Int. J. Nonlinear Anal. Appl. 14 (2023) 9, 209–240 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.29161.4077

Clustering ensemble selection: A systematic mapping study

Hajar Khalili^a, Mohsen Rabbani^{b,*}, Ebrahim Akbari^a

^aDepartment of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran ^bDepartment of Applied Mathematics, Sari Branch, Islamic Azad University, Sari, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

Clustering has emerged as an important tool for data analysis, which can be used to produce high-quality data partitions as well as stronger and more accurate consensus clustering based on basic clustering. Data item labels, which are already known as opposed to classification issues, are unlabeled clusters in unsupervised clustering solution. To address this challenge, instead of selecting all of them from a subset of variants to combine for the obtainment of the final result, Clustering ensemble selection (CES) was proposed in 2006 by Hadjitodorov. The goal is the selection of a subset of large libraries to produce a smaller cluster offering higher-quality performance. (CES) has been found effective in the improvement of the clustering solutions quality. The current paper conducts a systematic mapping study (SMS) for the analysis and synthetization of the studies formerly conducted on the CES techniques. To this end, 42 prominent publications from the existing literature, published from 2006 to August 2022, were selected to be examined in this article. The analysis results showed that most of the articles have used the NMI measure to evaluate the cluster quality, and the method of valuing the initial parameter has been more commonly used for the generation of diversity. Clustering ensemble selection has not been done on text yet; in addition, the trade-off between diversity and quality (considering both at the same time) can be studied and evaluated in the future.

Keywords: Clustering Ensemble Selection, Diversity, Measure, Consensus Function 2020 MSC: 62H30

1 Introduction

Data analysis is the basis of many computational applications, both in the design phase and as part of their online operations. Depending on the accessability of proper models for the data source, data analysis methods fall into two types, i.e., exploratory and confirmatory. However, a crucial element to form a hypothesis or decision is to group or classify. Measurements are based on being fit with a hypothetical model or natural groupings (clustering) that are revealed through analysis.

Cluster analysis organizes a set of patterns (usually represented as a vector of measurements or a point in multidimensional space) based on similarity to clusters[27]. Cluster analysis has been recognized in the literature as a key approach since it classifies the elements of a dataset regarding their similarity, without the need for any class

*Corresponding author

Email addresses: khalili.hajar1982@yahoo.com (Hajar Khalili), mrabbani@iausari.ac.ir (Mohsen Rabbani), ebrahimakbari30@yahoo.com (Ebrahim Akbari)

label information. In addition, clustering techniques are applicable to the analysis of biological data with different characteristics. The challenge of choosing the optimal algorithm and types of clustering methods typically results in conflicting outcomes because of methodological bias and different performance criteria [20, 21].

So far, the most important objective of the groups has been the enhancement of the accuracy and effectiveness of a particular classification or regression. Significant improvements have also been made to a wide range of datasets[44]. Contrary to the classification or regression settings, the literature consists of very few approaches introduced for the combination of multiple clusterings. In the following, the most important exceptions are presented:

- Accurate consensus clustering to design evolutionary trees, leading to solutions with much lower resolution than individual solutions.
- Combining the results of several clusters from a given dataset, in which each solution of the combination is in a common, well-known space, for example, combining multiple sets of cluster centers using k-means. It is obtained with different initial values [11].

The rapid advancement of clustering science and technology has caused clustering to play a key role in different fields, e.g., image processing, pattern recognition, document clustering, business intelligence, market research, customer recommendations, and data analysis. It is not easy to find a clustering algorithm applicable to all data sets; as a result, the literature is loaded with different clustering algorithms. To solve this problem, the concept of clustering is proposed in 2003 [47].

A consensus of different clustering partitions combines the dataset into a final partition. The result of the clustering set is superior to the single clustering algorithm. The single clustering algorithm, due to its special weakness, leads to an algorithm only for a specific dataset. The clustering consensus combines these clustering algorithms to eliminate the violations of the single clustering algorithm that conforms to more data than clustering and is also noise resistant [49].

The basic algorithm generates consensus members using k-means with different initial values and combines members using cumulative clustering with single, average, complete link. Next, the effect of consensus size on the clustering set is analyzed to find the appropriate consensus size. In addition, the relationship between the diversity and performance of the clustering consensus is examined to guide the selection of consensus members. Finally, the selected clustering set is compared with the traditional clustering consensus based on quality and variety.

The aim of the present systematic mapping study (SMS) is to summarize and integrate the available studies using the following five research questions (RQs):

- a. What years have the selected studies been conducted on CES (RQ1)?
- b. What is the diversity (RQ2)?
- c. How base clusterings are generated in different methods (RQ3)?
- d. Which journals have paid more attention to CES (RQ4)?
- e. Which measures are worked in CES (RQ5)?

The rest of the paper is structured as follows: Section 2 briefly describes the SMS studies previously conducted on Clustering ensemble selection. Then, Section 3 gives the methodology that describes the methods and materials employed in performing this SMS. Next, Section 4 reports the findings related to each research question. Afterwards, Section 5 discusses the obtained results and presents their implications for the research body. Finally, the last section presents the conclusion and recommends directions for further work in this domain.

2 Related Work

Clustering is a key step to data mining, which seeks to divide data into groups or clusters based on specific similarity criteria. The general purpose of clustering is to place similar data points in a cluster, hence improving the robustness and quality of clustering results. The literature consists of many approaches to solving the set problems [41]. The goal of ensemble clustering is the combination of several clusters for a possibly better and stronger clustering result, which has the advantage of finding bizarre clusters, dealing with noise, and integrating clustering solutions from different sources [53]. In general, a clustering set consists of two parts: the first step is to create a diverse set of base clusters; they should be different from each other because the diversity between base clusters helps to improve

group performance. The second step is the solution and combination of multiple clusters (e.g., consensus function and the aggregation of multiple clusterings) [34, 1, 22, 24, 23, 6, 2, 58, 42].

Consensus clustering has been reviewed by a number of scholars [16, 51, 9, 54]. Given that members are in unlabeled clustering, not all clustering results can be expected to be useful for the final consensus clustering solution [51, 9]. It has recently been shown that better clustering can be achieved by using a subset of clustering members [54]. Recently, it has been proven that a subset of clustering members can be used to achieve better clustering[18]. This approach is termed clustering ensemble selection (CES). The main idea of selecting group clustering to form a cluster group is the selection of a diverse subset of smaller base clusters that perform better than all clustering members[5]. In case of unsupervised clustering, there is not the same external objective function for the measurement of the clustering quality as accuracy.

In the clustering literature, predefined class labels are commonly used as an alternative to the main structure in order to measure the quality of clustering. However, this can not be applied to set selection since supervised information such as class tags cannot be involved in the clustering process[47]. The literature comprises various diversity measures applicable to cluster ensembles[12]. Diversity and quality are considered as two crucial criteria for selecting basic clustering and influencing group performance. Diversity is very important for the success of group clustering because high quality basic clustering affects the performance of the final clustering solution. Variety and quality are shown in CES, which leads to an increase in final results compared to complete sets [14]. The relationship between diversity and quality is unclear. To increase quality, diversity is increased by removing additional base partitions[52]. Figure 1.a shows the clustering according to the input data; Figure 1.b shows the different clusters extracted from the data by a consensus function of clusters of higher quality than figure 1.a; then, in Figure 1.c, higher quality clusterings are produced due to the omission of some clusters.

3 Methodology

The main purpose of an SMS is identifying, counting, and classifying all studies dedicated to an extensive research field. Then, after evaluating and interpreting the findings of the articles, a basic question is answered by combining the obtained results. Survey studies are of great importance because they can give an interesting review to make progress in that area. In addition, SMS can be taken into account as a valuable basis for more accurate systematic review and follow-up. A survey study presents a review of a study area through the identification of the quantity and type of studies that have been published in that field to determine the gaps and research trends, whereas a systematic review employs a more accurate and completely-defined method for the purpose of reviewing the existing literature on a particular topic. In the end, a systematic map widely addresses and analyzes the selected papers and designates the method they use. Figure 2 presents the five significant steps of a systematic survey, which are (1) defining the research questions, (2) searching for pilot studies, (3) screening articles, (4) writing keywords, and (5) extracting data and surveying.

3.1 Research Questions

For the formulation of the research questions in an SMS, a popular approach is the implementation of the PIOC (Population Intervention Outcomes Context) criterion. Research questions prepared using PIOC are structured in four aspects: (a) population; (b) intervention; (c) result; and (d) context. The PIOC characteristics of the research questions are shown in Table 1.

Table	e 1:	Summary	of PIOC
-------	------	---------	---------

Population	Clustering ensemble selection
Intervention	Diversity, Quality
Outcomes	High quality cluster and optimal selected clusterings
Context	The Relationship between quality and diversity

The main purpose of the current SMS study is the identification and evaluation of the articles published between 2006 and August 2022 based on Clustering Ensemble Selection. The five research questions set for this study are given in Table 2, and their motivation and variables were formulated with the aim of achieving a clear attitude toward the subject.

Figure 1: Process of clustering, Clustering Ensemble and Clustering Ensemble Selection Approaches

Figure 2: The sms process

Table	2:	Research	questions
rabic	4.	rescaren	questions

RQ	Research questions	Motivation	Variable
RQ1	What years have selected studies been	Specify areas and when efforts have	Research Year
	done on CES?	been made in this field.	
RQ2	What is the diversity?	Because diversity are important in	measures
		base clustering and consensus result	
RQ3	How base clusterings are generated in	One consensus function on different	Research Methods
	different methods?	diversities obtain different consensus	
		function results	
RQ4	Which measures are worked in CES?	The effect of measures on quality and	Quality measure and di-
		diversity	versity measure
RQ5	Which journal have paid more atten-	Determine which journals are related	Research Publisher
	tion to CES?	to the CES	

In general, the aim of an SMS is to conduct pertinent research for the purpose of evaluating the evidence available to deal with RQs. This trend should be strict and impartial and often involves extensive coverage of resources, e.g., online databases and journals. For the minimization of bias and maximization of the number of resources examined, a predefined strategy is needed for the identification of pilot studies, as described in Table 3.

Population	Refers to the applied field where we pay attention to CES,
Intervention	Instruments, techniques, methods, and technology to be studied. In this study, we pay attention
	to Relationship between quality and diversity for CES to improve the quality of clustering .
Outcomes	The results are measurable from studies. In this study, we do not pay attention to the study
	findings.
Context	It refers to the various strategies that have been used, meaning search terms related to the
	classification trend.

