Int. J. Nonlinear Anal. Appl. 14 (2023) 9, 379–384 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.28176.3827

Further generalization of the cyclic contraction for the best proximity point problem

Mohammad Reza Haddadi

Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran

(Communicated by Abasalt Bodaghi)

Abstract

In this paper, we introduce a further generalization of the cyclic contraction mappings. Our main results generalize the recent related results proved by M. Jleli and B. Samet [8] and solve a best proximity point problem. In order to show the applicability of our main results, an example is presented.

Keywords: Best proximity point, Fixed point, Uniformly convex Banach space, Iterative sequence 2020 MSC: Primary 90C48; Secondary 47H09, 46B20

1 Introduction

Let X be a metric space and F and G nonempty subsets of X. Put

 $\begin{array}{lll} F^\circ &=& \{x\in F: d(x,y)=dist(F,G) \ for \ some \ y\in G\},\\ G^\circ &=& \{x\in G: d(x,y)=dist(F,G) \ for \ some \ y\in F\}. \end{array}$

If there is a pair $(x_0, y_0) \in F \times G$ for which $d(x_0, y_0) = dist(F, G)$, that dist(F, G) is distance of F and G, then the pair (x_0, y_0) is called a best proximity pair for F and G.

We say that the point $x \in F \cup G$ is a best proximity point of the pair (F,G) for $T : F \cup G \to F \cup G$, if d(x,Tx) = dist(F,G) and we denote the set of all best proximity points of (F,G) by $P_T(F,G)$, that is

$$P_T(F,G) = \{ x \in F \cup G : d(x,Tx) = dist(F,G) \}.$$

Best proximity point also evolves as a expansion of the concept of fixed point of mappings, because if $F \cap G \neq \emptyset$ each best proximity point is a fixed point of T.

A best proximity point theorem for contractive mappings has been detailed in Sadiq Basha [10, 11]. Anthony Eldred et al. [3] have elicited a best proximity point theorem for relatively nonexpansive mappings, an alternative treatment to which has been focused in Sankar Raj and Veeramani [12]. Anuradha and Veeramani [1] have discussed best proximity point theorems for proximal pointwise contractions. Best proximity point theorems for various variants of contractions have been explored Eldred and Veeramani [4], Haddadi et al. [5, 6], Karpagam and Agrawal [9], and [2].

*Corresponding author

Received: August 2022 Accepted: January 2023

Email address: haddadi@abru.ac.ir (Mohammad Reza Haddadi)

Theorem 1.1. ([4]) Let (F, G) be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach space X. If $T: F \cup G \to F \cup G$ is a cyclic mapping such that

$$d(Tx,Ty) \le kd(x,y) + (1-k)dist(F,G), \quad \forall x \in F, \ y \in G$$

and either F or G is boundedly compact, then T has a unique best proximity point. Further, if $x_0 \in F$ and $x_{n+1} = Tx_n$, then $\{x_{2n}\}$ converges to the best proximity point.

Consistent with [8], we denote by Θ_0 the family of functions $\theta: (0, +\infty) \to (1, +\infty)$ so that:

 $(\theta_1) \ \theta F$ is increasing;

(θ_2) for each sequence $\{\rho_n\} \subseteq (0, +\infty)$, $\lim_{n \to +\infty} \theta(\rho_n) = 1$ iff $\lim_{n \to +\infty} \rho_n = 0$;

 (θ_3) there are $\kappa \in (0,1)$ and $\lambda \in (0,+\infty)$ so that $\lim_{\rho \to 0^+} \frac{\theta(\rho)-1}{\rho^{\kappa}} = \lambda$.

Theorem 1.2. [8, Corollary 2.1] Let T be a self-mapping on a complete metric space (X, d) so that

 $x, \omega \in X, \quad d(Tx, T\omega) \neq 0 \Rightarrow \theta(d(Tx, T\omega)) \leq \theta(d(x, \omega))^{\alpha}.$

where $\theta \in \Theta_0$ and $\alpha \in (0, 1)$. Then T has a unique fixed point.

Note that the Banach contraction principle is a particular case of Theorem 1.2.

Denote by ΘF the set of strictly increasing continuous functions $\theta : (0, +\infty) \to (1, +\infty)$. Here, we have a wider range of functions than those introduced in [8].

