# Further generalization of the cyclic contraction for the best proximity point problem 

Mohammad Reza Haddadi<br>Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran

(Communicated by Abasalt Bodaghi)


#### Abstract

In this paper, we introduce a further generalization of the cyclic contraction mappings. Our main results generalize the recent related results proved by M. Jleli and B. Samet [8] and solve a best proximity point problem. In order to show the applicability of our main results, an example is presented.


Keywords: Best proximity point, Fixed point, Uniformly convex Banach space, Iterative sequence
2020 MSC: Primary 90C48; Secondary 47H09, 46B20

## 1 Introduction

Let $X$ be a metric space and $F$ and $G$ nonempty subsets of $X$. Put

$$
\begin{aligned}
& F^{\circ}=\{x \in F: d(x, y)=\operatorname{dist}(F, G) \text { for some } y \in G\}, \\
& G^{\circ}=\{x \in G: d(x, y)=\operatorname{dist}(F, G) \text { for some } y \in F\} .
\end{aligned}
$$

If there is a pair $\left(x_{0}, y_{0}\right) \in F \times G$ for which $d\left(x_{0}, y_{0}\right)=\operatorname{dist}(F, G)$, that $\operatorname{dist}(F, G)$ is distance of $F$ and $G$, then the pair $\left(x_{0}, y_{0}\right)$ is called a best proximity pair for $F$ and $G$.

We say that the point $x \in F \cup G$ is a best proximity point of the pair $(F, G)$ for $T: F \cup G \rightarrow F \cup G$, if $d(x, T x)=\operatorname{dist}(F, G)$ and we denote the set of all best proximity points of $(F, G)$ by $P_{T}(F, G)$, that is

$$
P_{T}(F, G)=\{x \in F \cup G: d(x, T x)=\operatorname{dist}(F, G)\} .
$$

Best proximity point also evolves as a expansion of the concept of fixed point of mappings, because if $F \cap G \neq \emptyset$ each best proximity point is a fixed point of $T$.

A best proximity point theorem for contractive mappings has been detailed in Sadiq Basha [10, 11]. Anthony Eldred et al. [3] have elicited a best proximity point theorem for relatively nonexpansive mappings, an alternative treatment to which has been focused in Sankar Raj and Veeramani [12]. Anuradha and Veeramani [1] have discussed best proximity point theorems for proximal pointwise contractions. Best proximity point theorems for various variants of contractions have been explored Eldred and Veeramani [4], Haddadi et al. [5, 6, Karpagam and Agrawal [9, and [2].

[^0]Theorem 1.1. ([4]) Let $(F, G)$ be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach space $X$. If $T: F \cup G \rightarrow F \cup G$ is a cyclic mapping such that

$$
d(T x, T y) \leq k d(x, y)+(1-k) \operatorname{dist}(F, G), \quad \forall x \in F, y \in G
$$

and either $F$ or $G$ is boundedly compact, then $T$ has a unique best proximity point. Further, if $x_{0} \in F$ and $x_{n+1}=T x_{n}$, then $\left\{x_{2 n}\right\}$ converges to the best proximity point.

Consistent with [8], we denote by $\Theta_{0}$ the family of functions $\theta:(0,+\infty) \rightarrow(1,+\infty)$ so that:
$\left(\theta_{1}\right) \theta F$ is increasing;
$\left(\theta_{2}\right)$ for each sequence $\left\{\rho_{n}\right\} \subseteq(0,+\infty), \lim _{n \rightarrow+\infty} \theta\left(\rho_{n}\right)=1$ iff $\lim _{n \rightarrow+\infty} \rho_{n}=0$;
$\left(\theta_{3}\right)$ there are $\kappa \in(0,1)$ and $\lambda \in(0,+\infty)$ so that $\lim _{\rho \rightarrow 0^{+}} \frac{\theta(\rho)-1}{\rho^{\kappa}}=\lambda$.
Theorem 1.2. [8, Corollary 2.1] Let $T$ be a self-mapping on a complete metric space $(X, d)$ so that