Table :	3:	Terms	obtained	from	PIOC
Table 6	.	TOTIN	obuillou	II OIII	1100

3.2 Search strategy

Article search is done with two search strategies: manual search and automatic search.

3.2.1 Manual search

In Manual search, articles are extracted from journals and researchers' personal page.

3.2.2 Automatic search

In this article, automatic search was used to extract relevant articles from databases using Start software. The strategy implemented for making the searching terms consists of four steps: 1) the main terms were specified, concerning the research questions (PIOC) (Table 2). 2) The synonym of the words or substitute words for the original terms was identified considering the keywords in the articles related to CES (see Table 3). 3) Boolean OR was used as synonyms of alternative words or abbreviations (see Table 4). 4) Finally, Boolean AND was used with the aim of linking the original terms (see Table 5). To reduce the probability of bias, the search string in this study was performed in all selected databases using a specialized search engine in academic cases, and it was measured to evaluate the completeness of the string as the number of related studies identified. This search string is formed with the help of Boolean logic to ensure the comparison of results between databases. After the experiment, we checked the search string. After defining the search terms, the identification of the related literature began. The current search is done on the basis of four electronic databases: Google Scholar, IEEE, Springer, and Science Direct. These databases were selected considering the prevailing literature on the CES. The details in regard to all pilot studies related to the use of Start software, as the free source bibliography reference administrator, were saved. The "export" feature, which is accessible within many electronic databases, was employed in order to automatically export the details of all pilot studies (e.g., title, author(s), abstract, keywords, public

Table 4: searching for substitute words using BOOLEAN OR.

NO.	Main Subject	Result
1	Clustering Ensemble Se-	(selection clustering ensemble OR clustering ensemble selection OR selective
	lection	clustering ensemble)
2	Data Mining	(data analysis OR data mining OR information discovery OR knowledge
		discovery(
3	Diversity	(diversity AND quality)

Table 5: consistency of all possible words using BOOLEAN AND.

Final String

("selection clustering ensemble OR clustering ensemble selection OR selective clustering ensemble ") AND ("data analysis" OR "data mining" OR "information discovery" OR "knowledge discovery") AND ("diversity AND quality ")

After defining the keywords, queries were made. These queries were different for each digital library and had different boundary features depending on the digital library facilities. Digital libraries have specific limitations during searching. For example, some of them are not allowed to use full search strings. Some others should complete these strings with a simple text search. For this reason, separate queries should be made for each library and then the general results of these searches should be obtained based on the proposed main queries. Table 6 shows a set of examples for each digital library.

Table 6:	Final	String	in	the	Databases
----------	-------	--------	----	-----	-----------

Digital	String							
Database								
Springer	(TITLE-ABS-KEY (" selection clustering ensemble " OR " clustering ensemble selection " OR "							
	selective clustering ensemble ") AND TITLE-ABS-KEY ("data analysis" OR "data mining" OR							
	"information discovery" OR "knowledge discovery") AND TITLE-ABS-KEY ("diversity" OR "qual-							
	ity")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (SUBJAREA, "COMP") OR							
	LIMIT-TO (SUBJAREA, "BIOC") OR LIMIT-TO (SUBJAREA, "ENGI") OR LIMIT-TO (SUB-							
	JAREA, "MEDI") OR LIMIT-TO (SUBJAREA, "DECI")) AND (LIMIT-TO (LANGUAGE,							
	"English")) AND (LIMIT-TO (SRCTYPE, "j"))							
	("selection clustering ensemble " OR "							
	clustering ensemble selection " OR " selective clustering ensemble ") AND ("data							
Colonaa Di	analysis" OR "data mining" OR "information discovery" OR "knowledge discovery")							
Science Di-	AND ("microarray" OR "gene expression")							
rect								
	Filters applied: Research articles.							
	(("selection clustering ensemble "[Title/Abstract] OR " clustering ensemble selection							
	"[Title/Abstract] OR " selective clustering ensemble "[Title/Abstract]) AND							
	("data analysis" [Title/Abstract] OR "data							
Coordo	mining" [Title/Abstract] OR "information							
Google	discovery" [Title/Abstract] OR "knowledge discovery" [Title/Abstract])) AND							
scholar,	("diversity" [Title/Abstract] OR "quality" [Title/Abstract])							
IEEE								
	Filters applied Journal Article, English, and Humans.							

3.3 Study selection

The papers that satisfied at least one of the exclusion criteria (ECs) were left out of this study. On the other hand, those papers that satisfied at least one of the inclusion criteria (ICs) and did not satisfy any ECs were kept. Table 7 describes ICs and ECs applied in this study.

IC	Inclusion Criteria (IC)	EC	Exclusion Criteria (EC)
IC1	studies from 2006 to August 2022	EC1	Duplicated studies (only one copy of each study
			was included)
IC2	studies with CES technique	EC2	studies on supervised or FCM method
IC3	studies in computer science	EC3	Non-English writer papers
IC4	studies published in journal	EC4	short paper ($\leq =5$ page)
IC5	primary studies	EC5	secondary studies

Table 7: Inclusion and Exclusion Criteria for Selecting Articles

The studies were selected in three steps. At step 1 (Planning), Google was used to identify the relevant articles by searching for titles, abstracts, and keywords along with key phrases in various databases for inclusion in the Start software. Then, at step 2 (Selection), the titles, summaries, and keywords were screened for the aim of deciding whether or not to take account of the study. In addition, a review was done on the studies on the basis of the inclusion and exclusion criteria. The texts of these articles were read completely. As a result, at step 3 (Execution), the full text of the pilot studies in the preliminary selection was attained. The full text of each pilot study was read in detail, which is included in the preliminary selection. It was done with the aim of deciding to select or delete that study. The pilot studies included in the final selection are based on the relevant articles that satisfied RQs provided in this SMS. The pilot studies were searched according to the above instructions. First, pilot studies were looked for within the databases. Therefore, a total of 515 studies were obtained from the automatic search. It was done by the Start software in two stages, selection and extraction. The pilot studies were chosen through reading the titles and summaries and using the inclusion and exclusion criteria at the next step. Consequently, 42 studies were chosen for the purpose of this research. Therefore, a total of 42 relevant studies were identified from 4 automatic search sources. In Figure 3 see List of automatic search results in the selected electronic databases, In Figure 4 see the number of automatically selected articles from databases, the purple color is considered as the other resources and Figure 5 shows the process of selecting the articles.

Source	URL	Search	papers In the selection stage			papers In the extraction stage		
		Kesuits	Accept	Reject	Duplicate	Accept	Reject	Duplicate
Science Direct	www.sciencedirect.com	32						
Springer	https://link.springer.com/	346						
IEEE	https://ieeexplore.ieee.org/	82						
Google Scholar	https://scholar.google.com	52	67	77	371	42	15	10
	Total	515						

Figure 3: List of automatic search results in the selected electronic databases

Figure 4: The number of automatically selected articles from databases

Figure 5: Selected article selection process

3.4 Diversity Generation

Previously-conducted studies have proposed various methods for the creation of diversity or group members, which are listed below. If the clustering quality is improved when using ensemble, they could be of more benefits to users [47]. Stable results of the problem Consensus clustering achieves stable results by calculating the results of basic clustering [17]. The result of clustering composition is better than the basic clustering methods due to its higher strength [47, 8]. Consensus clustering involves the following two methods: (1) diversity, by which multiple clusters are created. Various methods have been proposed to produce diversity, including the following:

- a. Valuing the initial parameters: called homogeneous sets, the initial clustering is created by repeatedly performing the clustering algorithm with the k-means technique clustering centers [15].
- b. Clustering Algorithms: Using clustering algorithms to generate primary clusters known as heterogeneous sets [48, 7].
- c. Different subsets of features: Select features to generate subsets[15, 48, 19].
- d. Different subsets of objects: sampling data with or without alternatives [38, 39].
- e. Projection to the subspace: Types of one-dimensional and random cuts when throwing objects on the subspaces[48, 7, 19, 38, 39, 12, 55].

And (2) consensus function, in which the multiple clusters produced are merged. Using a number of these approaches, individual clustering diversity is improved[4]. And in the next step, several methods are proposed to combine these multiple clusters [59, 56, 53]. The consensus functions obtained from the composition of the initial clustering are effective in improving the accuracy of the final clustering [45, 13, 43]. The literature includes two criteria of quality and diversity that are applied to group members. The matching index between the two partitions is the basis of this criterion. Normalized reciprocal information (NMI)[47] and adjusted rand index (ARI)[25] are two criteria used by many researchers for diversity and quality assessment between two partitions. For example, Zhong and Gush[60] used NMI to evaluate between clusters, while Kandylas et al. [28] used it in knowledge analysis. In another study, Hadjitodorov et al. [18] used ARI to select each member of the group. Lu et al. [35] proposed a criterion of variety based on covariance. Alizadeh et al. [4] proposed a method in which the selection of clusters was based on diversity and quality.

3.5 Consensus function

The consensus function algorithm combines the members of different groups or clusters in a way to achieve final clusters. that can be divided into voting, paired similarity, feature-based approach and graph-based. The pairwise method creates a correlation matrix in which the similarity between points is the number of times the points are in the same clusters created from the clusters. Hierarchical algorithms such as average-link, single-link, and complete-link are commonly used to combine results using correlation matrices [15]. The voting method is also known as the re-labeling method. Unlike other methods, there is no need to match the labels of the obtained clusters. This method solves the problem of matching between the labels [32]. In the feature-based method, the output generated by each clustering algorithm is a classified feature. Clustering algorithms work as new examples on categorized properties. A consensus function is used to solve the problem generated in k-way min-cut hyper graph partitioning [37]. On the other hand, the review of the literature shows a challenge in the relationships between diversity and quality and the impact of the two on the group. Strehl and Ghosh [47] proposed three methods of consensus functions: cluster-based similarity algorithm (MCLA). CSPA creates a pairwise similarity algorithm matrix or correlation matrix.

The Hypergraph Segmentation Algorithm (HGPA) function requires different basic clustering. on the other hand, (MCLA) provides more precise solutions to each set.

Table 8 shows the advantages and disadvantages of related clustering ensemble selection. Table 9 compares the CES methods and also shows the different methods used to select clustering sets and different algorithms applied to the generation of basic clustering. in addition, this table compares the articles regarding their use of pairwise, non pairwise, or hybrid approaches based on diversity measurements as well as different consensus functions to generate the final solution.

