈ ηc. Thus

A ⊑ (f
−1
f(A)) ⊑ (f

−1
f(A)))= f−1f(A)). Hence f

(
A
)
⊑ ff−1f (A) ⊑ f (A).

Conversely, Let B ∈ IV S(V ). From (2), we have f
(
f−1 (B)

)
⊑

(
ff−1 (B)

)
⊑ B. So that

(
f−1 (B)

)
⊑ f−1f(f−1 (B) ⊑

f−1(B), and the result follows from (3). □

Remark 2.3. The conditions in the above theorem are not equivalent to the condition (f (A))
◦ ⊑ f(A◦) for any A

in (U, η). This can be shown by the next example.
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Example 2.4. Let X = Y = {a, b, c}, η = {X̃, ϕ̃,A} and δ = {X̃, ϕ̃,B1,B2} where, A = [{a, c} , {a, c}], B1 =
[{a} , {a}], and B2 = [{a, b} , {a, b}]. Then η and δ are IV Ts onX. Now define f : (X, η) −→ (Y, δ) by f (a) = f (c) = a
and f (b) = b, then f−1 (B1) = A ∈ η, f−1 (B2) = X̃ ∈ η. Thus f is IV -continuous but not one-one. One the

other hand, if D = [{a, b} , {a, b}] is an IV S in (X, η), then f (D◦) = ∅̃ and (f (D))
◦
= B2. Since B2 ̸⊑ ∅̃, then

(f (A))
◦ ̸⊑ f (A◦) .

However, we obtain the following properties for a bijection map f .

Theorem 2.5. Let f : (U, η) −→ (V, δ) be bijection, then f is IV -continuous if and only if (f (A))
◦ ⊑ f (A◦) .

Proof . From Theorem (2.2), it suffices to prove that the condition (3) equivalent to the condition (f (A))
◦ ⊑

f (A◦) . Suppose A ∈ IV S(U), then f (A) ∈ IV S(V ). So f−1( f (A◦)) ⊑ (f−1f (A))
◦
. Since f is one-one, we

have f−1
(
(f (A))

◦) ⊑ (f−1f (A))
◦

= A◦. Hence ff−1((f (A))
◦
) ⊑ f (A◦). Also, f is onto, then (f (A))

◦
=

ff−1((f (A))
◦
) ⊑ f (A◦).

Conversely, Let B ∈ IV S(V ), then f−1 (B) ∈ IV S(U). Since f is onto, we have B◦ = (ff−1 (B))◦ ⊑ f
(
(f (B))◦

)
.

Again f is one-one, then f−1 (B◦) ⊑ f−1f(
(
f−1 (B)

)◦
) = f−1 (B))◦. □

Now from Theorem (2.2) and the above theorem we obtain the next corollary.

Corollary 2.6. Let f : (U, η) −→ (V, δ) be a bijection map. Then the conditions in Theorem (2.2) are equivalent to
the condition (f (A))

◦ ⊑ f (A◦).

Theorem 2.7. Let f : (U, η) −→ (V, δ) be an IV -map, then the next items are equivalent:
(1) f is an IV -open map,
(2) f (A◦) ⊑ (f(A))

◦
for all A ∈ IV S (U) ,

(3)
(
f−1 (B)

)◦ ⊑ f−1 (B◦) for all B ∈ IV S (V ) .

Proof . (1) =⇒ (2) Let A ∈ IV S(U), then A◦ ∈ η. Since f is an IV -open map, then f (A◦) ∈ δ. Therefore

f (A◦) = (f (A◦))
◦
⊑ (f (A))

◦
.

(2) =⇒ (3) Let B ∈ IV S(V ), then f−1 (B) ∈ IV S (X) . From (2), we have f((f−1(B))◦) ⊑ f−1f((f−1(B))◦)⊑ f−1(B◦).
(3) =⇒ (1) Let A ∈ η. Then A◦ = A and f (A) ∈ IV S(V ). From (3), we have A = A◦ ⊆

(
f−1f (A)

)◦ ⊑ f−1(f (A))
◦
.

