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Abstract

The approximate equation for the forced fractional oscillator is obtained by approximation of the Riemann- Liouville
fractional derivatives. And the approximate symmetries and conservation laws of the forced fractional oscillator are
derived when the system is in resonance.
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1 Introduction

A wide class of fractional-order control systems can be described by ordinary fractional differential equations
e.g., [1, 17]. Also fractional calculus is widely used in formulation of constitutive relations for viscoelastic materials
e.g., [7, 13, 18]. Such constitutive relations have many advantages over classical ones. Problems of vibrations of
the continuous structures (like beams, bars etc.), when one use fractional constitutive relations, leads to fractional
differential equations similar to the equation of forced, harmonic, damped oscillator e.g., [8, 9, 14]. We will call such
models: forced fractional oscillators. We consider here, Scott-Blair model which is the simplest model of this kind
e.g., [3, 16]. Scott-Blair model is a generalization of Hook’s law for perfectly elastic material and Newton law (stress
proportional to the rate of strain) for perfectly viscous material; forα = 0 one get Hook’s law, while for α = 1 Newton’s
law.

In this paper we approximate the fractional Scott-Blair oscillator by an perturbed integer order differential equation
and then in resonance case, we get approximate symmetries and approximate conservation laws of the system.

2 Approximation of Fractional-Order Operator

Riemann-Liouville and Caputo fractional derivatives of α−th order (0 < α < 1) of function x(t), denoted respec-
tively by Dα

RLx(t) and D
α
Cx(t), are defined below:

Dα
RLx(t) =

1

Γ(1− α)

d

dt
(

∫ t

0

(t− τ)−αx(τ)dτ) (2.1)
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Dα
Cx(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α dx(τ)

dτ
dτ

where Γ denote gamma function. These definitions are not equivalent. Condition under which Riemann-Liouville and
Caputo fractional derivatives give the same result for a given function x(t) is: x(0)=0. We will consider only functions
x(t) which fulfill this requirement e.g.,[10], so we will denote fractional derivative omitting index RL or C and write
simply Dαx(t).

Assuming that the order of fractional differentiation α in (2.1) close to integer number n, we can write α = n± ϵ
where ϵ > 0 is a small parameter (i.e. ϵ << 1). We will have e.g.,[2] the following first order approximation in ϵ for
the left-sided Riemann-Liouville fractional derivative:

0D
n±ϵ
t x ≈ x(n)(t)± ϵ{[ψ(n+ 1)− ln t]x(n)(t)−

∞∑
k=0,k ̸=n

(−1)k−nn!

(k − n)k!
tk−nx(k)(t)} (2.2)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. A similar approximation can be derived for the right-sided
Riemann-Liouville fractional derivative.

The approximation (2.2) makes possible to approximate a FDE by an integer-order differential equation with a
small parameter. For example, an approximate equation for the FDE

F (t, x(t), ẋ(t), ..., x(k)(t), Dαx(t)) = 0

has the form
F(0)(t, x, ẋ, ..., x

(l)) + ϵF(1)(t, x, ẋ, ẍ, ...) ≈ 0 (2.3)

where l = max{k, n}. Note that (2.3) can be considered as a specific perturbation of the integer-order differential
equation F(0)(z) = 0, where z = (t, x, ẋ, ..., x(l)), in which the function F(1) depends on all integer-order derivatives of
function x(t).

3 Approximate Fractional Forced Oscillator

Application of the Scott-Blair model of viscoelastic material to the vibration problems of the continuous structures
like bars, beams etc., after using Rayleigh-Ritz method, leads to the following equation of motion e.g.,[8, 9, 14] for
selected mode of free vibrations of given structure:

ẍ(t) + ν(α)Dαx(t) = f(t) (3.1)

We will call model represented by the equation (3.1) the Scott-Blair oscillator. Zero initial conditions are assumed
for oscillator: x(0) = 0, ẋ(0) = 0, which means that continuous structure is initially at rest. Unknown function
x(t) plays role of the free vibration displacement for the considered continuous structure and f(t) being oscillating
excitation (external loading) is a given known function:

f(t) = A0 sin(Ω0t)

where A0 and Ω0 are respectively amplitude and frequency of external loading. We impose the following conditions
on function ν(α):

ν(0) = ω2
0 , ν(1) = 2ω0

where ω0 is undamped angular frequency. For Scott-Blair oscillator, for α = 0 we get classical undamped forced
harmonic oscillator:

ẍ(t) + ω2
0x(t) = f(t)

and for α = 1 we get equation of motion for a mass connected to the damper and loaded by a given external force:

ẍ(t) + 2ω0ẋ(t) = f(t).