$$
x, \omega \in X, \quad d(T x, T \omega) \neq 0 \Rightarrow \theta(d(T x, T \omega)) \leq \theta(d(x, \omega))^{\alpha} .
$$

where $\theta \in \Theta_{0}$ and $\alpha \in(0,1)$. Then $T$ has a unique fixed point.
Note that the Banach contraction principle is a particular case of Theorem 1.2
Denote by $\Theta F$ the set of strictly increasing continuous functions $\theta:(0,+\infty) \rightarrow(1,+\infty)$. Here, we have a wider range of functions than those introduced in [8].

Remark 1.1. 77 It is clear that $f(t)=e^{t}$ is not an element of $\Theta_{0}$, but it belongs to $\Theta F$. Other examples are $f(t)=\cosh t, f(t)=\frac{2 \cosh t}{1+\cosh t}, f(t)=1+\ln (1+t), f(t)=\frac{2+2 \ln (1+t)}{2+\ln (1+t)}, f(t)=e^{t e^{t}}$ and $f(t)=\frac{2 e^{t e^{t}}}{1+e^{t e^{t}}}$, for all $t>0$.

Let $\Phi$ be the class of functions $\phi:(1,+\infty) \rightarrow(0,+\infty)$ so that:
$\left(\phi_{1}\right) \phi$ is continuous;
$\left(\phi_{2}\right) \phi(t)=0$ iff $t=1$;
$\left(\phi_{3}\right)$ for each sequence $\left\{t_{n}\right\} \subseteq(1,+\infty) ; \lim _{n \rightarrow+\infty} \phi\left(t_{n}\right)=0$ iff $\lim _{n \rightarrow+\infty} t_{n}=1$.
The following functions $\phi(t)=\sinh (t-1), \phi(t)=\cosh (t-1)-1, \phi(t)=\tanh (t-1), \phi(t)=\arccos h t, \phi(t)=t-\sqrt{t}$, $\phi(t)=\sqrt{t}-\sqrt[3]{t}$ are in $\Phi$.

We denote by $\Xi_{0}$ the family of functions $\theta:(0,+\infty) \rightarrow(1,+\infty)$ so that:
$\left(\theta_{1}\right) \theta F$ is increasing;
$\left(\theta_{2}\right)$ for each sequence $\left\{\rho_{n}\right\} \subseteq(0,+\infty), \lim _{n \rightarrow+\infty} \theta\left(\rho_{n}\right)=\theta(\rho)$ iff $\lim _{n \rightarrow+\infty} \rho_{n}=\rho$;
$\left(\theta_{3}\right)$ there are $\kappa \in(0,1)$ and $\lambda \in(0,+\infty]$ so that $\lim _{\rho \rightarrow 0^{+}} \frac{\theta(\rho)-1}{\rho^{\kappa}}=\lambda$;
$\left(\theta_{4}\right)$ is continuous.

## 2 Main Results

In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best proximity point problem in a complete metric space.

Theorem 2.1. Let $F$ and $G$ be closed disjoint subsets of complete metric space $X$ and $T: F \cup G \rightarrow F \cup G$ be a cyclic mapping so that for every $x, \omega \in F$, or $x, \omega \in G$,

$$
\begin{equation*}
d(T x, T \omega) \neq 0 \Rightarrow \theta(d(T x, T \omega)) \leq \theta(d(x, \omega))^{\alpha} \tag{2.1}
\end{equation*}
$$

and for every $x \in F, \omega \in G$,

$$
\begin{equation*}
d(T x, T \omega) \neq \operatorname{dist}(F, G) \Rightarrow \theta(d(T x, T \omega)) \leq \theta(d(x, \omega))^{\alpha} \theta(\operatorname{dist}(F, G))^{1-\alpha} . \tag{2.2}
\end{equation*}
$$

where $\theta \in \Xi_{0}$ and $\alpha \in(0,1)$. Then $P_{T}(F, G) \neq \emptyset$. Further, if $x_{0} \in F$ and $x_{n+1}=T x_{n}$, then $\left\{x_{2 n}\right\}$ converges to the best proximity point.