Remark 1.1. [7] It is clear that $f(t) = e^t$ is not an element of Θ_0 , but it belongs to ΘF . Other examples are $f(t) = \cosh t$, $f(t) = \frac{2\cosh t}{1 + \cosh t}$, $f(t) = 1 + \ln(1+t)$, $f(t) = \frac{2 + 2\ln(1+t)}{2 + \ln(1+t)}$, $f(t) = e^{te^t}$ and $f(t) = \frac{2e^{te^t}}{1 + e^{te^t}}$, for all t > 0.

Let Φ be the class of functions $\phi: (1, +\infty) \to (0, +\infty)$ so that:

 $(\phi_1) \phi$ is continuous;

 $(\phi_2) \phi(t) = 0$ iff t = 1;

 (ϕ_3) for each sequence $\{t_n\} \subseteq (1, +\infty)$; $\lim_{n \to +\infty} \phi(t_n) = 0$ iff $\lim_{n \to +\infty} t_n = 1$.

The following functions $\phi(t) = \sinh(t-1)$, $\phi(t) = \cosh(t-1) - 1$, $\phi(t) = \tanh(t-1)$, $\phi(t) = \arccos ht$, $\phi(t) = t - \sqrt{t}$, $\phi(t) = \sqrt{t} - \sqrt[3]{t}$ are in Φ .

We denote by Ξ_0 the family of functions $\theta : (0, +\infty) \to (1, +\infty)$ so that:

 $(\theta_1) \ \theta F$ is increasing;

 (θ_2) for each sequence $\{\rho_n\} \subseteq (0, +\infty), \lim_{n \to +\infty} \theta(\rho_n) = \theta(\rho)$ iff $\lim_{n \to +\infty} \rho_n = \rho$;

 (θ_3) there are $\kappa \in (0,1)$ and $\lambda \in (0,+\infty]$ so that $\lim_{\rho \to 0^+} \frac{\theta(\rho)-1}{\rho^{\kappa}} = \lambda;$

 (θ_4) is continuous.

2 Main Results

In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best proximity point problem in a complete metric space.

Theorem 2.1. Let F and G be closed disjoint subsets of complete metric space X and $T: F \cup G \to F \cup G$ be a cyclic mapping so that for every $x, \omega \in F$, or $x, \omega \in G$,

$$d(Tx, T\omega) \neq 0 \implies \theta(d(Tx, T\omega)) \le \theta(d(x, \omega))^{\alpha}.$$
(2.1)

and for every $x \in F$, $\omega \in G$,

$$d(Tx, T\omega) \neq dist(F, G) \Rightarrow \theta(d(Tx, T\omega)) \leq \theta(d(x, \omega))^{\alpha} \theta(dist(F, G))^{1-\alpha}.$$
(2.2)

where $\theta \in \Xi_0$ and $\alpha \in (0,1)$. Then $P_T(F,G) \neq \emptyset$. Further, if $x_0 \in F$ and $x_{n+1} = Tx_n$, then $\{x_{2n}\}$ converges to the best proximity point.

Proof. Fix $x \in F \cup G$ and define a sequence $\{x_n\}$ in $F \cup G$ by $x_n = T^n x$, $n \in \mathbb{N}_0$. We divide the proof into 4 steps:

Step 1. $\lim_{n \to +\infty} d(x_n, x_{n+1}) = dist(F, G).$

So, without restriction of the generality, we can suppose that $d(T^n x, T^{n+1} x) > dist(F, G)$ for all $n \in \mathbb{N}$. Now, from (2.2), for all $n \in \mathbb{N}$, we have Note

$$\begin{aligned} \theta(dist(F,G)) &\leq \theta(d(x_{n+1},x_{n+2})) &= \theta(d(Tx_n,Tx_{n+1})) \\ &\leq \theta(d(x_n,x_{n+1}))^{\alpha} \theta(dist(F,G))^{1-\alpha} \\ &\leq \theta(d(x_{n-1},x_n))^{\alpha^2} \theta(dist(F,G))^{1-\alpha^2} \\ &\dots \\ &\leq \theta(d(x_1,x_2))^{\alpha^n} \theta(dist(F,G))^{1-\alpha^n}. \end{aligned}$$