4 Result

In this section, the results corresponding to the research questions of Table 2 are presented. First, the results of the selection are presented; then, the results of the research questions 1-5.

4.1 RQ1: What years have the selected studies been conducted on CES?

Figure 6 shows the number of the studies selected based on the number/year of studies from 2006 to August 2022. The journal is the source of the 42 selected studies. It is noteworthy that studies on the choice of composite clustering have been started since 2006, and only one study was published in that year by Hedjitodrov, which is considered as the first major work in this field. Additionally, according to Figure 5, in 2015, the most articles (14.2%) were published in the field of composite cluster selection. Then in 2014 and 2018 with 11.9 %, in 2021 with 9.5 %, in 2009, 2019, and 2020 with 7.1 %, in 2011, 2012, 2013, 2016, and 2017 with 4.7% and in 2006, 2008, and 2022 with 2.3 %. The lowest number of surveys was published in 2006 and 2008 with 2.4%

Table 8: Advantages and Disadvantages of related Clustering Ensemble Selection

		1			
ID S1	Journal Engineering	Title Hierarchical	Advantages Significant performance	Disadvantages Lack of relationship be-	Description Using the Hierarchi-
	Applications	cluster	improvement compared	tween diversity and	cal ensemble Selection
	of Artificial	ensemble	to ensemble groups	quality in the selection of	method and measuring
	Intelligence	selection		ensemble members	diversity to examine now diversity and quality
					affect the final results
S2	Neurocomputi	ngluster	The AQD2 method has	little research efforts to	Study ensemble cluster-
		lection with	the best performance and has quality and compati-	combine previous back- ground knowledge	ing and semi-supervised
		constraints	bility with diversity.	ground knowledge	techniques for finding
					high quality solutions
S3	Artificial	Clustering	Using ENMI as the best cluster evaluation and	Consider applying sam-	assess the association be-
	Review	selection	using Average-Linkage	ing other rapid metrics to	partition which is called
		considering	algorithm as aggregator	evaluate clusters for the	Edited Normalized Mu-
		quality and	along with EEAC and Itell methods is the best	algorithm	tual Information, ENMI
		uversity	option for consensus		cincilon
			function		
S4	Data Mining	Cluster	the impact of the di-	a ground truth (known clustering solution) is not	Examining several meth-
	edge Discov-	selection	used for the ensemble	available.	lecting partitions based
	ery	based on			on relative clustering va-
		relative			lidity indicators
		dexes			
S5	Pattern	Bagging-	Achieve a better clus-	Expensive and sensitive	Generalization of the se-
	Recognition Letters	spectral	ditional clustering meth-	problems of open SC is-	fective clustering set al-
	1000010	clustering	ods, especially when the	sues and some of its fea-	imi and Fern and a
		ensemble	learner is weak.	tures for individual diver-	new method of selective
		selection		Sity	(SELSCE)
S6	Soft Com-	Multiple	Good performance on	Study more single CES	Study the CES problem
	puting	clustering	most data sets as well	, research about selec-	and propose an MCAS
		ing algo-	clustering algorithms	ent data sets, Examine	quality and diversity
		rithms with		other hybrid strategies	
		combining strategy for			
		CES			
S7	Pattern	Clustering	Improving the robustness	Automatically deter-	Selecting a new strategy
	Recognition	ensemble selection for	and effectiveness of clus- tering results by integrat-	mines the number of selected base partitions	to improve the perfor- mance of set clustering
		categorical	ing different base clusters		algorithms for classifica-
		data based	based on criteria.		tion data namely Sum of
		validity in-			with Diversity (SIVID)
		dices			
S8	International	Clustering	Using the DPP method A	Improve the efficiency of	Review of basic cluster-
	on Neural	Selection	ing base clusters	Dif clustering sampling	dom sampling perspec-
	Information	with De-			tive and propose a clus-
	Processing,	terminantal Point Dro			tering selection method
	Springer	cesses			processes
S9	ACM Trans-	Cluster's	The effect of SME on	Extend SME to a modi-	Propose a new criterion
	actions on	quality eval-	clustering weighting in a	fied index for chance and	for SME and the impact
	Discovery	selective	ering the grouping struc-	Size Selection	measuring the quality of
	from Data	clustering	ture of a dataset		each cluster in the collec-
		ensemble			tion

ID	Journal	Title	Advantages	Disadvantages	Description
S10	International	Similarity-	Better clustering perfor-	Computationally expen-	Introducing a new
	Conference	based spec-	mance than traditional	sive algorithm and sensi-	pruning algorithm for
	on Fuzzy	tral cluster-	methods in the cluster-	tivity to scaling param-	unsupervised group
	Systems and	ing ensemble	ing set method when the	eter during matrix con-	learning and a new
	Knowledge	selection	learner is weak.	struction	ensemble method, Selec-
	Discovery,				tive Spectral Clustering
	IEEE				(SELSCE)
S11	Engineering	A new selec-	Improved accuracy of fi-	Use any other metric as	Using an exploratory
	Applications	tion strategy	nal results compared to	weights in WAEC for dif-	metric based on code-
	of Artificial	for selec-	other cluster ensemble	ferent clustering solutions	to-graph conversion in
	Intelligence	tive cluster	methods		software testing to calcu-
		ensemble			late the independence of
		based on			the two basic clustering
		diversity			algorithms.
		and inde-			
010	L. D.	pendency	the effection of the		Latra la da circa de CES da
512	III Pro-	A multiplex-	the ellectiveness of the	sot of indicators instead	proach with the possibil
	the 2015	herwork	proposed CES approach	of using a single quality /	ity of considering quality
	IEEE/ACM	proach for		diversity index	and diversity
	Interna-	CES		diversity index.	and diversity
	tional Con-	CLD			
	ference				
S13	In 2012	A new selec-	Significant improvement	Using KMEANS as an al-	Selecting the best refer-
	IEEE Ninth	tive cluster-	in clustering performance	ternative to a variety of	ence partition based on
	Interna-	ing ensemble	and algorithm efficiency	clustering algorithms in	the evaluation of cluster-
	tional Con-	algorithm		addition to using it as	ing validity and present-
	ference on			a generation of clustering	ing a new selection strat-
	e-Business			partitions	egy and method of mem-
	Engineering,				ber weight
	IEEE				
S14	In Recent	A quality-	more weight to the best-	Model selection is a ma-	the combined use of
	Advances of	driven	performing (in terms of	jor clustering constraint	two different clustering
	Neural Net-	ensemble	the selected quality in-	and an inherent problem	paradigms and their
	work Models	approach to	dices) clustering method	that cannot be fully an-	combination by means of
	and Ap-	automatic		swered	an ensemble technique
	plications,	model se-			
	Springer,	lection in			
015	Cham	clustering	T 1 / 1 1		
S15	In 2019	Selective	Improved spectral clus-	Use any other metric For	Introduction of a set se-
	oth Inter-	Ensemble	tering performance and	comparison	lection method based on
	Conformed	Based on	toring and high cluster		spectral clustering
	connerence on Big	Spoetrol	ing accuracy compared to		
	Data and	Clustering	other clustering models		
	Information	Crustering	Sonor Grastering Inforcis		
	Analytics				
	(BigDIA).				
	IEEE.				
S16	Wuhan Uni-	Adaptive	Better results compared	Not all clustering results	Discover a new set
	versity Jour-	spectral	to traditional clustering	may be valid, and it is	method for spectral
	nal of Natu-	clustering	methods with the pro-	also difficult to access in-	clustering
	ral Sciences	ensemble	posed algorithm when	dividual clustering diver-	
		selection	the number of component	sity, which is a necessity	
		via resam-	clustering is high	in group learning, if the	
		pling and		number of components is	
		population-		large.	
		based in-			
		cremental			
		learning			
		algorithm			

			1		
ID	Journal	Title	Advantages	Disadvantages	Description
S17	Pattern	Ensemble	Less sensitive ES-JSS to	Use stronger self-	Proposing a new method
	Recognition	Selection	the type of basic learners,	monitoring learning	of static set selection
		with Joint	Strong set selection result	techniques to select	called set selection with
		Spectral	to test samples using less	ensemble in unlabeled	common spectral clus-
		Cluster-	space	predictive space, compare	tering and structural
		ing and	1	performance appraisals	scattering, integration of
		Structural		T T T T T T T T T T T T T T T T T T T	spectral clustering and
		Sparsity			structural scattering in a
		~ F			common framework
S18	In Inter-	Average	High quality of the parti-	A method for construct-	A new criterion for se-
010	national	cluster con-	tions selected by the men-	ing a cluster and select-	lecting the best consensus
	Ioint Con	sistoney	tioned measure in com	ing the type of consen	data partition from a va
	formed on	for eluctor	parison with the conson	sug function for a given	ricty of conconsus parti
	Knowledge	oncomblo	sus partitions soloated by	detect	tions
	Discourse	coloction	the other measure	uataset	tions
	Discovery,	selection	the other measure.		
	Knowledge				
	Engineer-				
	ing, and				
	Knowledge				
	Manage-				
	ment (pp.				
	133-148).				
	Springer,				
	Berlin,				
0	Heidelberg	<u> </u>	A 1		
S19	Statistical	Cluster en-	Achieve statistically sig-	Replacement with other	Replacement with other
	Analysis	semble selec-	nificant performance im-	measure of quality and	quality measure and se-
	and Data	tion	provement over whole en-	variety	lection of a subset of a
	Mining		semble by explicitly con-		variety of solutions into a
			sidering quality and vari-		smaller cluster as well as
			ety in ensemble selection		better performance than
					using all available solu-
0.0.0	.				tions
S20	International	Adaptive	Better performance than	compare to a state-of-	Introducing an adaptive
	Joint Con-	Cluster	the best team members to	the-art ensemble selec-	cluster ensemble selection
	ferences on	Ensemble	produce the ultimate so-	tion method	framework as a first stepe
	Artificial	Selection	lutions		
001	Intelligence	TT 1 · 1			
521	Pattern	Hybrid	Provide good results and	Use of hybrid cluster-	use appropriate feature
	recognition	clustering	high performance using	ing in large data sets in	selection techniques to se-
		solution	HCSS on most datasets	the fields of bioinformat-	lect clustering solutions.
		selection		ics and data mining	
000	т., 11.	strategy		T I I I I M	D
S22	Intelligent	Cluster	High performance of	Investigating the effect	Propose a new clustering
	Data Analy-	ensemble	APMM standard com-	of data sampling, variety	method based on subsets
	S1S	selection	pared to NMI proposed	and effect of noise and	of all primary take clus-
		based on a	EEAC method	data loss	tersl
		new cluster			
		stability			
0.00		measure			D OPC
S23	IEEE trans-	Iranster	TCE-TCES can better	Deploy TCE-TCES in a	Propose a CES trans-
	actions on	clustering	balance quality and di-	distributed environment	ter algorithm that utilizes
	cybernetics	ensemble	versity, as well as produce	to increase its perfor-	the relationship between
		selection	more Suitable clustering	mance and test it with	quality and diversity in a
			results	different types of data	source dataset
				sets, reviewing other hy-	
				brid strategies between	
				transfer learning and CE	
S24	Information	Moderate	The results suggest that	Find a combination of de-	Use the ARI to mea-
	Fusion	diversity	selection by median di-	sign discoveries, consen-	sure diversity in cluster
		for bet-	versity is no worse and in	sus functions and set size	groups and propose a di-
		ter cluster	some cases is better than	for a suitable data	versity measure and pro-
		ensembles	building and holding on		vide accurate clustering
			to one ensemble		in groups, also propose a
					procedure for construct-
					ing a cluster group.