Proof. Fix $x \in F \cup G$ and define a sequence $\left\{x_{n}\right\}$ in $F \cup G$ by $x_{n}=T^{n} x, n \in \mathbb{N}_{0}$. We divide the proof into 4 steps:

Step 1. $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=\operatorname{dist}(F, G)$.
So, without restriction of the generality, we can suppose that $d\left(T^{n} x, T^{n+1} x\right)>\operatorname{dist}(F, G)$ for all $n \in \mathbb{N}$. Now, from (2.2), for all $n \in \mathbb{N}$, we have Note

$$
\begin{aligned}
\theta(\operatorname{dist}(F, G)) \leq \theta\left(d\left(x_{n+1}, x_{n+2}\right)\right) & =\theta\left(d\left(T x_{n}, T x_{n+1}\right)\right) \\
& \leq \theta\left(d\left(x_{n}, x_{n+1}\right)\right)^{\alpha} \theta(\operatorname{dist}(F, G))^{1-\alpha} \\
& \leq \theta\left(d\left(x_{n-1}, x_{n}\right)\right)^{\alpha^{2}} \theta(\operatorname{dist}(F, G))^{1-\alpha^{2}} \\
& \cdots \\
& \leq \theta\left(d\left(x_{1}, x_{2}\right)\right)^{\alpha^{n}} \theta(\operatorname{dist}(F, G))^{1-\alpha^{n}}
\end{aligned}
$$

Hence $\left\{\theta\left(d\left(x_{n}, x_{n+1}\right)\right)\right\}$ is monotonic decreasing and bounded below. Therefore $\lim _{n \rightarrow+\infty} \theta\left(d\left(x_{n}, x_{n+1}\right)\right)$ exists and so $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)$. Let $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=\rho \geq \operatorname{dist}(F, G)$. Assume that $\rho>\operatorname{dist}(F, G)$. By the right continuity of $\theta$,

$$
\theta(\rho)=\lim _{n \rightarrow+\infty} \theta\left(d\left(x_{n+1}, x_{n+2}\right)\right) \leq \lim _{n \rightarrow+\infty} \theta\left(d\left(x_{n}, x_{n+1}\right)\right)^{\alpha} \theta(\operatorname{dist}(F, G))^{1-\alpha}<\theta(\rho)
$$

so $\rho=\operatorname{dist}(F, G)$.

Step 2. $\lim _{n \rightarrow+\infty} d\left(x_{n+1}, x_{n-1}\right)=0$.

Now, from 2.1, for all $n \in \mathbb{N}$, we have Note

$$
\begin{align*}
1 \leq \theta\left(d\left(x_{n+1}, x_{n-1}\right)\right) & =\theta\left(d\left(T x_{n}, T x_{n-2}\right)\right) \\
& \leq \theta\left(d\left(x_{n}, x_{n-2}\right)\right)^{\alpha} \\
& \leq \theta\left(d\left(x_{n-1}, x_{n-3}\right)\right)^{\alpha^{2}} \\
& \cdots  \tag{2.3}\\
& \leq \theta\left(d\left(x_{2}, x_{0}\right)\right)^{\alpha^{n-1}} .
\end{align*}
$$

Hence $\left\{\theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)\right\}$ is monotonic decreasing and bounded below. Hence

$$
\lim _{n \rightarrow+\infty} \theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)=1
$$

and so

$$
\lim _{n \rightarrow+\infty} d\left(x_{n+1}, x_{n-1}\right)=0
$$

Step 3. $\left\{x_{2 n}\right\}$ is Cauchy sequence.