If α is close to 0 then we get α = ϵ and (2.2) takes the form

Dϵx ≈ x+ ϵ{[ψ(1)− ln t]x−
∞∑
k=1

(−1)k

k!k
tkx(k)}.
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In this case from ϵẍ ≈ ϵ(−νx+ f(t)) ≈ ϵ(−ω2
0x+ f(t)) we will have

ẍ(t) + νx(t)− f(t) + ϵν{[ψ(1)− ln t− p(t)]x(t)− q(t)ẋ(t)− r(t)} = 0 (3.2)

such that

p(t) =

∫
cos(ω0t)

t
dt− ln t+

ω2
0

4
t2 − c

q(t) =
−1

ω0

∫
sin(ω0t)

t
dt+ t− c′

r(t) =
A0

ω2
0

∞∑
k=1

{cos(Ω0t)(
Ω0

ω0
)2k−1[

∫
sin(ω0t)

t
dt+

k∑
n=1

(−1)n
(ω0t)

2n−1

(2n− 1)!(2n− 1)
]

− sin(Ω0t)(
Ω0

ω0
)2k−2[

∫
cos(ω0t)

t
dt− ln(ω0t)−

k−1∑
n=1

(−1)n
(ω0t)

2n

(2n)!(2n)
]}

and c, c′ are arbitrary constants. If α is close to 1 then α = 1− ϵ and in view of (2.2), we have

D1−ϵx ≈ ẋ− ϵ{[ψ(2)− ln t]ẋ− x

t
−

∞∑
k=2

(−1)k−1

k!(k − 1)
tk−1x(k)}.

It is follows from(3.1) that ϵẍ ≈ ϵ(−νẋ + f(t)) ≈ ϵ(−2ω0ẋ + f(t)). Thus, we get, the approximate differential
equation for (3.1) as

ẍ(t) + νẋ(t)− f(t)− ϵν{[ψ(2)− ln t− g(t)]ẋ(t)− 1

t
x(t)− h(t)} = 0 (3.3)

such that for arbitrary constant c′′

g(t) =
1

2ω0

∫
e2ω0t

t2
dt+

1

2ω0t
− ln t− ω0t− c′′

h(t) =
A0

2ω0

∞∑
k=0

(−1)k(
Ω0

2ω0
)2k{cos(Ω0t)(

Ω0

2ω0
)[

∫
e2ω0t

2ω0t2
dt− ln t−

2k+3∑
n=0,n̸=1

(2ω0t)
n−1

n!(n− 1)
]

− sin(Ω0t)[

∫
e2ω0t

2ω0t2
dt− ln t−

2k+2∑
n=0,n̸=1

(2ω0t)
n−1

n!(n− 1)
]}.

3.1 Approximate Symmetries

Let t = (t1, ..., tn) is a vector of independent variables and x = (x1, ..., xm) is a vector of dependent variables. A
set of approximate point transformations

t̄i ≈ f i(0)(t, x, a) + f i(1)(t, x, a) i = 1, .., n

x̄j ≈ gj(0)(t, x, a) + gj(1)(t, x, a) j = 1, ..,m
(3.4)

satisfying the conditions
t̄i|a=0 ≈ ti x̄j |a=0 ≈ xj

are called a one-parameter approximate transformation group if the group property is satisfied with the accuracy o(ϵ).
The generator of an approximate transformation group (3.4) has the form

V ≈ V(0) + ϵV(1) ≡ (ζi(0)(t, x) + ϵζi(1)(t, x))
∂

∂ti
+ (θj(0)(t, x) + ϵθj(1)(t, x))

∂

∂xj
(3.5)

where

ζi(0)(t, x) =
∂f i(0)(t, x, a)

∂a
|a=0 ζi(1)(t, x) =

∂f i(1)(t, x, a)

∂a
|a=0

θj(0)(t, x) =
∂gj(0)(t, x, a)

∂a
|a=0 θj(1)(t, x) =

∂gj(1)(t, x, a)

∂a
|a=0
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An approximate equation

F (t, x, x(1), ..., x(l), ϵ) = F(0)(t, x, x(1), ..., x(l)) + ϵF(1)(t, x, x(1), ..., x(l), D
l+1
t1 , Dl+2

t1 , · · · ) ≈ 0 (3.6)