ID	Journal	Title	Advantages	Disadvantages	Description
S25	Pattern	Resampling-	The results obtained	Most studies focus on	Proposing a new method
	recognition	based se-	showed that the method	the problem of creating a	of clustering sets as a
	letters	lective	of selective clustering	diverse group committee	method of selective clus-
		clustering	sets based on re-sampling	from a centralized clus-	tering sets based on re-
		ensembles	has a better solution	tering group and using	sampling
			compared to the methods	similar methods or imple-	
			of traditional clustering	menting a clustering algo-	
			sets.	rithm.	
S26	IEEE Access	Two-level-	Selection of basic cluster-	Most selective clustering	Proposing a new selective
		oriented	ing partitions with vari-	algorithms evaluate di-	clustering group scheme.
		selective	ety and quality based on	versity and quality with	k-means combination and
		clustering	the proposed method and	NMI and a combination	hierarchical clustering al-
		ensem-	experimental analysis of	of indicators, which are	gorithm alternately with
		ble based	the validity and stability	based on clustering labels	random design method in
		on hybrid	of the proposed design	without considering the	the production process of
		multi-modal	or the proposed dosign	data structure.	base clustering partitions
		metrics.			to produce various base
					partitions
S27	Connection	A new	The high quality of the	Creating consensus based	Proposing a surprise mea-
	Science	method for	consensus obtained with	on surprising criteria at	sure at the cluster level to
		weighted	this proposed method	the cluster level based on	define clustering compe-
		ensemble	compared to the well-	the feasibility of selecting	tence to reflect the level
		clustering	known clustering set	clusters, rather than clus-	of agreement and dis-
		and coupled	algorithms in different	tering	agreement between clus-
		ensemble	benchmark datasets		ters
		selection			
S28	In Aus-	An Au-	The results demonstrate	Expand the algorithm	Proposing a method for
	tralasian	tomatic	that Auto-CES can ef-	in a large-scale envi-	selecting Auto-CES for
	Database	Pruning	fectively and efficiently	ronment including multi-	pruning random forest
	Conference	Method	prune the forest trees	cluster spark platforms.	classifier (BC-RF) based
		Through			on two main steps - clus-
		Clustering			tering and selection
		Ensemble			
		Selection			
S29	International	An efficient	Significantly improve	The existence of defects	Proposing a new selec-
	Journal of	clustering	clustering performance	in the traditional selec-	tive clustering group al-
	Autonomous	ensemble	using the proposed	tive clustering set and the	gorithm. Using the algo-
	and Adap-	selection	algorithm	lack of quality and ac-	rithm, first evaluate the
	tive Com-	algorithm.		curacy and the fact that	validation of the cluster-
	munications			the selection of clustering	ing and select the best
	Systems			partitions behave equally.	quality as the reference
					partition
S30	Journal of	Cluster	High performance and	Failure to consider a cri-	Development of a clus-
	Intelligent	ensemble	better advanced cluster	terion for deciding on the	tering set method based
	and Fuzzy	selection us-	group methods with the	participation of a cluster	on cluster selection, in-
	Systems,	ing balanced	proposed cluster set ap-	in a group	venting a standard called
		normalized	proach		BNMI to test cluster sta-
		mutual			bility to select a subset of
		information			the most stable cluster

ID S31 S32	Journal Turkish Journal of Electrical Engineer- ing and Computer Sciences International Conference on Com- puter Sci- ence and Engineering (UBMK)	Title Clustering ensemble selection based on the extended Jaccard measure Comparison of Different Clustering Ensembles by Solution Selection Strategy	Advantages The effectiveness and ro- bustness of the proposed algorithm compared to the complete set The clustering set, es- pecially the truncated BAGI, performs better than individual cluster- ing methods by more accurately labeling data points, increasing robust-	Disadvantages exploring the effects of noise and missing val- ues of the data upon the EJ criterion and also on studying the application of the proposed method to different domains. Combining multiple strategies in a single grouping model to better represent the available data, determining the number of automatically selected solutions is one	Description suggests a new hierar- chical selection algorithm using a diversity/quality measure based on the Jaccard similarity mea- sure Design eight different groups of clustering using several clustering algorithms and compare in terms of accuracy with each other and evaluate the impact of these
S33	International Conference on Social Computing and Social Media	Ensemble selection for community detection in complex networks	High performance	Selected solutions is one of the problems of this method. Planning in large-scale data sets to confirm pre- liminary results and com- pare with other group se- lection approaches based on tacit quality estima- tion	the impact of these factors and propose a so- lution selection strategy based on accuracy Proposing a diagram- based ensemble election approach and considering quality and diversity criteria and various quality criteria such as cluster-oriented quality and network-oriented
S34	arXiv preprint arXiv	ensemble selection using di- versity and frequency	Improve clustering accu- racy by evaluating natu- ral data, especially con- sidering the actual num- ber of split clusters and the high performance of this method	Test this method using other diversity measures to find the optimal set size selected by the ESDF	quality functionsPropose an efficientmethod for ensembleselection for a largeensemble and prioritizepartitions in the setbased on variability andfrequency
S35	In 2014 Seventh in- ternational conference on con- temporary computing (IC3)	Leveraging frequency and diver- sity based ensemble selection to consensus clustering	Ensure the internal quality of clustering uniformly and without reduction with a greedy strategy for selecting clusters in a repetitive consensus generation technique and better clustering accuracy for the dataset	Testing the method us- ing different criteria of diversity and importance of understanding the the- oretical background of QPA with the criterion of general cluster quality for any desired cluster shape (Quality-based pair ag- gregation algorithm)	Investigate the need to se- lect a subset of clusters to combine the best clus- ters of all existing clusters and overcome the impos- sible computational com- bination of partitions at the same time
S36	In 2016 IEEE In- ternational Conference on Au- tomation Science and Engineering (CASE) (pp. 885- 890). IEEE.	Model re- duction method based on selective clustering ensemble al- gorithm and Theory of Constraints in semicon- ductor wafer fabrication	Guide construction man- agers to set the right tim- ing rules based on a de- tailed model	Consider most of the dispatching rules	Propose a model re- duction method based on clustering selection algorithm (SCEA) and constraint theory (TOC) to reduce computer runtime while maintain- ing the model's ability to correctly evaluate scheduling rules
S37	In Inter- national Workshop on Multiple Classi- fier Sys- tems (pp. 179-189). Springer, Berlin, Heidelberg.	Selective clustering ensemble based on covariance	Improve clustering per- formance with the pro- posed algorithm	Further study of the case of selective cluster- ing based on covariance and their use for prac- tical applications, adding semi-regulatory informa- tion to this algorithm and achieving parallelization of this algorithm	Propose a method for measuring the diversity of basic clustering results and a covariance-based selective clustering set al- gorithm

ID	Journal	Title	Advantages	Disadvantages	Description
S38	In 2015	Selective	Using binary PSO op-	Improving the framework	Proposing a hybrid col-
	10th In-	Hierarchical	timization algorithm to	and methods with further	lection model (MEHM)
	ternational	Ensemble	find a group of MEHMs	studies in other industrial	based on the bagging al-
	Confer-	Modeling	to reduce errors and in-	processes	gorithm. Proposing a
	ence on	Approach	crease variability		new selective hierarchi-
	Intelligent	and Its			cal set modeling approach
	Systems and	Application			to improve the accuracy
	Knowledge	in Leaching			and generalization of the
	Engineering	Process			set model and leaching
	(ISKE) (pp.				model
	554-561).				
	IEEE.				
S39	Fundamenta	Social Net-	High performance of	Improve modeling Opti-	Propose converting the
	Informati-	work Op-	cluster group selection	mization work to solve	similarity matrix to a
	cae, $176(1)$,	timization	based on the proposed	the optimal result for	modularity matrix and
	79-102	for Cluster	optimization compared	each IP model for large-	applying a new consensus
		Ensemble	to other complete set	scale datasets, solve the	function to optimize the
		Selection	approaches	sus function to sutomat	modularity measurement
				ically determine the ap	
				propriate number of clus	
				ters	
S40	In Journal	The Re-	Significantly improved	How to optimize the	Proposing a new selec-
	of Physics:	search on	performance compared	selected clustering algo-	tive set algorithm based
	Conference	Clustering	to other clustering algo-	rithm and reduce the	on semi-monitored K-
	Series (Vol.	Ensembles	rithms with the proposed	time complexity of the al-	means clustering. Check
	1732, No. 1,	Selection Al-	algorithm	gorithm to have a better	through a large number
	p. 012074).	gorithm		application algorithm	of tests for the validity of
	IOP Pub-	based			the proposed algorithm
	lishing.	on Semi-			to deal with the cluster-
		supervised			ing of high-dimensional
		K-means			data
ID	Journal	Clustering.	Advantages	Disadvantages	Description
S41	2014 In-	Wisdom	Checking the satisfaction	include decentralization	Describing the WOC phe-
	ternational	of Crowds	of the relevant condi-	criteria for generating	nomenon to the prob-
	Academic	Cluster	tions and setting the	primary results. inde-	lem of cluster set. in-
	Conference	Ensemble	main problems of the	pendence criteria for the	troduction of social sci-
	of Post-	Selection.	WOCCE algorithm with	base algorithms, and	ences, conditions of inde-
	graduates,		three threshold parame-	diversity criteria for the	pendence and decentral-
	NUAA		ters on appropriate values	ensemble members	ization in the field of clus-
					ter group research with
					WOC research.
S42	arXiv	Selective	High efficiency and effec-	Overlap problems of clus-	Using Kappa to select
	preprint	clustering	tiveness of the proposed	tering ensemble, commu-	base partitions and F
	arXiv:	ensemble	method	nity diagnosis ensemble	score for weight clusters
	2204.11062.	based on			as a new method for clus-
		kappa and			ters and partitions lead-
		F-score			ing to a new SCE method