Thus f (A) ⊆ ff−1((f (A))
◦
) ⊆ (f (A))

◦ ⊆ f (A) . Hence f (A) = (f (A))
◦
and so, f (A) ∈ δ. Therefore f is an

IV -open map. □

Theorem 2.8. Let f : (U, η) −→ (V, δ) be an IV -map, then f is IV -closed if and only if f(A) ⊑ f (A) for all
A ∈ IV S (U).

Proof . The proof is similar to that in the above theorem. □

Example 2.9. Let U = {a, b, c}. Consider the IV T η = {Ũ , ϕ̃,A1,A2} on U where, A1 = [{a} , {a}] ,A2 =
[{a, b} , {a, b}]. Define f : (U, η) −→ (U, η) by f (a) = f (b) = a, f (c) = b, then f(A1) = [{a} , {a}] = A1 ∈ η,

f (A2) = [{a} , {a}] = A1 ∈ η, f(Ũ) = [{a, b} , {a, b}] = A2 ∈ η, and f(ϕ̃) = ϕ̃. Thus f is an IV -open map. But
f (Ac

2) = [{b} , {b}] /∈ ηc. Here f is not an IV -closed map. On the other hand, let us define h : (U, η) −→ (U, η) by
h (a) = h (b) = b, h (c) = c, then we have,h (Ac

1) = [{b, c} , {b, c}] = Ac
1∈ ηc, h (Ac

2) = [{c} , {c}] = Ac
2∈ ηc , h(Ũ) =

[{b, c} , {b, c}] = Ac
1∈ ηc, and h(ϕ̃) = ϕ̃. Thus h is IV -closed. However, h (A1) = [{b} , {b}] /∈ η. Hence h is not an

IV -open map.

However, we obtain the next theorem for a bijection map f .

Theorem 2.10. Let f : (U, η) −→ (V, δ) be a bijection map, then f is IV -open if and only if f is IV -closed.

Proof . Let f(F)∈ ηc , then F = Dc for some IV -open set D = [D1, D2] in U . Since f is onto, we have f (F) =
f (Dc) = f([Dc

2, D
c
1]) = [f (Dc

2) , f (D
c
1)] = [(f (D2))

c
, (f (D1))

c
]. Also, f is IV -open, then f (F) = [f (D1) , f (D2)]

c

which is IV -closed in V . Therefore f is an IV -closed map.
The proof of the converse can be done in a similar way. □
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Theorem 2.11. Let (U, η) and (V, δ) be any two IV TSs. If the map f : (U, η) −→ (V, δ) is an IV -continuous map,
then the IV -maps f : (U, τi) −→ (V, τ∗i ) , i = 1, 2 are continuous, where (τi, τ

∗
i , i = 1, 2) are defined as in Theorem

(1.6).

Proof . Let f : (U, η) −→ (V, δ) be an IV -continuous map and let B1 ∈ τ∗1 , then there is B2 ∈ τ∗2 such that
B = [B1, B2] ∈ δ and so, f−1 (B) = [f−1 (B1) , f

−1 (B2)] ∈ η, consequently f−1 (B1) ∈ τ1. This means that f :
(U, τ1) −→ (V, τ∗1 ) is continuous. The proof of the case i = 2 is similar. □

The next example shows that the converse of the above theorem may not be true in general.

Example 2.12. Let (U, τ) be any topological space, then the identity map IU : (U, τ) −→ (U, τ) is continuous, but

clearly, IU : (U, η̃) −→ (U, τ×̂τ) is not IV -continuous, where η̃ = {Ã = [A,A] : A ∈ τ}.