(such that x(k) = { ∂kxj

∂ti1 ...∂tik
}) is said to be approximately invariant with respect to approximate transformation group

(3.4) if and only if e.g.,[6]
V (k)F |F≈0 = o(ϵ)

or
[V

(k)
(0) F(0) + ϵ(V

(k)
(1) F(0) + V

(k)
(0) F(1))] = o(ϵ). (3.7)

In which k is order of equation and V (k) is k-th order prolongation of V . The operator(3.5) satisfying equation
(3.7) is called an infinitesimal approximate symmetry of Eq.(3.6). If (3.6) admits an approximate transformation
group with the generator (3.5), where V(0) ̸= 0 , then the operator V(0) is an exact symmetry of the unperturbed
equation and it is called a stable symmetry of this equation.

Suppose that the system is on resonance, that is, the angular frequency and the loading frequency are equal. In
other words, Ω0 is resonant frequency i.e in equations(3.2),(3.3) Ω0 = ω0 e.g.,[11] and the amplitude of the oscillator
increases. Then we get the approximate symmetries of the Eq.(3.1) in both cases when α is close to 0 and α is close
to 1.

Case1: The exact symmetries of unperturbed equation corresponding to Eq.(3.2) are

v1
(0) =

∂

∂t
+
A0

2
t sin(ω0t)

∂

∂x
, v2

(0) = cos(ω0t)
∂

∂x
, v3

(0) = sin(ω0t)
∂

∂x

So the approximate symmetries are

v1 =sin(ω0t)
∂

∂x
+ ϵ[((

ψ(1)

2
+
c

2
+

5

16
)ω0t−

1

24
ω3
0t

3) cos(ω0t) + (−c
′

2
t+

5

16
t2)ω2

0 sin(ω0t)

− 1

2
ω0t cos(ω0t)Ci(ω0t)−

1

2
ω0t sin(ω0t)Si(ω0t) +

1

2
sin(ω0t)Ci(ω0t)−

1

2
cos(ω0t)Si(ω0t)]

∂

∂x
,

v2 =cos(ω0t)
∂

∂x
+ ϵ[(−c

′

2
t+

5

16
t2)ω2

0 cos(ω0t)− ((
ψ(1)

2
+
c

2
+

5

16
)ω0t−

1

24
ω3
0t

3) sin(ω0t)

+
1

2
ω0t sin(ω0t)Ci(ω0t)−

1

2
ω0t cos(ω0t)Si(ω0t)−

1

2
]
∂

∂x
,

v3 =ϵ(
∂

∂t
+
A0

2
t sin(ω0t)

∂

∂x
),

v4 =ϵ cos(ω0t)
∂

∂x
,

v5 =ϵ sin(ω0t)
∂

∂x
,

where Ci(t) = γ + ln t−
∫ t

0
1−cos x

x dx and Si(t) =
∫ t

0
sin x
x dx. An optimal system of one dimensional approximate Lie

algebras of the equation is provided by

v1 + αv5 v2 + αv1 + βv4

v3 + αv2 + βv1 v4 + αv5 v5

Case2: The exact symmetries of unperturbed equation corresponding to Eq.(3.3) are

v1
(0) =

∂

∂x
v2
(0) = e−2ωt ∂

∂x

v3
(0) = eω0t

∂

∂t
+

A0

10ω0
eω0t(cos(ω0t) + 2 sin(ω0t))

∂

∂x

v4
(0) =

∂

∂t
+

A0

5ω0
(− cos(ω0t) + 2 sin(ω0t))

∂

∂x
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So the approximate symmetries are

v1 = ϵ
∂

∂x
v2 = ϵe−2ω0t

∂

∂x

v3 = ϵe2ω0t(
1

ω0

∂

∂t
+
A0

ω2
0

(
2

5
sin(ω0t)−

1

5
cos(ω0t))

∂

∂x
)

v4 = ϵ(
∂

∂t
+
A0

ω0
(
2

5
sin(ω0t)−

1

5
cos(ω0t))

∂

∂x
)

v5 = (1 + e−2ω0t)
∂

∂x
+ ϵ[((2ψ(2) + 2c′′ + 1)ω0t+ ω2

0t
2)e−2ω0t − e−2ω0t(2ω0tEi(2ω0t)− Ei(2ω0t))− ln t+ 1]