	,						
Algorithm used for BC	K-means	k-means	k-means	k-means	Spectral Clustering, Nyström ap- proximation, random scal- ing parameter and random initialization of k-means	k-means, Spectral Clustering	k-modes clustering algorithm
Size of selected ensemble	Automatic	Automatic	fixed	fixed	fixed	fixed	fixed
consensus function result	for combining the full en- semble members and com- bining different subsets of full ensemble members.	to combine the solutions to produce a final consen- sus clustering and show the results of the CSPA approach	for deriving the final clus- ters from co-association matrix	seems to be favored by the quality and not by the cardinality or diversity of the selected	consensus function is needed to combine clus- tering and produce a final partition	to get the final result and get performance cluster- ing robustness.	Using the CSPA consen- sus function, the SIVID algorithm obtains the best performance on eight of the twelve data sets
Consensus Function	CSPA, HGPA	spectral clustering, HGPA, CSPA	CSPA, HGPA, MCLA, Average link	CSPA, HGPA, MCLA, Average Linkage	CSPA, MCLA	Normalized Cut Algo- rithm	SL, CL, CSPA, HGPA, MCLA
Diversity Measure	IMN	IWN	IMN	multiple criteria	NMI, ARI	NMI, ARI, JI	CA NMI, ARI
Diversity Approach	Non Pairwise- Hybrid	Pairwise	Non- pairwise	Pairwise	Non- pairwise	Pairwise	Non- pairwise
DataSet	Soybean, Ecoli, Breast tissue, Iris, Wine, Glass, Breast cancer, Satim- age	Waveform, segmentation, Statlog, Thyroid, Soybean, Iris, Hearts, Wine, SPECTheart, Glass, Lung	Breast-cancer, Iris, Bupa, Sa- heart, Ionosphere, Glass, Halfring, Galaxy, Yeast, Wine	Iris, Wine, Breast, Chart, Yeast, Articles, cbrilpirivson	Iris, Wine, Segmentation, Heart, Lung, wdbc, Sat. image, iono- sphere	Breast Cancer, Ecoli, Glass Identi- fication, Iris, Lung Cancer, Seeds, Soybean (Small), Statlog (Heart), Wine, Yeast	Zoo, promoter, hayes, dermatology, vote, balance, breastcancer, krvskp, mushroom, nursery, basehock, pc- mac
year	2015	2017	2019	2013	2011	2020	2017
ID	$\mathbf{S1}$	S2	S_3	S4	S5	$\mathbf{S6}$	S7

224

Table 14: Comparison of Clustering Ensemble Selection methods

Khalili, Rabbani

K-means	k-means algo- rithm	Spectral Clustering Nyström ap- proximation and random initialization of k-means	K-means, multiple algorithm	relative neighbor- hood graphs (RNG), neighbor- hood graph, k-nearest neighbor graph
fixed	fixed	fixed	fixed	fixed
to select k base cluster- ings from M candidates for clustering ensemble	Useful in reflecting the performance of selected partitions	The HPGA approach works poorly in consensus clustering. CSPA and MCLA are considered, but only MCLA is used for complexity	show the effect of the ag- gregation method on im- proving accuracy in the fi- nal results, WOCCE and the proposed algorithm have generated better re- sults in comparison with other basic and ensemble algorithms.	The approach is based on constructing a consensus graph out of the set of partitions to be combined
k-DPP	average-link hierarchical clustering algorithm based on the CO-matrix	CSPA, HPGA and MCLA,	WOCCE, APMM, MAX, and MCLA	CSPA
CA, NMI, ARI, SC, CHI	NMI, AC, ARI	NMI, ARI	NMI. APMM	NMI, ARI, VI
pairwise	pairwise	pairwise	Non- pairwise	pairwise
S1, Jain, Flame, Pathbased, Aggre- gation, D31, Iris, Heart, Wine, Pro- tein localization sites, Australian credit approval, Waveform	Iris, Wine, Seeds, Glass, Pro- tein Localization Sites, Ecoli, LI- BRAS Movement Database, User Knowledge Modeling, Vote, Wis- consin Diagnostic Breast Cancer, Synthetic Control Chart Time Se- ries, Student, Australian Credit Approval, Cardiotocography, Wave form Database Generator, Parkin- sons Telemonitoring, Statlog Land- sat Satellite, Tr12, Tr11, Tr45, Tr41, Tr31, Wap, Hitech, Fbis	Iris, Segmentation, Lung, WDBC, Sat.image	Half Ring, Iris, Balance Scale, Breast Cancer, Bupa, Galaxy, Glass, Ionosphere, SA Heart, Wine, Yeast, Pendigits, Statlog, Optdig- its, Arcene, CNAE-9, Sonar	Zachary, US Politics, Dolphins
2019	2018	2012	2016	2015
$\mathbf{S8}$	S9	S10	S11	S12

112	IRIS, WDBC, Soybean	Non- pairwise	IMN	CSPA	to produce the final result	fixed	k-means
	Problem 1 (blobs), Problem 2 (moon)	pairwise	Davies- Bouldin Index, Beni-Xie Index, Figengap Index	consensus clustering is given by the aggregate membership matrix(KM, FCM, AGPCM, SC(fix), SC(far1), SC(var1),	Although the overall purity of the ensembles is slightly smaller than that of the best performing clusterings, the method clearly points out the most suitable paradigm in each case.	fixed	k-means, fuzzy c- means, Asymmet- ric Graded Possibilistic c-Means, Spectral Methods
	Landsat, Dna, Wpb, Vehicle, Vote, Heart, Breast, Msplice	pairwise	IMN	CSP, HGP, MCL, DP	DP algorithm is logical and can further improve clustering performance	fixed	single spectral clustering
	Iris, Wine, Segmentation, Heart, Lung, WDBC Sat.image, Iono- sphere, Vehicle, Sonar	pairwise	ARI	CSPA, HPGA, and MCLA	only MCLA and HPGA are used for complexity	fixed	spectral clus- tering by projecting the original sam- ple space into a low dimen- sion space, Nyström ap- proximation, the random scaling pa- rameter, and the random of k-means of k-means
	Adult, Australian, cancer, census, coil2000, column, credit, crowd, eeg, fars, flare, FPS-5, german, let- ter, magic, market, nursery, optdig- its, ring, sick, spambase, thyroid, twonorm, waveform, wine, Number of bests	pairwise	convenience	Algorithm (ES-JSS)(base learn- ers)	ES-JSS achieved the best performance on %64 data sets	fixed	spectral clus- tering., struc- tural sparsity

Khalili, Rabbani

Single-Link and K-means	K-means			K-means,	Maximal sim- ilar features	K-means,	spectral	clustering				K-means				K-means,	spectral	clustering
fixed	Fixed			Fixed		Fixed						Fixed				Fixed		
applied the EAC, SWEACS and JWEACS approaches using the KM, SL, AL andWard-Link (WR) [23] clustering algorithms to produce the consensus partitions.	to obtain a consensus	clustering solution, whose NMI value is then com-	puted using the class label information	robust to the choice of the	consensus function	Ncut is able to provide	more accurate and sta-	ble results, and is more	suitable to serve as the	compared with KM, SC	and SOM	the most effective consen-	the exercition results from	archical clustering algo-	rithm	can be applied to parti-	tion	
Single- Link (SL), Average- Link (AL), Complete- Link (CL), K-means (KM), CLARANS (KM), CLARANS (CLR), CLARANS (CHM), CURE, DB- SCAN and STING	CSPA			HAC-AL		Normalized	cut Algo-	rithm				Average link				Normalized	cut Algo-	rithm
ANM I	IMN			IMI		NMI,	dominant	ratio,	5quared-	distortion,	Disassoci- ation	APMM				NMI, ARI		
Non pair- wise	Pairwise-	Non Pair- wise		Non Pair-	wise	Non-	pairwise					pairwise				Pairwise,	Hybrid	
Bars Breast C. Cigar Half Rings Iris Log Yeast Std Yeast Optdigits Spi- ral	CBIR, CHART, EOS, ISOLET6,	SEGMENTATION, WINE		Iris, Soybean, Wine, Thyroid		Derma, Breast, Heart, Soybean,	Image, Ecoli, Seeds, Lymphoma,	SRBCT, Gliomas, ET-CNS, M-	tissue			Breast-Cancer, Iris, Bupa, SA-	Heart, lonosphere, Glass, HalfRing, Colovy, Voost Wino	Galaxy, Icase, WILLC		OVERVIEW OF THE 20NG	DATASET	
2009	2008			2009		2014						2014				2018		
S18	S19			S20		S21						S22				S23		

K-means, nierarchical Lustering ulgorithm	ζ-means	X-means, nierarchical lustering dgorithm vith random rojection	<u><u></u></u> <u></u>
Fixed	Fixed	Fixed H	Fixed
The consensus function was k-means clustering using the consensus ma- trix as the input data. This choice was based on a small pilot set of experi- ments which showed this consensus function to be superior to the one used before for the current set- up	one with the maximum average normalized mu- tual information is re- turned as the final clus- tering result, can achieve better solutions	Basic clustering partitions with variety and high quality as well as a reli- able source for clustering selection	can be concluded that CES(coupled ensemble selection) outperforms other methods in most of the data sets and as an efficient ensemble selection technique
K-means	CSPA, HGPA, MCLA	selective clustering ensemble algorithm MMSCE based nulti-modal metrics	WHAC, CES, LWEA, EAC, WEAC-AL, PTA-AL, PTA-AL, PTA-CL, PTA-SL, PTGP, CSPA, HGPA, MCLA, MCLA, IVC, IPVC,
ARI	Rand Index method	NMI, Tanimoto coeffi- cient, Silhoutte coeffi- cient, CH	IMN
Pairwise- Non Pair- wise	Pairwise- Non Pair- wise	Pairwise- Non Pair- wise	pairwise
Four-gauss, Easy-doughnut, Diffi- cultdoughnut, Glass, Wine	IRIS, WINE, HEART, LUNG, WDBC, VEHICLE, SEGMENTA- TION, SAT. IMAGE	Iris, wine, breast cancer, pima in- dian woman diabetes(pima 1), pima Indians diabetes(pima2)	Iris, Wine, Glass, IS, Ecoli, SPF, Yeast, Avila, LR
2006	2009	2018	2021
S24	S25	S26	S27