From condition $\left(\theta_{3}\right)$, there exist $r \in(0,1)$ and $\ell(0,+\infty]$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)-1}{\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r}}=\ell
$$

Suppose that $\ell<+\infty$. In this case, let $L=\frac{\ell}{2}>0$. From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)-1}{\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r}}-\ell\right| \leq L, \quad \forall n \geq n_{0}
$$

This implies that

$$
\frac{\theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)-1}{\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r}} \geq \ell-L=L, \quad \forall n \geq n_{0}
$$

Then

$$
n\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r} \leq \frac{1}{L} n\left[\theta\left(d\left(x_{n+1}, x_{n-1}\right)\right)-1\right], \quad \forall n \geq n_{0}
$$

Using (2.3), we obtain

$$
n\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r} \leq \frac{1}{L} n\left[\theta\left(d\left(T^{2} x_{0}, x_{0}\right)\right)^{\alpha^{n-1}}-1\right], \quad \forall n \geq n_{0}
$$

Letting $\lim _{n \rightarrow+\infty}$ in the above inequality, we obtain

$$
\lim _{n \rightarrow+\infty} n\left[d\left(x_{n+1}, x_{n-1}\right)\right]^{r}=0
$$

Thus, there exists $n_{1} \in \mathbb{N}$ such that

$$
d\left(x_{n+1}, x_{n-1}\right) \leq \frac{1}{n^{1 / r}}, \quad \forall n \geq n_{1}
$$

Now, let $m=2 k$

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+4}\right)+\ldots+d\left(x_{n+m-2}, x_{n+m}\right) \\
& \leq \frac{1}{n^{1 / r}}+\frac{1}{(n+2)^{1 / r}}+\ldots+\frac{1}{(n+m)^{1 / r}} . \\
& \leq \sum_{i=n}^{+\infty} \frac{1}{i^{1 / r}}, \quad \forall n \geq n_{1} .
\end{aligned}
$$

From the convergence of the series $\sum_{i} \frac{1}{i^{1 / r}}$, we deduce that $\left\{x_{2 n}\right\}$ is a Cauchy sequence.
Step 4. Existence of best proximity pair.
Because $\left\{x_{2 n}\right\}$ is Cauchy, $X$ is complete and $F$ is closed, $\lim _{n \rightarrow+\infty} x_{2 n}=x \in F$. Now

$$
\operatorname{dist}(F, G) \leq d\left(x, x_{2 n-1}\right) \leq d\left(x, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)
$$

Thus, by step 1 we have $d\left(x_{2 n}, x_{2 n-1}\right) \rightarrow \operatorname{dist}(F, G)$ and so $d\left(x, x_{2 n-1}\right)$ converges to $\operatorname{dist}(F, G)$. Since

$$
\theta(\operatorname{dist}(F, G)) \leq \theta\left(d\left(x_{2 n}, T x\right)\right) \leq \theta\left(d\left(x_{2 n-1}, x\right)\right)^{\alpha} \theta(\operatorname{dist}(F, G))^{1-\alpha}
$$

therefore by upper semicontinuity of $\theta$ we have

$$
\theta(\operatorname{dist}(F, G)) \leq \lim _{n \rightarrow+\infty} \theta\left(d\left(x_{2 n}, T x\right)\right) \leq \lim _{n \rightarrow+\infty} \theta\left(d\left(x_{2 n-1}, x\right)\right)^{\alpha} \theta(\operatorname{dist}(F, G))^{1-\alpha}=\theta(\operatorname{dist}(F, G))
$$

Hence

$$
\theta(d(x, T x))=\lim _{n \rightarrow+\infty} \theta\left(d\left(x_{2 n}, T x\right)\right)=\theta(\operatorname{dist}(F, G))
$$

and so $d(x, T x)=\operatorname{dist}(F, G)$.
It is notable that if in Theorem 2.1 we have $F \cap G \neq \emptyset$, then 2.1 and 2.2 coincide and so we conclude Theorem 1.2. In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best proximity point problem in the uniformly convex Banach space.