∂

∂x

where Ei(t) is the exponential integral function. An optimal system of one dimensional approximate Lie algebras of
the equation is provided by

v1 v2 + αv1 v3 + αv2

v4 + αv3 + βv1 v5 + αv4 + βv3

3.2 Approximate conservation laws

If approximate symmetries of Eq.(3.6) are known, then corresponding approximate conservation laws can be con-
structed using the concept of nonlinear self-adjointness e.g.,[5, 12]. This concept is applicable for integer-order differ-
ential equations with a small parameter e.g.,[6]. Let L be the formal Lagrange of equation(3.6):

L ≈ L(0) + ϵL(1) ≡ yF(0) + ϵyF(1)

hence, the adjoint equations of Eq.(3.6) are defined as

δL
δx ≈ F ∗

(0)(t, x, y, ẋ, ẏ, · · · , x
(l), y(l)) + ϵF ∗

(1)(t, x, y, ẋ, ẏ, · · · , x
(l), y(l), Dl+1

t1 x,Dl+1
t1 y,Dl+2

t1 x,Dl+2
t1 y, ...) ≈ 0 (3.8)

where δL
δx is the variational derivative written in terms of the total derivative operator Di:

δL
δx

=
∂

∂x
+

∞∑
k=1

(−1)kDi1 ...Dik
∂k

∂xi1...ik
.

If we consider y ≈ ϕ(0)(t, x) + ϵϕ(1)(t, x) ̸= 0, we have

L ≈ ϕ(0)F(0) + ϵ(ϕ(0)F(1) + ϕ(1)F(0))

and if it satisfies the nonlinear self adjoint condition:

F ∗
(0)|y≈ϕ(0)+ϵϕ(1)

+ ϵF ∗
(1)|y≈ϕ(0)

≈ λ(0)F(0) + ϵ(λ(0)F(1) + λ(1)F(0)). (3.9)

In which λ(0) and λ(1) are to be determined coefficients. Any approximate symmetry equation (3.5) of Eq.(3.6)
leads to a conservation law

Di(C
i) ≈ 0, Ci ≈ Ci

(0) + ϵCi
(1)

where the components Ci are obtained by

Ci
(0) =W(0)(

∂L(0)

∂xi
+
∑l−1

k=1(−1)kDi1 ...Dik
∂kL(0)

∂xii1...ik
)

+
∑l−1

s=1Dj1 ...Djs(W(0))(
∂L(0)

∂xij1...js
+

∑l−s−1
k=1 (−1)kDi1 ...Dik

∂kL(0)

∂xii1...ikj1...js
)

(3.10)

Ci
(1) =W(1)(

∂L(0)

∂xi
+

l−1∑
k=1

(−1)kDi1 ...Dik
∂kL(0)

∂xii1...ik
) +

l−1∑
s=1

Dj1 ...Djs(W(1))(
∂L(0)

∂xij1...js
+

l−s−1∑
k=1

(−1)kDi1 ...Dik
∂kL(0)

∂xii1...ikj1...js
)

+W(0)(
∂L(1)

∂xi
+

l−1∑
k=1

(−1)kDi1 ...Dik
∂kL(0)

∂xii1...ik
)

+

l−1∑
s=1

Dj1 ...Djs(W(0))(
∂L(1)

∂xij1...js
+

l−s−1∑
k=1

(−1)kDi1 ...Dik
∂kL(0)

∂xii1...ikj1...js
) (3.11)
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in which W(0) = θ(0) + ϵζi(0)xi, W(1) = θ(1) + ϵζi(1)xi. An approximate conservation law is called a trivial approximate
conservation law if

Di(C
i
(0)) ≡ 0, Di(C

i
(1)) ≡ 0.

Case1: By choosing approximate formal Lagrange

L ≈ (ϕ(0) + ϵϕ(1))[ẍ+ νx− f(t) + ϵν{(ψ(1)− ln t− p(t))x− q(t)ẋ− r(t)}]

we obtain adjoint equation using Eq.(3.8) as:

F ∗ ≈ ÿ + ω2
0y + ϵω2

0 [q(t)ẏ + (ψ(1)− ln t− p(t) + q′(t))y].