Breiman as CART-based RF (BC -RF)	k-means	kmeans	k-means	k-means, EM (expecta- tion maxi- mization), hierarchi- cal, canopy, farthest first,	Graph-based cluster ensem- ble selection algorithm	k-means
Fixed	Fixed	Fixed	Fixed	Fixed	fixed	fixed
Collect the most accurate trees based on the area under the curve	to fuse to get the final re- sult	the best option for con- sensus function is to apply the algorithm named average-linkage on E-EAC-based co- association extracted by ItoU equation.	used to obtain the con- sensus solution and clus- ter ensemble selection re- sults with a hierarchical method	Clustering ensemble, especially pruned BAGI, outperform single cluster- ing methods by labelling the data points more ac- curately while increasing the robustness and effec- tiveness	compute a consensus par- tition applying a CSPA ensemble clustering ap- proach on the whole set of obtained partitions and set of partitions selected	shows datasets, CSPA and HGPA produce bet- ter consensus when ESDF is used as the ensemble selection procedure rather than CAS
CLUB-DRF applies the K-MODES clustering model to group the trees	CSPA	CSPA, HGPA and MCLA, FCM, hi- erarchical, E-EAC	CSPA, HGPA and MCLA,	Single, voted (seeds), pruned, bagi, pruned (bagi), Bag2, rs, pruned (rs)	CSPA	CSPA, HGPA,
F-measure	ARI	IWN	ЕJ	Using ac- curacy cri- teria	ARI, NMI,	ARI
pairwise	pairwise	pairwise	pair-wise, hybrid	pairwise	pairwise	pairwise
Soybean, Breast cancer, Wilt, Sonar	GLASS, IRIS, WDBC, Soybean, Heart, WINE	Wine, Breast-Cancer, Bupa, Iono- sphere, Iris, Glass, WDBC, Yeast, Galaxy, SAHeart, Image, Lym- phoma, OQ, Pima, Sonar, MNIST 1vs2, MNIST, 2-Spiral, Aggrega- tion, Flame, 3-Spiral, Open Flame, Halfring	Jain, Path bass, Aggregation, Soybean(small), Breast-tissue, Iris, Wine, Seeds, Glass, Ecoli, Breast- cancer, Yeast, Segmentation, Satimage	Blogger, car, dermatology, ecoil, haberman, heart-statlog, hepati- tis, iris, lymphography, segment, seismic-bumps, sick, wine, zoo	Zachary, US Politics, Dolphins	Chart, Segmentation, Ecoli, Yeast, Iris, Glass, Wine, Vehicle
2018	2015	2020	2021	2018	2015	2015
S28	S29	S30	S31	S32	S33	S34

k-means	k-means	K-Means, AP, and FCM	SVM algo- rithm and base vec- tor (BV) bootstrap sampling algorithm
fixed	fixed	fixed	fixed
CSPA and HGPA produce better consensus when ESDF is used as the ensemble selection proce- dure instead of CAS	Measure the importance of machinery comprehen- sively	ALL is directly ensemble, RSE is selective ensemble based on random, and CSEV is average value of selective ensemble based on covariance,. We can obtain two conclusions based on above results. Firstly, the clustering ensemble result is better than base cluster ing. Secondly, the CSEV is better than base clustering, ALL, and RSE,	the NSMEHM does con- sistently improve the pre- dicted precision versus MM, SVM and MEHM for leaching process
CSPA/HGPA	selective clustering ensemble algorithm (SCEA), Theory of Constraints (TOC)	CSPA(ALL, RSE, CSEV)	bagging ensemble (MEHM), particle swarm op- timization (PSO) algo- rithm
ARI	MID	covariance	root mean squared error (RMSE) and max- imal absolute error (MAXE)
pairwise	pairwise	pairwise	pairwise
Chart, Segmentation, Ecoli, Yeast, Iris, Glass, Wine, Vehicle	24 workstations and 72 machines	Iris, Wine, Zoo, Glass, Ionosphere, Sonar, Balance scale, Pima, Spect- heart, Hepatitis, Bupa, Habermans survival, Wdbc, Statlog, Vehi- cle, Breast-cancer-Wisconsin, Car, Credit-g, Vowel, Lymphography	dataset with thirty-six groups of data can be obtained and each group has twelve samples. The dataset is divided into two sets av- eragely
2014	2016	2013	2015
S35	S36	S37	S38

Khalili, Rabbani

K-Means,	k-means al- gorithm and the Semi- supervised k-means clustering algorithm	using different algorithms and changing the number of partitions	K-means
fixed	fixed	fixed	Fixed
the proposed sum linkage algorithm as the modular- ity based consensus func- tion of cluster ensemble selection is definitely the best option to cluster an input data,	projects the high- dimensional space data to the low-dimensional space, improve the accu- racy of the initial cluster member.	MCLA, MAX and WOCCE have generated better results in com- parison with CSPA and HGPA	to generate the final par- tition
EEAC(Single, Average, Complete), Modularity (Sum Link)	clustering ensemble al- gorithm based on semi- supervised K-means cluster- ing(skc), SKCSE(witho reference partition),	MCLA, MAX and WOCCE	Hierarch ical ag- glomerative clustering with aver- age linkage (HAC-AL)
AAPMM	IMN	IWN	use kappa and F- score as evaluation metrics, instead of NMI
pairwise	pairwise	pairwise	pairwise
BreastTissue, Iris, Wine, Glass Identification, Haberman's Sur- vival, Vertebral Column 3C, Ecoli, Liver Disorders Bupa, Digits, Yeast, Half Rings.	Wine, Waveform(version1), TSE, Libras Movement, WLEMIMU	Half Ring, Iris, Balance Scale, Breast Cancer, Bupa, Galaxy, Glass, Ionosphere, SA Heart, Wine, Yeast, Pendigits, Statlog, Optdigits	Iris, Wine, Seeds, Glass, Protein Localization Sites, Ecoli, LIBRAS Movement Database, User Knowl- edge Modeling, Vote, Wisconsin Di- agnostic Breast Cancer, Synthetic Control Chart Time Series, Aus- tralian Credit Approval, Cardioto cography, Wave, form, Database Generator, Parkinsons Telemoni- toring, Statlog Landsat Satellite, Tr12, Tr11, Tr45, Tr41, Tr31, Wap, Hitech, Fbis
2020	2021	2014	2022
S39	S40	S41	S42

Figure 6: Diagram based on the year number of studies

4.2 RQ2: What is the diversity?

In general, clustering methods are divided into partition categories and hierarchical methods. A single clustering in partition methods returns the final clusters, and in hierarchical methods, nested clusters return the dataset obtained from cumulative algorithms and partitioning algorithms. The point algorithm considers each point (pattern) as a cluster and identifies and merges the nearest cluster to create the next cluster. Dividing algorithms select the clusters produced in each step and divide them into two smaller clusters. There are some basic clustering algorithms; a simple algorithm, called the k-means algorithm, has been used by many researchers. The k-means clustering algorithm is applied as a partition classification, only in numerical data sets[36]. In the k-means algorithm, K clusters are developed so that the points of the cluster itself are closer to the center of their corresponding cluster than the center of the other clusters. By selecting the K points that are the center of the cluster, create clusters. The average points are then measured as centers, which are the average vectors. Eventually, this process will produce a new cluster by the new center[26]. The algorithm will run until the centers change. The steps of the k-means algorithm (K-means algorithm to find k clusters) are shown in the following algorithm:

- 1. Select k points as the centers of the clusters
- 2. Assign all points to closer centers and create k clusters
- 3. Redesign the centers of the clusters
- 4. Ensure that the central points of the clusters do not change by repeating steps 2 and 3.

In addition, hierarchical algorithms include Single link [46], Average link [40], and Complete link [31]. If two partitions are different, the labels of one partition are not the same as the labels of the other partitions. Normalized Mutual Information (NMI)[47] and Modified Rand Index (ARI) [25] are used for partition quality and diversity measurement. The ARI and NMI quality criteria are obtained by the following method:

Normalized Mutual Information (NMI): The Normalized Mutual Information proposed by [47] can be defined as follows:

$$NMI(\pi_a, \pi_b) = \frac{-2\sum_{i=1}^{k_a} \sum_{j=1}^{k_b} n_{ij} \log(\frac{n.n_{ij}}{n_{ia}.n_{bj}})}{\sum_{i=1}^{k_a} n_{ia} \log(\frac{n_{ia}}{n}) + \sum_{j=1}^{k_b} n_{bj} \log(\frac{n_{bj}}{n})}$$
(4.1)

Adjusted Rand Index (ARI): The Adjusted Rand Index [25] is defined as follows:

$$ARI(\pi_a, \pi_b) = \frac{\sum_{i=1}^{k_a} \sum_{j=1}^{k_b} {\binom{n_{ij}}{2}} - t_3}{\frac{1}{2}(t_1 + t_2) - t_3}$$
(4.2)

where,

$$t_1 = \sum_{i=1}^{k_a} \binom{n_{ia}}{2}, \qquad t_2 = \sum_{j=1}^{k_b} \binom{n_{bj}}{2}, \qquad t_3 = \frac{2t_1t_2}{n(n-1)}$$
(4.3)

Diversity measures could be separated into pair-wise, non-pair wise and hybrid.[30] The selected articles used three methods of diversity approach, which are 58% pair-wise, 34% non pair-wise, and 8% Hybrid. Table 10 and Figure 7 show the number of studies on the methods and diversity approach, respectively. It can be seen that three methods have been studied, mostly in pair-wise methods with 58%, then non pair-wise with 34%, and finally Hybrid with 8%.