Theorem 2.2. Let $F$ and $G$ be two nonempty closed and convex disjoint subsets of a uniformly convex Banach space $X$. Suppose the mapping $T: F \cup G \rightarrow F \cup G$ satisfied in (2.1) and 2.2 . Then there is a unique $p \in F$ such that $\|p-T p\|=\operatorname{dist}(F, G)$. Also, if $p_{0} \in F$ and $p_{n+1}=T p_{n}$, then $\left\{p_{2 n}\right\}$ converges to the best proximity point.

Proof. By Theorem 2.1 $P_{T}(F, G) \neq \emptyset$. Suppose $p, q \in P_{T}(F, G)$ such that $p \neq q$. Hence $\|p-T p\|=\operatorname{dist}(F, G)$ and $\|q-T q\|=\operatorname{dist}(F, G)$ where necessarily uniformly convexity of $X, T^{2} p=p$ and $T^{2} q=q$. Since $p \neq q$, by 2.2 we have $\theta(\operatorname{dist}(F, G))<\theta(\|T p-q\|)$ and $\theta(\operatorname{dist}(F, G))<\theta(\|p-T q\|)$. Therefore

$$
\theta(\|p-T q\|)=\theta\left(\left\|T^{2} p-T q\right\|\right)<\theta(\|T p-q\|)
$$

and

$$
\theta(\|T p-q\|)=\theta\left(\left\|T p-T^{2} q\right\|\right)<\theta(\|p-T q\|)
$$

that it is a contradiction and so $p=q$.

Example 2.1. Let $F$ and $G$ be subsets of $\mathbb{R}^{2}$ defined by

$$
F=\{(x, 0): x \geq 1\}, G=\{(0, y): y \geq 1\} .
$$

Suppose $T(x, y)=(\sqrt{y}, \sqrt{x})$ and

$$
\theta(\varsigma)=\left\{\begin{array}{cl}
\sqrt{\varsigma} & \varsigma<\operatorname{dist}(F, G) \\
\sqrt{\operatorname{dist}(F, G) \varsigma} & \varsigma \geq \operatorname{dist}(F, G)
\end{array}\right.
$$

Then $T$ is a cyclic mapping on $F \cup G$ that satisfied in 2.1) and 2.2. Also we have $\|(0,1)-T((1,0))\|=\operatorname{dist}(F, G)$.
Proof . Here $\operatorname{dist}(F, G)=\sqrt{2}$. For $(x, 0),(y, 0) \in F$ we have

$$
\begin{aligned}
\theta(\|T(x, 0)-T(y, 0)\|) & =\theta(\|(0, \sqrt{x})-(0, \sqrt{y})\|=\sqrt{\|(0, \sqrt{x}-\sqrt{y})\|}=\sqrt{|\sqrt{x}-\sqrt{y}|} \\
& \leq \sqrt{|x-y|}=\theta(|x-y|) \\
& =\theta(\|(x, 0)-(y, 0)\|) .
\end{aligned}
$$

Hence we have 2.1]. Also, for $(x, 0) \in F$ and $(0, y) \in G$ we have

$$
\begin{aligned}
\theta(\|T(x, 0)-T(0, y)\|) & =\theta(\|(0, \sqrt{x})-(\sqrt{y}, 0)) \|=\sqrt{\operatorname{dist}(F, G)\|(\sqrt{y}, \sqrt{x})\|}=\sqrt{\operatorname{dist}(F, G) \sqrt{y+x}} \\
& \leq \sqrt{x+y} \leq \sqrt{\sqrt{2} \sqrt{x^{2}+y^{2}}} \\
& \leq \sqrt{\operatorname{dist}(F, G)\|(x, 0)-(0, y)\|} \\
& =\theta(\|(x, 0)-(0, y)\|)
\end{aligned}
$$

Therefore we have $\sqrt{2.2}$. Also we have $\|(0,1)-T((0,1))\|=\|(0,1)-(1,0)\|=\sqrt{2}=\operatorname{dist}(F, G)$ that it is calculated in $n=21$ iteration from Table 1 and Figure 1.