It is easy to achieve an approximate formal Lagrange by solving characteristic equation of the Eq.(3.9):

y =c0 cos(ω0t) + ϵ[(
−3

16
ω2
0c0t

2 +
1

2
ω2
0c

′c0t+ l1) cos(ω0t)

+ { 1

24
ω3
0c0t

3 − 1

2
ω0c0(ψ(1) +

5

8
+ c)t+ l2} sin(ω0t) +

1

2
c0 cos(2ω0t)

+
1

2
ω0c0t sin(ω0t)Ci(ω0t) +

1

2
ω0c0t cos(ω0t)Si(ω0t)]

and L ≈ L(0) + ϵL(1) where

L(0) = c0 cos(ω0t)(ẍ+ ω2
0x−A0 sin(ω0t))

L(1) = ϕ(1)(ẍ+ ω2
0x−A0 sin(ω0t)) + c0ω

2
0 cos(ω0t)[−q(t)ẋ+ (ψ(1)− ln t− p(t))x− r(t)]

such that c0, l1, l2 are arbitrary constants. Applying the formula equations(3.10) and (3.11), we perform all computa-
tions to approximate conservation laws. Finally, we obtain

Ct
(0) =W(0)c0ω0 sin(ω0t) +Dt(W(0))c0 cos(ω0t)

Ct
(1) =W(1)c0ω0 sin(ω0t) +Dt(W(1))c0 cos(ω0t) +W(0)(−c0ω2

0 cos(ω0t)q(t)−Dtϕ(1)) +Dt(W(0))ϕ(1).

The only nontrivial approximate conservation law of the Eq.(3.2) corresponding to approximate symmetry v3 is

c = ϵ(−c0 cos(ω0t)ẍ− c0ω0 sin(ω0t)ẋ+
A0

2
c0ω0t+

A0

4
c0 sin(2ω0t)).

Case2: By approximate equation(3.3):

L ≈ (ϕ(0) + ϵϕ(1))[ẍ+ νẋ− f(t)− ϵν{(ψ(2)− ln t− g(t))ẋ− 1

t
x− h(t)}]

in this case the adjoint equation is

F ∗ ≈ ÿ − 2ω0ẏ + 2ϵω0[(ψ(2)− ln t− g(t))ẏ − g′(t)y]

therefore

y =c′0 + c′0e
2ω0t + ϵ[−c′0 ln t+ l′0 − c′0ω0t+ c′0e

4ω0t

+ {l′ + c′0Ei(2ω0t)− 2c′0ω0(Ei(2ω0t) + ψ(2) + c′′ +
1

2
)t+ c′0ω

2
0t

2}e2ω0t]

and L(0) = c′0(1 + e2ω0t)(ẍ+ 2ω0ẋ−A0 sin(ω0t))

L(1) = ϕ(1)(ẍ+ 2ω0ẋ−A0 sin(ω0t))− 2ω0c
′
0(1 + e2ω0t)[(ψ(2)− ln t− g(t))ẋ− x

t
− h(t)].

Here c′0, l
′
0, l

′ are arbitrary constants. Then

Ct
(0) =2W(0)c

′
0ω0 +Dt(W(0))(c

′
0 + c′0e

2ω0t)

Ct
(1) =2W(1)c

′
0ω0 +Dt(W(1))(c

′
0 + c′0e

2ω0t) +W(0)[2ω0ϕ(1) − 2ω0(c
′
0 + c′0e

2ω0t)(ψ(2)− ln t− g(t))−Dtϕ(1)]

+Dt(W(0))ϕ(1).
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By computing the components of approximate conserved vectors we find

c1 = ϵ
c′0
ω0
e2ω0t[−(1 + e2ω0t)ẍ− 2ω0(2 + e2ω0t)ẋ+A0(−

2

5
cos(ω0t) + (

9

5
+ e2ω0t) sin(ω0t))]

c2 = ϵc′0[−(1 + e2ω0t)ẍ− 2ω0ẋ+A0 sin(ω0t) +
A0

5
e2ω0t(2 cos(ω0t) + sin(ω0t))]

which are the non-trivial conservation laws corresponding to v3,v4 respectively.

4 Conclusion

We obtained the approximate equation of the fractional oscillator for nearly integer orders 0 and 1, which is
applicable to calculating approximate symmetries, approximate conservation laws and approximate solutions. In this
work, in special case, when the system is on resonance, we compuetd the approximate symmetries and conservation
laws.

Appendix A appendix:calculation of approximate equations

We want to demonstrate the calculation steps of the equations(3.2) and (3.3).