Hence $\{\theta(d(x_n, x_{n+1}))\}$ is monotonic decreasing and bounded below. Therefore $\lim_{n \to +\infty} \theta(d(x_n, x_{n+1}))$ exists and so $\lim_{n \to +\infty} d(x_n, x_{n+1})$. Let $\lim_{n \to +\infty} d(x_n, x_{n+1}) = \rho \ge dist(F, G)$. Assume that $\rho > dist(F, G)$. By the right continuity of θ ,

$$\theta(\rho) = \lim_{n \to +\infty} \theta(d(x_{n+1}, x_{n+2})) \le \lim_{n \to +\infty} \theta(d(x_n, x_{n+1}))^{\alpha} \theta(dist(F, G))^{1-\alpha} < \theta(\rho),$$

so $\rho = dist(F, G)$.

Step 2. $\lim_{n \to +\infty} d(x_{n+1}, x_{n-1}) = 0.$

Now, from (2.1), for all $n \in \mathbb{N}$, we have Note

$$1 \leq \theta(d(x_{n+1}, x_{n-1})) = \theta(d(Tx_n, Tx_{n-2}))$$

$$\leq \theta(d(x_n, x_{n-2}))^{\alpha}$$

$$\leq \theta(d(x_{n-1}, x_{n-3}))^{\alpha^2}$$

...

$$\leq \theta(d(x_2, x_0))^{\alpha^{n-1}}.$$
(2.3)

Hence $\{\theta(d(x_{n+1}, x_{n-1}))\}$ is monotonic decreasing and bounded below. Hence

$$\lim_{n \to +\infty} \theta(d(x_{n+1}, x_{n-1})) = 1.$$

and so

$$\lim_{n \to +\infty} d(x_{n+1}, x_{n-1}) = 0.$$

Step 3. $\{x_{2n}\}$ is Cauchy sequence.

From condition (θ_3) , there exist $r \in (0, 1)$ and $\ell(0, +\infty]$ such that

$$\lim_{n \to +\infty} \frac{\theta(d(x_{n+1}, x_{n-1})) - 1}{[d(x_{n+1}, x_{n-1})]^r} = \ell.$$

Suppose that $\ell < +\infty$. In this case, let $L = \frac{\ell}{2} > 0$. From the definition of the limit, there exists $n_0 \in \mathbb{N}$ such that

$$\left|\frac{\theta(d(x_{n+1}, x_{n-1})) - 1}{[d(x_{n+1}, x_{n-1})]^r} - \ell\right| \le L, \quad \forall \ n \ge n_0.$$

This implies that

$$\frac{\theta(d(x_{n+1}, x_{n-1})) - 1}{[d(x_{n+1}, x_{n-1})]^r} \ge \ell - L = L, \quad \forall \ n \ge n_0.$$

Then

$$n[d(x_{n+1}, x_{n-1})]^r \le \frac{1}{L}n[\theta(d(x_{n+1}, x_{n-1})) - 1], \quad \forall \ n \ge n_0.$$

Using (2.3), we obtain

$$n[d(x_{n+1}, x_{n-1})]^r \le \frac{1}{L} n[\theta(d(T^2 x_0, x_0))^{\alpha^{n-1}} - 1], \quad \forall \ n \ge n_0$$

Letting $\lim_{n\to+\infty}$ in the above inequality, we obtain

$$\lim_{n \to +\infty} n[d(x_{n+1}, x_{n-1})]^r = 0.$$

Thus, there exists $n_1 \in \mathbb{N}$ such that

$$d(x_{n+1}, x_{n-1}) \le \frac{1}{n^{1/r}}, \quad \forall \ n \ge n_1.$$

Now, let m = 2k

$$\begin{aligned} d(x_n, x_{n+m}) &\leq d(x_n, x_{n+2}) + d(x_{n+2}, x_{n+4}) + \dots + d(x_{n+m-2}, x_{n+m}) \\ &\leq \frac{1}{n^{1/r}} + \frac{1}{(n+2)^{1/r}} + \dots + \frac{1}{(n+m)^{1/r}}. \\ &\leq \sum_{i=n}^{+\infty} \frac{1}{i^{1/r}}, \quad \forall \ n \geq n_1. \end{aligned}$$

From the convergence of the series $\sum_{i} \frac{1}{i^{1/r}}$, we deduce that $\{x_{2n}\}$ is a Cauchy sequence. Step 4. Existence of best proximity pair.