Theorem 2.13. Let (U, η) be an G-IV TS and (V, δ) be any IV TS, then f : (U, η) −→ (V, δ) is an IV -continuous
map if and only if f : (U, τi) −→ (V, τ∗i ) , i = 1, 2 are continuous,

Proof . ”⇒” It follows from that of theorem (2.11).
Conversely, let f : (U, τi) −→ (V, τ∗i ) , i = 1, 2 be continuous maps and A = [A1, A2] ∈ δ, then A1 ∈ τ∗1 and
A2 ∈ τ∗2 this implies f−1 (A1) ∈ τ1and f−1 (A2) ∈ τ2 and so, f−1 (A) = [f−1 (A1) , f

−1 (A2)] ∈ η. Consequently,
f : (U, η) −→ (V, δ) is an IV -continuous map. □

Theorem 2.14. Let f : (U, η) −→ (V, δ) be an IV -open (resp. IV -closed) map, then the maps f : (U, τi) −→
(V, τ∗i ) , i = 1, 2 are open (resp. closed) maps.

Proof . Let f : (U, η) −→ (V, δ) be an IV -open map and A1 ∈ τ1, then there is A2 ∈ τ2 such that, A = [A1, A] ∈ η
and so, f (A) = [f (A1) , f (A2)] ∈ δ, consequently f (A1) ∈ τ∗1 and f (A2) ∈ τ∗2 this means that f : (U, τ1) −→ (V, τ∗1 )
is open map. The proof of the other cases is similar. □

The following example shows that the converse of the above theorem may be not true in general.

Example 2.15. Let X = {a, b, c} and Y = {x, y, z}. Consider the IV T η = {X̃, ϕ̃,A1,A2,A3,A4,A5,A6} on
X, where A1 = [∅, X] ,A2 = [∅, {b}], A3 = [∅, {a, c}], A4 = [{a}, {a, c}], A5 = [{b, c} , X], and A6 = [{a} , X]

and the IV T δ = {Ỹ , ϕ̃,B1,B2,B3,B4,B5} on Y , where B1 = [∅, Y ] ,B2 = [{x} , Y ] ,B3 = [{y, z} , Y ] ,B4 = [∅, Y ],
and B5 = [∅, {x, z}]. Define the map f : X −→ Y by f (a) = x, f (b) = y , and f (c) = z. One can check
that f : (X, τi) −→ (Y, τ∗i ) , i = 1, 2 are open maps. But f : (X, η) −→ (Y, δ) in not IV -open, because f(A4) =
[f({a}), f({a, c})] = [{x} , {x, z}] /∈ δ.

Theorem 2.16. Let (V, δ) be an G-IV TS and (U, η) be any IV TS, then f : (U, η) −→ (V, δ) is an IV -open (resp.
IV -closed) map if and only if f : (U, τi) −→ (V, τ∗i ) , i = 1, 2, are open ( resp. closed) maps, where (τi, τ

∗
i , i = 1, 2) are

defined as in Theorem (1.6).

Proof . ”⇒” It follows from that of Theorem (2.14).
Conversely, let f : (U, τi) −→ (V, τ∗i ) , i = 1, 2 be open (closed) maps, and let A = [A1, A2] ∈ η. Then A1 ∈ τ1and
A2 ∈ τ2. Thus f(A1) ∈ τ∗1 and f(A2) ∈ τ∗2 this implies f(A) = [f(A1), f(A2)] ∈ δ. Consequently, f is an IV -open
map. □

Theorem 2.17. For two G-IV TSs (U, η) and (V, δ), we have f : (U, η) −→ (V, δ) is an IV -homeomorphism if and
only if f : (U, τi) −→ (V, τ∗i ) , i = 1, 2 are homeomorphism.

Proof . It follows of that in Theorem (2.11) and the above theorem. □

3 On Categorical property of IV TSs

In this section, we study the relationship between the category of Interval-valued topological spaces and that of
crisp topological spaces. Let IV-T OP be the category of IV TSs with IV -continuous maps and T OP be the category
of topological spaces (TSs) with continuous maps.

First, let us define some functors between IV-T OP and T OP.
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Theorem 3.1. For the categories IV-T OP and T OP, we define:
(i) G1 : IV-T OP −→ T OP by G1 (U, η) = (U,G1 (η)) , G1 (f) = f where,

G1 (η) = {A1 : A = [A1, A2] ∈ η}.