Case1: When α = ϵ, the fractional derivative takes the form

Dϵx ≈ x+ ϵ{[ψ(1)− ln t]x−
∞∑
k=1

(−1)k

k!k
tkx(k)}. (A.1)

In this case, we have ϵẍ ≈ ϵ(−ω2
0x+ f(t)) in the same way

ϵx(3) ≈ ϵ(−ω2
0 ẋ+ f ′(t))

ϵx(4) ≈ ϵ(ω4
0x− ω2

0f(t) + f ′′(t))

ϵx(5) ≈ ϵ(ω4
0 ẋ− ω2

0f
′(t) + f ′′′(t))

ϵx(6) ≈ ϵ(−ω6
0x+ ω4

0f(t)− ω2
0f

′′(t) + f (4)(t))

...

Using these, we can obtain representations for ϵx(k)(k = 3, 4, ...) as functions of ϵx and ϵẋ and by substituting in

the infinite series in Eq.(A.1), we can derive the coefficient of x as p(t) =
∑∞

k=1
(−1)k(ω0t)

2k

(2k)!(2k) . So

tp′(t) =

∞∑
k=2

(−1)k(ω0t)
2k

(2k)!
= cos(ω0t)− 1 +

ω2
0

2
t2

p(t) =

∫
cos(ω0t)

t
dt− ln t+

ω2
0

4
t2 − c

such that c is an arbitrary constant. Similarly, the coefficient of ẋ is q(t) = −
∑∞

k=0
(−1)kω2k

0 t2k+1

(2k+1)!(2k+1) then

−tω0q
′(t) =

∞∑
k=1

(−1)k(ω0t)
2k+1

(2k + 1)!
= sin(ω0t)− ω0t

q(t) =
−1

ω0

∫
sin(ω0t)

t
dt+ t− c′

such that c′ is constant. Finally, we get the remaining of the series as

∞∑
k=1

(−ω2
0)

k−1 t2k

(2k)!(2k)
f(t) +

∞∑
k=1

(−ω2
0)

k−1 t2k+1

(2k + 1)!(2k + 1)
f ′(t)+

∞∑
k=2

(−ω2
0)

k−2 t2k

(2k)!(2k)
f ′′(t) +

∞∑
k=2

(−ω2
0)

k−2 t2k+1

(2k + 1)!(2k + 1)
f ′′′(t) + · · ·
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Since f(t) = A0 sin(Ω0t) then by summation of the coefficients of A0 sin(Ω0t) and A0 cos(Ω0t) we obtain

P (t) =

∞∑
k=1

(−1)k−1Ω2k−2
0

∞∑
n=k

(−ω2
0)

n−k t2n

(2n)!(2n)

=
−1

ω2
0

∞∑
k=1

(
Ω0

ω0
)2k−2

∞∑
n=k

(−1)n
(ω0t)

2n

(2n)!(2n)

=− 1

ω2
0

∞∑
k=1

(
Ω0

ω0
)2k−2[

∫
cos(ω0t)

t
dt− ln(ω0t)−

k−1∑
n=1

(−1)n
(ω0t)

2n

(2n)!(2n)
]

as the coefficient of A0 sin(Ω0t) and

Q(t) =

∞∑
k=1

(−1)kΩ2k−1
0

∞∑
n=k

(−ω2
0)

n−k t2n+1

(2n+ 1)!(2n+ 1)

=
−1

ω2
0

∞∑
k=1

(
Ω0

ω0
)2k−1

∞∑
n=k

(−1)n
(ω0t)

2n+1

(2n+)!(2n+ 1)

=
1

ω2
0

∞∑
k=1

(
Ω0

ω0
)2k−1[

∫
sin(ω0t)

t
dt+

k∑
n=1

(−1)n
(ω0t)

2n−1

(2n− 1)!(2n− 1)
]

as the coefficient of A0 cos(Ω0t).

Case2: When α = 1− ϵ, the fractional derivative takes the form

D1−ϵx ≈ ẋ− ϵ

{
[ψ(2)− ln t]ẋ− x

t
−

∞∑
k=2

(−1)k−1

k!(k − 1)
tk−1x(k)

}
. (A.2)

In this case, we have ϵẍ ≈ ϵ(−2ω0ẋ+ f(t)) in the same way

ϵx(3) ≈ ϵ(4ω2
0 ẋ− 2ω0f(t) + f ′(t))

ϵx(4) ≈ ϵ(−8ω3
0 ẋ+ 4ω2

0f(t)− 2ω0f
′(t) + f ′′(t))

ϵx(5) ≈ ϵ(16ω4
0 ẋ− 8ω3

0f(t) + 4ω2
0f

′(t)− 2ω0f
′′(t) + f ′′′(t))

...