Table 15: Diversity Approach in the clustering ensemble selection

NO.	Method	%	Studies ID
1	Pairwise	58	S2, S4, S6, S8, S9, S10, S12, S14, S15, S16, S17, S19, S22, S23, S24, S25, S26, S27,
			S28, S29, S30, S31
2	Non-pairwise	34	S1, S3, S5, S7, S11, S20, S13, S18, S19, S21, S24, S25, S26
3	Hybrid	8	S1, S23, S31

Figure 7: Diversity Approach

4.3 RQ3: How base clusterings are generated in different methods?

For diversity generation, there are different methods of base clustering, which are fully described in 3.4. According to the studies performed on the articles listed in Table 11, 20 articles from the method number one, 13 articles from the method number 2, 7 articles from the method number 3, and 4 articles from the method number 5 have been used for diversity generation (base clustering). According to the table presented below, the most articles (20%) were of the method number 1 and the least articles (4%) were of the method number 5 (see Table 11 and Figure 8).

Table 16: Generate Steps For Basic Clustering in the clustering ensemble selection

NO.	Generate Diversity	%	Studies ID
1	a	45	S23, S1, S8, S7, S3, S9, S2, S4, S13, S42, S22, S27, S35, S34, S33, S31, S30,
			S29, S39, S19
2	b	30	S10, S15, S6, S21, S5, S18, S24, S12, S20, S14, S41, S38, S37
3	С	16	S19, S25, S11, S17, S36, S32, S28
4	е	9	S26, S16, S40, S19

Figure 8: Generate Steps For Basic Clustering

4.4 RQ4: Which measures are worked in CES?

Some criteria are useful for evaluating the quality of data partitions, e.g., quantitative criteria. Most of the cluster validity criteria could be separated into two groups of internal and external criteria. Internal criteria examine the structure of data using a clustering algorithm considering a criterion defined between data, as well as clustering without resorting to the reference partition. On the other hand, external criteria measure the difference between a structure based on the class label and the structure defined by a cluster. Here are some commonly used measure: And the following table lists the number of measures used.

Internal quality measures:

Davies-Bouldin Index (DBI): The Davies-Bouldin Index [10] is defined as follows:

$$DBI_{k} = \frac{1}{k} \sum_{h=1}^{k} F_{C_{h}}$$
(4.4)

where,

$$F_{C_h} = \max_{C_j \neq C_h} F_{C_h C_j}, \qquad F_{C_h C_j} = \frac{f_1(C_h) + f_1(C_j)}{f_2(C_h, C_j)}$$
(4.5)

Silhouette Index (SI): The Silhouette Index [29] is defined as follows:

$$SI(k) = \frac{1}{k} \sum_{h=1}^{k} SI_h$$
 (4.6)

where,

$$SI_{h} = \frac{1}{|C_{h}|} \sum_{i=1}^{|C_{h}|} \left[\frac{b_{i}^{h} - a_{i}^{h}}{max\{a_{i}^{h}, b_{i}^{h}\}} \right]$$
(4.7)

$$a_{i}^{h} = \frac{1}{|C_{h}| - 1} \sum_{l=1, l \neq i}^{|C_{h}|} d(x_{i}^{h}, x_{l}^{h}), \qquad b_{i}^{h} = \min_{j \in \{1, \cdots, k\}, j \neq h} \left\{ \frac{1}{|C_{j}|} \sum_{l=1}^{|C_{j}|} d(x_{i}^{h}, x_{l}^{j}) \right\}$$
(4.8)

External quality measures:

Disagreement and Agreement Index (DAI): The Disagreement and Agreement Index was proposed by [57] as an external measure. DAI is defined as:

$$DAI(k) = \frac{1}{L} \sum_{i=1}^{L} \tau_k(\pi^*, \pi_i)$$
(4.9)

where,

$$\tau_k(\pi^*, \pi_l) = \frac{\sum_{i < j} 1\{m_{ij}^* \neq m_{ij}^l\}}{\sum_{i < j} 1\{m_{ij}^* = m_{ij}^l\}}, i = \{1, \cdots, k^*\}, j = \{1, \cdots, k_l\}$$
(4.10)

$$m_{ij}^{l} = \begin{cases} 1, & x_{i} \text{ and } x_{j} \text{ are in clustering } \pi_{l}; \\ 0, & \text{else.} \end{cases} \quad (4.11)$$

F-measure (FM): The F-measure (F-score) [33] is defined as follows:

$$FM(\pi_a, \pi_b) = max \sum_{i=1}^{k_a} \frac{2 \times n_{ia} \times \left(\frac{n_{ij}}{n_{ia}} + \frac{n_{ij}}{n_{jb}}\right)}{n \times \left(\frac{n_{ij}}{n_{ia}} + \frac{n_{ij}}{n_{jb}}\right)}$$
(4.12)

Selection of clusterings:

Recently, a little research has concentrated heuristically on how to select subset of ensemble members considering quality and diversity [35, 3].

Selective clustering ensemble based on covariance (SCEBC): A diversity measure was introduced by [35] considering the covariance. CES based on APMM criterion: The authors in [3] introduced a novel criterion, called Alizadeh-Parvin-Moshki-Minaei (APMM) as well as an innovative method called Extended Evidence Accumulation Clustering (EEAC). which can be computed by means of Eq. (4.13).

$$APMM(C_{i}^{a}, P^{b^{*}}) = \frac{-2 n_{i}^{a} \log\left(\frac{n}{n_{i}^{a}}\right)}{n_{i}^{a} \log\left(\frac{n_{i}^{a}}{n}\right) + \sum_{j=1}^{k_{b^{*}}} n_{j}^{b^{*}} \log\left(\frac{n_{j}^{b^{*}}}{n}\right)}$$
(4.13)

Each entry of the co-association matrix in this method is computed as follows:

$$C(i,j) = \frac{n_{ij}}{\max(n_i, n_j)} \tag{4.14}$$

The types of internal and external majors used in the articles are listed according to Table 12. According to the reviews conducted on the articles, the NMI measure has been used more.

4.5 RQ5: Which journal have paid more attention to CES ?

All the resources, various publication channels, and the number of papers per publication source are presented in Table 13. Three publication channels were determined: journal, conference, and workshop. Among the 42 selected studies, 26 papers (62%) had been published in journals, 14 papers (33%) had been presented at conferences, and 2 papers (5%) came from a workshop. Table 13 demonstrates the distribution of the selected studies in terms of the publication sources, and Figure 9 shows the publication venue.

5 Conclusion and future work

This systematic mapping study (SMS) analyzed and synthesized articles related to clustering ensemble selection. This is an effective technique for improving the quality of clustering solutions. A total of 42 articles were published by Hadjitodorov from 2006 to August 2022, based on the year of publication. Basic clustering was used to generate diversity and the criteria applied to composite clustering. the most of the articles were published in 2015 and the

NO.	Diversity Measure	Studies ID	NO.	Diversity Measure	Studies ID
1	NMI	S1, S2, S3, S5, S6, S7, S8, S9,	17	Dominant raito	S21
		S10, S11, S12, S13, S15, S19,			
		S20, S21, S23, S26, S27, S30,			
		S33, S40, S41			
2	ARI	S5, S6, S7, S8, S9, S10, S12,	18	Squared Error Distortion	S21
		S16, S23, S24, S29, S33, S34,			
		S35			
3	Multiple criteria	S4	19	Disassociation	S21
4	JI	S6	20	RI method	S25
5	CA	S7, S8	21	Tanimoto coefficient	S26
6	SC	S8	22	Silhoutte coefficient	S26
7	CHI	S8	23	СН	S26
8	AC	S9	24	F-measure	S28, S42
9	APMM	S11, S22	25	Ej	S31
10	VI	S12	26	Accuracy criteria	S32
11	Davies Bouldin Index	S14	27	MID	S36
12	Beni Xie Index	S14	28	Covariance	S37
13	Eigengap Index	S14	29	RMSE	S38
14	covariance	S37	30	MAXE	S38
15	F-measure	S28, S42	31	AAPMM	S39
16	ANMI	S18	32	Карра	S42

Table 17: Diversity Measure in the clustering ensemble selection

Figure 9: Publication Venue

smallest number of them in 2006 and 2008. The pair-wise diversity with 58% was a diversity method that was most frequently used in clustering ensemble selection. In addition, most of the articles have used the NMI measure to evaluate the cluster quality, and the method of valuing the initial parameter has been more-commonly used for the generation of diversity. According to the results of this research, the trade-off between diversity and quality (considering both at the same time) can be studied and evaluated in the future. Moreover, clustering ensemble selection has not been done on text yet, which is a gap recommended to be filled by future research.

Table 18: Publication venues

P.Ch*	Publication venue (Number of studies)
	Engineering Applications of Artificial Intelligence(2)
	Neurocomputing(1)
	Artificial Intelligence Review(1)
	Data Mining and Knowledge Discovery(1)
	Pattern Recognition Letters(2)
	Pattern Recognition(3)
	Soft Computing(1)
	ACM Transactions on Knowledge Discovery from Data(1)
-	In Recent Advances of Neural Network Models and Applications, Springer, Cham(1)
na	Wuhan University Journal of Natural Sciences(1)
	Statistical Analysis and Data Mining(1)
0	Intelligent Data Analysis(1)
ſ	IEEE transactions on cybernetics(1)
	Information Fusion(1)
	IEEE Access(1)
	Connection Science(1)
	International Journal of Autonomous and Adaptive Communications Systems(1)
	Journal of Intelligent & Fuzzy Systems(1)
	Turkish Journal of Electrical Engineering & Computer Sciences(1)
	arXiv preprint arXiv(2)
	Fundamenta Informaticae(1)
	International Conference on Neural Information Processing, Springer(1)
	International Conference on Fuzzy Systems and Knowledge Discovery, IEEE(1)
	In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis
	and Mining(1)
	In 2012 IEEE Ninth International Conference on e-Business Engineering, IEEE(1)
e	In International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge
nc	Management, Springer(1)
re	International Joint Conferences on Artificial Intelligence(1)
Ife	In Australasian Database Conference(1)
00	International Conference on Computer Science and Engineering(1)
U U	International Conference on Social Computing and Social Media(1)
	In 2014 Seventh international conference on contemporary computing (1)
	In 2016 IEEE International Conference on Automation Science and Engineering, IEEE(1)
	In 2015 10th International Conference on Intelligent Systems and Knowledge Engineering IEEE(1)
	In Journal of Physics: Conference Series, IOP Publishing(1)
	2014 International Academic Conference of Postgraduates, NUAA(1)
•	In International Workshop on Multiple Classifier Systems, Springer, Berlin, Heidelberg. (1)
loi	
sh	
rk	
0M	In International Workshop on Multiple Classifier Systems (pp. 179-189). Springer, Berlin, Heidelberg. (1)

References

- D.D. Abdala, P. Wattuya, and X. Jiang, Ensemble clustering via random walker consensus strategy, 20th Int. Conf. Pattern Recogn., IEEE, 2010, pp. 1433–1436.
- [2] M.T. AL-Sharuee, F. Liu, and M. Pratama, Sentiment analysis: An automatic contextual analysis and ensemble clustering approach and comparison, Data Knowledge Engin. 115 (2018), 194–213.
- [3] H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin, Cluster ensemble selection based on a new cluster stability measure,

Intel. Data Anal. 18 (2014), no. 3, 389–408.