(ii) G2 : IV-T OP −→ T OP by G2 (U, η) = (U,G2 (η)) , G2 (f) = f where,

G2 (η) = {A2 : A = [A1, A2] ∈ η}.

Then G1 and G2 are functors.

Proof . By Theorem (1.6), we have Gi (η) , i = 1, 2 are IV TSs on U . Furthermore, it follows from Theorem (2.11), if
the map f : (U, η) −→ (V, δ) is IV -continuous, then the map f : (U,Gi (η)) −→ (V, Gi (η

∗)) , i = 1, 2 are continuous.
Therefore G1, G2 are functors. □

Theorem 3.2. For the categories IV-T OP and T OP, we define:
(i) F1 : T OP −→ IV-T OP by F1 (U, τ) = (U,F1 (τ)) ,F1 (f) = f where,

F1 (τ) = {A = [A1, A2] : A1 ∈ τ,A1 ⊆ A2}.

(ii) F2 : T OP −→ IV-T OP by F2 (U, τ) = (U,F2 (τ)) ,F2 (f) = f where,

F2 (τ) = {A = [A1, A2] : A2 ∈ τ, A1 ⊆ A2}.

Then F1 and F2 are functors.

Proof . (i) Clearly, F1(τ) is an IV TS on U this follows directly from Theorem (1.7). It remains to prove that if
f : (U, τ) −→ (V, τ∗) is continuous, then f : (U,F1(τ)) −→ (V,F1(τ

∗)) is IV -continuous. Assume B = [B1, B2] ∈
F1(τ

∗), we have B1 ∈ τ∗ and so, f−1 (B1) ∈ τ. Since B1 ⊆ B2, we get f−1 (B1) ⊆ f−1 (B2), so that f−1 (B) =
[f−1 (B1) , f

−1 (B2)] ∈ F1 (τ) . Therefore f : (U,F1(τ)) −→ (V,F1(τ
∗)) is IV -continuous. Hence F1 is a functor. The

proof for the case (ii) can be proved in a similar way. □

Theorem 3.3. The functor F1 : T OP −→ IV-T OP is a left adjoint of the functor G1 : IV-T OP −→ T OP.

Proof . Let (U, τ) ∈ T OP and IU : (U, τ) −→ G1 (F1 (U, τ)) = (U, τ) be a continuous map. To prove that IU is
an universal map. Let (V, θ) ∈ IV-T OP with a continuous map f : (U, τ) −→ G1(V, θ). We only need to prove
that the map f∗ : F1 (U, τ) = (U,F1 (τ) ) −→ (V, θ) is IV -continuous. Let B = [B1, B2] ∈ θ, then B1 ∈ G1(θ). Since
f : (U, τ) −→ G1(V, θ) is continuous, we have f−1(B1) ∈ τ and so, f−1 (B) = [f−1 (B1) , f

−1 (B2)] ∈ F1 (τ). Hence
f∗ : F1 (U, τ) −→ (V, θ) is an IV -continuous map. Therefore IU is a G1-universal map for (U, τ) in T OP. The result
holds. □

Theorem 3.4. The functor F2 : T OP −→ IV-T OP is a left adjoint of the functor G2 : IV-T OP −→ T OP.

Proof . The proof is analogous of that in the above theorem. □

Theorem 3.5. For the categories IV-T OP and T OP, we define:
F0 : T OP −→ IV-T OP by F0 (U, τ) = (U,F0 (τ)) and F0 (f) = f where,

F0 (τ) = {Ã = [A,A] : A ∈ τ}.

Then F0 is a functor.

Proof . From Theorem (1.7), we get F0 (τ) is an IV T on U . It remains to prove that f : (U,F0(τ)) −→ (V, F0(τ
∗)) is

an IV -continuous map. Let B̃ = [B,B] ∈ F0(τ
∗), then B ∈ τ∗. Since the map f : (U, τ) −→ (V, τ∗) is continuous, then

f−1 (B) ∈ τ and so, f−1(B̃) = [f−1 (B) , f−1 (B)] ∈ F0 (τ) . Hence f : (U,F0(τ)) −→ (V, F0(τ
∗)) is an IV -continuous

map. Therefore F0 is a functor. □
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Theorem 3.6. For the categories IV-T OP and T OP, we define:
(1) P1 : T OP −→ IV-T OP by P1 (U, τ) = (U,G1(τ)),P1 (f) = f where,

P1(τ) = {[A,U ] : A ∈ τ} ∪ {∅̃}.