Using these, we can obtain representations for ϵx(k)(k = 3, 4, ...) as function of ϵẋ and by substituting in the infinite

series in Eq.(A.2), we get the coefficient of ẋ as g(t) =
∑∞

k=2
(2ω0t)

k−1

k!(k−1) then

2ω0t
2g′(t) =

∞∑
k=3

(2ω0t)
k

k!
= e2ω0t − 1− 2ω0t−

(2ω0t)
2

2!

g(t) =
1

2ω0

∫
e2ω0t

t2
dt+

1

2ω0t
− ln t− ω0t− c′′

such that c′′ is constant. Also the coefficient of A0 sin(Ω0t) is

I(t) =
1

2ω0

∞∑
n=0

(−1)n+1(
Ω0

2ω0
)2n

∞∑
k=2n+2

(2ω0t)
k−1

k!(k − 1)
=

∞∑
n=0

(−1)n+1(
Ω0

2ω0
)2n

[∫
e2ωot

(2ω0t)2
dt−

2n+2∑
k=0

∫
(2ω0t)

k

k!(2ω0t)2
dt

]

=

∞∑
n=0

(−1)n+1(
Ω0

2ω0
)2n

∫ e2ωot

(2ω0t)2
dt− 1

2ω0
(lnt+

2n+2∑
k=0,k ̸=1

(2ω0t)
k−1

k!(k − 1)
)
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and the coefficient of A0 cos(Ω0t) is

J(t) =
1

2ω0

∞∑
n=0

(−1)n(
Ω0

2ω0
)2n+1

∞∑
k=2n+3

(2ω0t)
k−1

k!(k − 1)
=

∞∑
n=0

(−1)n(
Ω0

2ω0
)2n+1

[∫
e2ωot

(2ω0t)2
dt−

2n+3∑
k=0

∫
(2ω0t)

k

k!(2ω0t)2
dt

]

=

∞∑
n=0

(−1)n(
Ω0

2ω0
)2n+1

∫ e2ωot

(2ω0t)2
dt− 1

2ω0
(lnt+

2n+3∑
k=0,k ̸=1

(2ω0t)
k−1

k!(k − 1)
)

 .
Appendix B appendix:calculation of approximate symmetries and conservation laws

We consider the resonance state, Ω0 = ω0.

Case1: Let us consider the approximate group generators(3.5). The exact symmetry of unperturbed equation
ẍ(t) + ω2

0x(t) = A0 sin(Ω0t) is

V(0) = c1
∂

∂t
+ [(ĉ+

c1
2
A0t) sin(ω0t) + c2 cos(ω0t)]

∂

∂x
(B.1)

s.t ĉ, c1, c2 are constant. We need to determine the auxiliary function H by virtue of Eq.(3.7) e.g.,[15] , i.e by the
equation

H =
1

ϵ
[V(0)(F(0) + ϵF(1))|F(0)+ϵF(1)=0].

Substituting the expresion (B.1) of the generator into above equation, we obtain the auxiliary function

H =− c1ω
2
0 [(

− sin(ω0t)

ω0t
+ 1)ẋ+ (

cos(ω0t)

t
+
ω2
0

2
t)x+ (P ′(t)− ω0Q(t))A0 sin(ω0t) + (Q′(t)+

ω0P (t))A0 cos(ω0t)] + ω2
0(ψ(1)−

∫
cos(ω0t)

t
dt− ω2

0

4
t2)[(ĉ+

c1
2
A0t) sin(ω0t)+

c2 cos(ω0t)] + ω2
0 [(
c1
2
A0 − c2ω0) sin(ω0t) + (ĉ+

c1
2
A0t)ω0 cos(ω0t)](

∫
sin(ω0t)

ω0t
dt− t)

Now calculate the operators V(1) by solving the determining equation for deformations

V
(k)
1 F0(z)|F0(z) +H = 0.