- [4] _____, To improve the quality of cluster ensembles by selecting a subset of base clusters, J. Experimen. Theor. Artific. Intel. 26 (2014), no. 1, 127–150.
- [5] J. Azimi and X. Fern, Adaptive cluster ensemble selection, Twenty-First Int. Joint Conf. Artific.l Intel., 2009.
- [6] L. Bai, J. Liang, H. Du, and Y. Guo, An information-theoretical framework for cluster ensemble, IEEE Trans. Knowledge Data Engin. 31 (2018), no. 8, 1464–1477.
- [7] V. Berikov, Weighted ensemble of algorithms for complex data clustering, Pattern Recogn. Lett. 38 (2014), 99–106.
- [8] I. Bifulco, C. Fedullo, F. Napolitano, G. Raiconi, and R. Tagliaferri, Robust clustering by aggregation and intersection methods, Int. Conf. Knowledge-Based Intel. Inf. Engin. Syst., Springer, 2008, pp. 732–739.
- T. Boongoen and N. Iam-On, Cluster ensembles: A survey of approaches with recent extensions and applications, Comput. Sci. Rev. 28 (2018), 1–25.
- [10] D.L. Davies and D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Machine Intel. (1979), no. 2, 224–227.
- U.M. Fayyad, C. Reina, and P.S. Bradley, *Initialization of iterative refinement clustering algorithms.*, KDD, 1998, pp. 194–198.
- [12] X.Z. Fern and C.E. Brodley, Random projection for high dimensional data clustering: A cluster ensemble approach, Proc. 20th Int. Conf. Machine Learn. (ICML-03), 2003, pp. 186–193.
- [13] _____, Solving cluster ensemble problems by bipartite graph partitioning, Proc. Twenty-First Int. Conf. Machine Learn., 2004, p. 36.
- [14] X.Z. Fern and W. Lin, Cluster ensemble selection, Statist. Anal. Data Min.: ASA Data Sci. J. 1 (2008), no. 3, 128–141.
- [15] A.L.N. Fred and A.K. Jain, Combining multiple clusterings using evidence accumulation, IEEE Trans. Pattern Anal. Machine Intel. 27 (2005), no. 6, 835–850.
- [16] A. Ghosh, J. Acharya, Cluster ensembles, Wiley Interdiscip. Rev.: Data Min. Knowledge Disc. 1 (2011), no. 4, 305–315.
- [17] J. Ghosh, A. Strehl, and S. Merugu, A consensus framework for integrating distributed clusterings under limited knowledge sharing, Proc. NSF Workshop on Next Generation Data Mining, Citeseer, 2002, pp. 99–108.
- [18] S.T. Hadjitodorov, L.I. Kuncheva, and L.P. Todorova, Moderate diversity for better cluster ensembles, Information Fusion 7 (2006), no. 3, 264–275.
- [19] Y. Hong, S. Kwong, Y. Chang, and Q. Ren, Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm, Pattern Recogn. 41 (2008), no. 9, 2742–2756.
- [20] X. Hu, Integration of cluster ensemble and text summarization for gene expression analysis, Proc. Fourth IEEE Symp. Bioinf. Bioengin., IEEE, 2004, pp. 251–258.
- [21] X. Hu and I. Yoo, Cluster ensemble and its applications in gene expression analysis, Proc. Second Conf. Asia-Pacific Bioinf. Volume 29, 2004, pp. 297–302.
- [22] D. Huang, J. Lai, and C.-D. Wang, Ensemble clustering using factor graph, Pattern Recogn. 50 (2016), 131–142.
- [23] D. Huang, C.-D. Wang, and J.-H. Lai, Locally weighted ensemble clustering, IEEE Trans. Cybernet. 48 (2017), no. 5, 1460–1473.
- [24] _____, Lwmc: A locally weighted meta-clustering algorithm for ensemble clustering, Int. Conf. Neural Inf. Process., Springer, 2017, pp. 167–176.
- [25] L. Hubert and P. Arabie, Comparing clusterings, J. Classific. 2 (1985), 193–218.
- [26] A.K. Jain and R.C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc., 1988.
- [27] A.K. Jain, M.N. Murty, and P.J. Flynn, *Data clustering: A review*, ACM Comput. Surv. (CSUR) **31** (1999), no. 3, 264–323.

- [28] V. Kandylas, S. Upham, and L.H. Ungar, Finding cohesive clusters for analyzing knowledge communities, Knowledge Inf. Syst. 17 (2008), no. 3, 335–354.
- [29] L. Kaufman and P.J. Rousseeuw, Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, 2009.
- [30] H. Khalili, M. Rabbani, and E. Akbari, Clustering ensemble selection based on the extended Jaccard measure, Turk. J. Electric. Engin. Comput. Sci. 29 (2021), no. 4, 2215–2231.
- [31] B. King, Step-wise clustering procedures, J. Amer. Statist. Assoc. 62 (1967), no. 317, 86–101.
- [32] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logistics Quart. 2 (1955), no. 1-2, 83–97.
- [33] B. Larsen and C. Aone, Fast and effective text mining using linear-time document clustering, Proc. Fifth ACM SIGKDD Int. Conf. Knowledge Disc. Data Min., 1999, pp. 16–22.
- [34] T. Li and C. Ding, Weighted consensus clustering, Proc. SIAM Int. Conf. Data Min., SIAM, 2008, pp. 798–809.
- [35] X. Lu, Y. Yang, and H. Wang, Selective clustering ensemble based on covariance, Int. Workshop Multiple Classifier Syst., Springer, 2013, pp. 179–189.
- [36] J. MacQueen, Classification and analysis of multivariate observations, 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297.
- [37] S. Mimaroglu and M. Yagci, CLICOM: cliques for combining multiple clusterings, Expert Syst. Appl. 39 (2012), no. 2, 1889–1901.
- [38] B. Minaei-Bidgoli, A. Topchy, and W.F. Punch, Ensembles of partitions via data resampling, Int. Conf. Inf. Technol.: Cod. Comput., 2004. Proc. ITCC 2004., vol. 2, IEEE, 2004, pp. 188–192.
- [39] S. Nejatian, H. Parvin, and E. Faraji, Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification, Neurocomput. 276 (2018), 55–66.
- [40] C.F. Olson, Parallel algorithms for hierarchical clustering, Parallel Comput. 21 (1995), no. 8, 1313–1325.
- [41] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, Weighted-object ensemble clustering: Methods and analysis, Knowledge Inf. Syst. 51 (2017), no. 2, 661–689.
- [42] N.C. Sandes and A.L.V. Coelho, Clustering ensembles: A hedonic game theoretical approach, Pattern Recogn. 81 (2018), 95–111.
- [43] C.P. Santos, D.M. Carvalho, and M.C.V. Nascimento, A consensus graph clustering algorithm for directed networks, Expert Syst. Appl. 54 (2016), 121–135.
- [44] A.J.C. Sharkey, Combining artificial neural nets: Ensemble and modular multi-net systems, Springer Science & Business Media, 2012.
- [45] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Machine Intel. 22 (2000), no. 8, 888–905.
- [46] R. Sibson, Slink: An optimally efficient algorithm for the single-link cluster method, Comput. J. 16 (1973), no. 1, 30–34.
- [47] A. Strehl and J. Ghosh, Cluster ensembles—a knowledge reuse framework for combining multiple partitions, J. Machine Learn. Res. 3 (2002), no. Dec, 583–617.
- [48] A. Topchy, A.K. Jain, and W. Punch, Combining multiple weak clusterings, Third IEEE Int. Conf. Data Min., IEEE, 2003, pp. 331–338.
- [49] _____, A mixture model for clustering ensembles, Proc. SIAM Int. Conf. Data Min., SIAM, 2004, pp. 379–390.
- [50] _____, Clustering ensembles: Models of consensus and weak partitions, IEEE Trans. Pattern Anal. Machine Intel. 27 (2005), no. 12, 1866–1881.
- [51] S. Vega-Pons and J. Ruiz-Shulcloper, A survey of clustering ensemble algorithms, Int. J. Pattern Recogn. Artific. Intel. 25 (2011), no. 3, 337–372.

- [52] X. Wang, D. Han, and C. Han, Rough set based cluster ensemble selection, Proc. 16th int. Conf. Inf. Fusion, IEEE, 2013, pp. 438–444.
- [53] J. Wu, H. Liu, H. Xiong, J. Cao, and J. Chen, K-means-based consensus clustering: A unified view, IEEE Trans. Knowledge Data Engin. 27 (2014), no. 1, 155–169.
- [54] X. Wu, T. Ma, J. Cao, Y. Tian, and A. Alabdulkarim, A comparative study of clustering ensemble algorithms, Comput. Electric. Engin. 68 (2018), 603–615.
- [55] F. Yang, X. Li, Q. Li, and T. Li, Exploring the diversity in cluster ensemble generation: Random sampling and random projection, Expert Syst. Appl. 41 (2014), no. 10, 4844–4866.
- [56] Z. Yu, L. Li, J. Liu, J. Zhang, and G. Han, Adaptive noise immune cluster ensemble using affinity propagation, IEEE Trans. Knowledge Data Engin. 27 (2015), no. 12, 3176–3189.
- [57] Z. Yu and H.-S. Wong, Class discovery from gene expression data based on perturbation and cluster ensemble, IEEE Trans. Nanobiosci. 8 (2009), no. 2, 147–160.
- [58] X. Zhao, F. Cao, and J. Liang, A sequential ensemble clusterings generation algorithm for mixed data, Appl. Math. Comput. 335 (2018), 264–277.
- [59] L. Zheng, T. Li, and C. Ding, A framework for hierarchical ensemble clustering, ACM Trans. Knowledge Disc. From Data (TKDD) 9 (2014), no. 2, 1–23.
- [60] S. Zhong and J. Ghosh, A comparative study of generative models for document clustering, Proc. Workshop Cluster. High Dimens. Data Appl. SIAM Data Min. Conf., Citeseer, 2003.