Because $\{x_{2n}\}$ is Cauchy, X is complete and F is closed, $\lim_{n \to +\infty} x_{2n} = x \in F$. Now

$$dist(F,G) \le d(x, x_{2n-1}) \le d(x, x_{2n}) + d(x_{2n}, x_{2n-1}).$$

Thus, by step 1 we have $d(x_{2n}, x_{2n-1}) \rightarrow dist(F, G)$ and so $d(x, x_{2n-1})$ converges to dist(F, G). Since

$$\theta(dist(F,G)) \le \theta(d(x_{2n},Tx)) \le \theta(d(x_{2n-1},x))^{\alpha} \theta(dist(F,G))^{1-\alpha},$$

therefore by upper semicontinuity of θ we have

$$\theta(dist(F,G)) \le \lim_{n \to +\infty} \theta(d(x_{2n},Tx)) \le \lim_{n \to +\infty} \theta(d(x_{2n-1},x))^{\alpha} \theta(dist(F,G))^{1-\alpha} = \theta(dist(F,G)).$$

Hence

$$\theta(d(x,Tx)) = \lim_{n \to +\infty} \theta(d(x_{2n},Tx)) = \theta(dist(F,G))$$

and so d(x, Tx) = dist(F, G). \Box

It is notable that if in Theorem 2.1 we have $F \cap G \neq \emptyset$, then (2.1) and (2.2) coincide and so we conclude Theorem 1.2. In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best proximity point problem in the uniformly convex Banach space.

Theorem 2.2. Let F and G be two nonempty closed and convex disjoint subsets of a uniformly convex Banach space X. Suppose the mapping $T : F \cup G \to F \cup G$ satisfied in (2.1) and (2.2). Then there is a unique $p \in F$ such that ||p - Tp|| = dist(F, G). Also, if $p_0 \in F$ and $p_{n+1} = Tp_n$, then $\{p_{2n}\}$ converges to the best proximity point.

Proof. By Theorem 2.1 $P_T(F,G) \neq \emptyset$. Suppose $p, q \in P_T(F,G)$ such that $p \neq q$. Hence ||p - Tp|| = dist(F,G) and ||q - Tq|| = dist(F,G) where necessarily uniformly convexity of $X, T^2p = p$ and $T^2q = q$. Since $p \neq q$, by (2.2) we have $\theta(dist(F,G)) < \theta(||Tp - q||)$ and $\theta(dist(F,G)) < \theta(||p - Tq||)$. Therefore

$$\theta(\|p - Tq\|) = \theta(\|T^2p - Tq\|) < \theta(\|Tp - q\|)$$

and

$$\theta(\|Tp - q\|) = \theta(\|Tp - T^2q\|) < \theta(\|p - Tq\|)$$

that it is a contradiction and so p = q. \Box

Example 2.1. Let *F* and *G* be subsets of \mathbb{R}^2 defined by

$$F = \{(x,0) : x \ge 1\}, \ G = \{(0,y) : y \ge 1\}.$$

Suppose $T(x, y) = (\sqrt{y}, \sqrt{x})$ and

$$\theta(\varsigma) = \begin{cases} \sqrt{\varsigma} & \varsigma < dist(F,G) \\ \sqrt{dist(F,G)\varsigma} & \varsigma \ge dist(F,G). \end{cases}$$

Then T is a cyclic mapping on $F \cup G$ that satisfied in (2.1) and (2.2). Also we have ||(0,1) - T((1,0))|| = dist(F,G). **Proof**. Here $dist(F,G) = \sqrt{2}$. For $(x,0), (y,0) \in F$ we have

$$\begin{array}{lll} \theta(\|T(x,0) - T(y,0)\|) &=& \theta(\|(0,\sqrt{x}) - (0,\sqrt{y})\| = \sqrt{\|(0,\sqrt{x} - \sqrt{y})\|} = \sqrt{|\sqrt{x} - \sqrt{y}|} \\ &\leq& \sqrt{|x-y|} = \theta(|x-y|) \\ &=& \theta(\|(x,0) - (y,0)\|). \end{array}$$