Finally the generator of approximate transformation group is

[ĉ sin(ω0t) + c2 cos(ω0t)]
∂

∂x
+ ϵ[c̄

∂

∂t
+ ({(ψ(1)

2
ĉ+

c

2
ĉ+

5ĉ

16
− ω0

2
c2c

′ − ĉ

2
Ci(ω0t)−

c2
2
Si(ω0t))ω0t+ c2

5

16
ω2
0t

2

− ĉ

24
ω3
0t

3 − ĉ

2
Si(ω0t) + k0} cos(ω0t) + {(−ψ(1)

2
c2 −

c

2
c2 −

5c2
16

− ω0

2
ĉc′ + c̄

A0

2ω0
− ĉ

2
Si(ω0t) +

c2
2
Ci(ω0t))ω0t

+ ĉ
5

16
ω2
0t

2 +
c2
24
ω3
0t

3 +
ĉ

2
Ci(ω0t) + k′0} sin(ω0t)−

c2
2
)
∂

∂x
]

such that k0, k
′ are arbitrary constants. To determine the conservation laws, first we need the adjoint equation F ∗ of

Eq.(3.2). By (3.8) we have

F ∗
(0) + ϵF ∗

(1) ≈ (
∂

∂x
−Dt

∂

∂ẋ
+Dtt

∂

∂ẍ
)y(t, x)(ẍ(t) + ω2

0x(t)− f(t) + ϵω2
0{[ψ(1)− ln t− p(t)]x(t)

− q(t)ẋ(t)− r(t)}) = ÿ + ω2
0y + ϵω2

0 [q(t)ẏ + (ψ(1)− lnt− p(t) + q′(t))y]

s.t y ≈ ϕ(0) + ϵϕ(1). Then selfadjointness condition (3.9) leads to equations

¨ϕ(0) + ω2
0ϕ(0) = 0

¨ϕ(1) + ω2
0ϕ(1)+ω

2
0 [q(t)

˙ϕ(0) + (ψ(1)− lnt− p(t) + q′(t))ϕ(0)] = 0
(B.2)

By solving the system of differential equations(B.2), we can get y and L as mentioned in paper. Finally by (3.10),
(3.11), the conserved vector can be obtained.
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Case2: The exact symmetry of unperturbed equation ẍ(t) + 2ω0ẋ(t) = A0 sin(Ω0t) is

V(0) = (s1 + s2e
ω0t)

∂

∂t
+[(k1 + k2e

−2ω0t +
s1
5ω0

A0(2 sin(ω0t)− cos(ω0t)) +
s2

10ω0
A0e

ω0t(2 sin(ω0t) + cos(ω0t))]
∂

∂x

such that s1, s2, k1, k2 are constant, and the auxiliary function H is

H = −2ω0(s1 + s2e
ω0t)[(−1

t
− g′(t))ẋ+

1

t2
x+ (−I ′(t) + ω0J(t))A0 sin(ω0t)− (J ′(t) + ω0I(t))

A0 cos(ω0t)]− 2ω0(ψ(2)− lnt− g(t))[−2k2ω0e
−2ω0t +

s1
5
A0(sin(ω0t) + 2 cos(ω0t)) +

s2
10
A0e

ω0t

(sin(ω0t) + 3 cos(ω0t))] +
2

t
[ω0(k1 + k2e

−2ω0t) +
s1
5
A0(2 sin(ω0t)− cos(ω0t)) +

s2
10
A0e

ω0t(2 sin(ω0t) + cos(ω0t))].

The generator of approximate transformation group is

(k1 + k1e
−2ω0t)

∂

∂x
+ ϵ[(

c3
ω0
e2ω0t + c4)

∂

∂t
+ {l̄1 + (l̄2 + k1ω0t(2ψ(2) + 2c′′ + 1) + k1ω

2t2)e−2ω0t+

A0

ω0
(c4 +

1

ω0
c3e

2ω0t))(
2

5
sin(ω0)−

1

5
cos(ω0))− k1e

−2ω0tEi(2ω0t)(2ω0t− 1)− k1 ln t+ k1}
∂

∂x
]

where c3, c4, l̄1, l̄2 are arbitrary constants. The adjoint equation F ∗ of Eq.(3.3) is

F ∗
(0) + ϵF ∗

(1) ≈ (
∂

∂x
−Dt

∂

∂ẋ
+Dtt

∂

∂ẍ
)y(t, x)(ẍ(t) + 2ω0ẋ(t)− f(t)− 2ϵω0{[ψ(2)− ln t− g(t)]ẋ(t)

− 1

t
x(t)− h(t)} = ÿ − 2ω0ẏ + 2ϵω0[(ψ(2)− lnt− g(t))ẏ − g′(t)y]

By solving the system of differential equations

¨ϕ(0) − 2ω0
˙ϕ(0) = 0

¨ϕ(1) − 2ω0
˙ϕ(1)+2ω0[(ψ(2)− lnt− g(t)) ˙ϕ(0) − g′(t)ϕ(0)] = 0

we can get y and L as mentioned.
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