Table 1: Rate of convergence of the Picard iteration of Example 2.1

|  | $x_{2 n} \in F$ |  | $x_{2 n+1} \in G$ |
| :---: | :---: | :---: | :---: |
| 0 | $(3.000000,0)$ | 1 | $(0,1.732051)$ |
| 2 | $(1.316074,0)$ | 3 | $(0,1.147203)$ |
| 4 | $(1.071075,0)$ | 5 | $(0,1.034928)$ |
| 6 | $(1.017314,0)$ | 7 | $(0,1.008620)$ |
| 8 | $(1.004301,0)$ | 9 | $(0,1.002148)$ |
| 10 | $(1.001073,0)$ | 11 | $(0,1.000537)$ |
| 12 | $(1.000268,0)$ | 13 | $(0,1.000134)$ |
| 14 | $(1.000067,0)$ | 15 | $(0,1.000034)$ |
| 16 | $(1.000017,0)$ | 17 | $(0,1.000008)$ |
| 18 | $(1.000004,0)$ | 19 | $(0,1.000002)$ |
| 20 | $(1.000001,0)$ | 21 | $(0,1.000001)$ |
| 22 | $(1,0)$ | 23 | $(0,1)$ |

If in the Theorem 2.2 put $\theta(t)=e^{t}$ then we have the following corollary.
Corollary 2.3. Let $(F, G)$ be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach space $X$. If $T: F \cup G \rightarrow F \cup G$ is a cyclic mapping such that

$$
\begin{gathered}
d(T x, T y) \leq k d(x, y), \quad \forall x, y \in F, \text { nor } x, y \in G, \\
d(T x, T y) \leq k d(x, y)+(1-k) \operatorname{dist}(F, G), \quad \forall x \in F, y \in G .
\end{gathered}
$$

Then $T$ has a unique best proximity point. Further, if $x_{0} \in F$ and $x_{n+1}=T x_{n}$, then $\left\{x_{2 n}\right\}$ converges to the best proximity point.

Remark 2.1. In Corollary 2.3 boundedly compact $F$ or $G$ is omitted with respect to Theorem 1.1.


Figure 1: Rate of convergence of the Picard iteration of Example 2.1

## References

[1] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), no. 18, 2942-2948.
[2] J. Caballero, J. Harjani and K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl. 2012 (2012), 1-9.
[3] A.A. Eldred, W.A. Kirk, and P. Veeramani, Proximinal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), no. 3, 283-293.
[4] A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
[5] M.R. Haddadi and S.M. Moshtaghioun, Some Results on the Best Proximity Pair, Abstr. Appl. Anal. 2011 (2011), ID 158430, 9 pages.
[6] M.R. Haddadi, V. Parvaneh and M. Moursalian, Global optimal approximate solutions of best proximity points, Filomat 35 (2021), no. 5, 159-167.
[7] N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), 185.
[8] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 38.
[9] H. Kumar Nashine, P. Kumam and C. Vetro, Best proximity point theorems for rational proximal contractions, Fixed Point Theory Appl. 2013 (2013), 95.
[10] S. Sadiq Basha, Best proximity points: global optimal approximate solution, J. Global Optim. 49 (2011), no. 1, 15.
[11] S. Sadiq Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. 31 (2010), 569-576.
[12] R.V. Sankar and P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol. 10 (2009), no. 1, 21-28.


[^0]:    * Corresponding author

    Email address: haddadi@abru.ac.ir (Mohammad Reza Haddadi)