Hence we have (2.1). Also, for $(x, 0) \in F$ and $(0, y) \in G$ we have

$$\begin{array}{lll} \theta(\|T(x,0) - T(0,y)\|) &=& \theta(\|(0,\sqrt{x}) - (\sqrt{y},0))\| = \sqrt{dist(F,G)}\|(\sqrt{y},\sqrt{x})\| = \sqrt{dist(F,G)}\sqrt{y+x} \\ &\leq& \sqrt{x+y} \leq \sqrt{\sqrt{2}\sqrt{x^2+y^2}} \\ &\leq& \sqrt{dist(F,G)}\|(x,0) - (0,y)\| \\ &=& \theta(\|(x,0) - (0,y)\|). \end{array}$$

Therefore we have (2.2). Also we have $||(0,1) - T((0,1))|| = ||(0,1) - (1,0)|| = \sqrt{2} = dist(F,G)$ that it is calculated in n = 21 iteration from Table 1 and Figure 1. \Box

	$x_{2n} \in F$		$x_{2n+1} \in G$
0	(3.000000,0)	1	(0, 1.732051)
2	(1.316074,0)	3	(0, 1.147203)
4	(1.071075,0)	5	(0, 1.034928)
6	(1.017314,0)	7	(0, 1.008620)
8	(1.004301,0)	9	(0, 1.002148)
10	(1.001073,0)	11	(0, 1.000537)
12	(1.000268,0)	13	(0, 1.000134)
14	(1.000067,0)	15	(0, 1.000034)
16	(1.000017,0)	17	(0, 1.000008)
18	(1.000004,0)	19	(0, 1.000002)
20	(1.000001,0)	21	(0, 1.000001)
22	(1,0)	23	(0,1)

Table 1: Rate of convergence of the Picard iteration of Example 2.1

If in the Theorem 2.2 put $\theta(t) = e^t$ then we have the following corollary.

Corollary 2.3. Let (F, G) be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach space X. If $T: F \cup G \to F \cup G$ is a cyclic mapping such that

$$\begin{aligned} &d(Tx,Ty) \leq kd(x,y), \quad \forall x,y \in F, \ nor \ x,y \in G, \\ &d(Tx,Ty) \leq kd(x,y) + (1-k)dist(F,G), \quad \forall x \in F, \ y \in G. \end{aligned}$$

Then T has a unique best proximity point. Further, if $x_0 \in F$ and $x_{n+1} = Tx_n$, then $\{x_{2n}\}$ converges to the best proximity point.

Remark 2.1. In Corollary 2.3 boundedly compact F or G is omitted with respect to Theorem 1.1.

Figure 1: Rate of convergence of the Picard iteration of Example 2.1

References

- [1] J. Anuradha and P. Veeramani, *Proximal pointwise contraction*, Topology Appl. **156** (2009), no. 18, 2942–2948.
- [2] J. Caballero, J. Harjani and K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl. 2012 (2012), 1-9.
- [3] A.A. Eldred, W.A. Kirk, and P. Veeramani, Proximinal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), no. 3, 283–293.
- [4] A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001–1006.
- [5] M.R. Haddadi and S.M. Moshtaghioun, Some Results on the Best Proximity Pair, Abstr. Appl. Anal. 2011 (2011), ID 158430, 9 pages.
- [6] M.R. Haddadi, V. Parvaneh and M. Moursalian, Global optimal approximate solutions of best proximity points, Filomat 35 (2021), no. 5, 159–167.
- [7] N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), 185.
- [8] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 38.
- H. Kumar Nashine, P. Kumam and C. Vetro, Best proximity point theorems for rational proximal contractions, Fixed Point Theory Appl. 2013 (2013), 95.
- [10] S. Sadiq Basha, Best proximity points: global optimal approximate solution, J. Global Optim. 49 (2011), no. 1, 15.
- [11] S. Sadiq Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim. **31** (2010), 569–576.
- [12] R.V. Sankar and P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol. 10 (2009), no. 1, 21–28.