(2) P2 : T OP −→ IV-T OP by P2 (U, τ) = (U,P2 (τ)) ,P2 (f) = f where,

P2 (τ) = {[∅, A] : A ∈ τ} ∪ {Ũ}.

Then P1 and P2 are functors.

Proof . (1) Clearly, P1 (τ) is IV T on U this follows from Theorem (1.7). It remains to prove that if f : (U, τ) −→
(V, τ∗) is a continuous map, then f : (U, P1(τ)) −→ (V, P1(τ

∗)) is an IV -continuous map. Let B = [B, Y ] ∈ P1(τ
∗),

then B ∈ τ∗ and so, f−1 (B) ∈ τ. Thus f−1 (B) =
[
f−1 (B) , U

]
∈ P1 (τ) and so, f : (U, P1(τ)) −→ (V, P1(τ

∗)) is
IV -continuous. Hence P1 is a functor. The proof of (2) can be done by a similar way. □

In the next, we define a subcategory of the category IV-T OP as follows.

Definition 3.7. The class of all IV TSs whose members are of the form [A,U ] ∪ ϕ̃ with IV -continuous maps forms
a full subcategory of the category IV-T OP and is denoted as IV-T OP1.

Theorem 3.8. The category T OP is isomorphic to the category IV-T OP1.

Proof . Let P1 : T OP −→ IV-T OP1 be the functor defined in Theorem (3.6). Consider the restriction G0 :
IV-T OP1 −→ T OP of the functor G1 defined in Theorem (3.1). Then G0 is a functor. Clearly, G0P1((U, τ) =
G0 (U,P1 (τ)) = (U,G0(P1 (τ) )) = (U, τ) ∀ (U, τ) ∈ T OP. Similarly, we have P1G0((U, η) = (U, η) for all (U, η) ∈ IV-
T OP1. Hence the result holds. □

Theorem 3.9. The category IV-T OP1 is a bireflective full subcategory of the category IV-T OP.

Proof . By Definition (3.7), the category IV-T OP1 is a full subcategory of IV-T OP. Now let (U, η) ∈ IV-
T OP and η∗ = {A ∈ η : A = [A,U ]} ∪ {∅̃}, then (U, η∗) ∈ IV-T OP1 and IU : (U, η) −→ (U, η∗) be an IV -
continuous map. Consider the IV TS (Y, θ) ∈ IV-T OP1 with an IV -continuous map f : (X, η) −→ (Y, θ). We
need only to prove that f : (U, η∗) −→ (V, θ)) is IV -continuous. Indeed, let B ∈ θ. Since (V, θ) ∈ IV-T OP1, then
B = [B, V ] and f : (U, η) −→ (V, θ) is IV -continuous, so that f−1(B) ∈ η and f−1 (B) = [f−1 (B) , U ] ∈ η∗. Therefore
f : (U, η∗) −→ (V, θ) is IV -continuous. The result follows. □

Corollary 3.10. The category T OP is a bireflective full subcategory of the category IV-T OP.

Proof . It follows from that of the above theorem and Theorem (3.8). □

4 Conclusion

This paper focuses on the theoretical study of investigation some characterizations of continuous, open and closed
maps in topological structure based on IV Ss and for study the category of interval-valued topological spaces IV-T OP,
we defined many functors, subcategories of IV-T OP and investigated some of their properties. The relations between
the category IV-T OP and its subcategories are studied, we prove that the category T OP of topological spaces is
a bireflective full subcategory of the category IV-T OP. In the future work, we will study a new set of separation
properties in IV TSs with some applications.
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