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Abstract

In this paper, we establish fixed point results for two pairs of functions with the assistance of CLR property in the
context of G-metric space. Our sequel generalizes various existing fixed-point results that are given in the literature.
An illustrative example is likewise given to demonstrate that our speculation from metric space to G-metric spaces is
genuine.
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1 Introduction

In 2002, Branciari [4] gave the perception of new kind of contraction known as integral type contraction in the
framework of complete metric space. Afterwards many authors established common fixed point theorems for integral
type contraction in metric space, fuzzy metric space and cone metric spaces (see [6]-[7]). In 2006, Mustafa and Sims
[14] proposed the perception of G-metric spaces as a generalization of metric space. Afterwards Mustafa et al. [15]
proved fixed point results for one map satisfying condition in the frame of complete G-metric space. In 2015, Sarwar
et al. [19] established fixed point results with the aid of CLR propery in the frame of metric spaces. In 2016, Rahman
et al.[17] gave common fixed point results of Altman integral type for four self-maps in the setting of S-metric space.
In 2018, Panda et al.[16] generalized results of [4] with the assistance of a continuous cyclic map and established fixed
point results for weaker integral contraction. In 2019, Kumar et al.[8] established common fixed point theorems in
symmetrical G-metric space. In 2020, Arora et al. conferred common fixed point results for modified β-admissible
contraction and almost Z-contraction in the edge of metric space and G-metric space (see [1, 9]). Afterwards, Debnath
et al. [5] studied the existence and uniqueness of common fixed point theorems for Kannan, Reich and Chatterjea type
pairs of self-maps in the context of complete metric space. In 2021, Arora [2] established some common fixed point
results for four self maps in the context of Gs-metric space via CLR property. Recently, Murthy et al. [13] investigated
common fixed point results for two covariant functions with the assistance of upper semi-continuous function in the
frame of bipolar metric space.

Now, we present the significant definitions and theorems which are favourable in the proof of our sequel.

Theorem 1.1. [4] Let (X,σ) be a metric space, m < 1 and S1 be self-mapping such that for every x, y ∈ X,
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∫ σ(S1x,S1y)

0

µ(s)ds ≤ m

∫ σ(x,y)

0

µ(s)ds

where µ : R+ → R is Lebesgue integrable mapping which is summable and non- negative, satisfying
∫ ℓ

0
µ(s)ds > 0,

for each ℓ > 0, then S1 has a unique fixed point.

Definition 1.2. [14] Let X be a non empty set and G : X3 → [0, ∞) be a map which fulfils the following conditions:
(i) G(x1, y1, z1) = 0 if x1 = y1 = z1;
(ii) 0 < G(x1, x1, y1) whenever x1 ̸= y1, for all x1, y1 ∈ X;
(iii) G(x1, x1, y1) ≤ G(x1, y1, z1), y1 ̸= z1;
(iv) G(x1, y1, z1) = G(x1, z1, y1) = G(y1, x1, z1) = G(z1, x1, y1) = G(y1, z1, x1) = G(z1, y1, x1);
(v) G(x1, y1, z1) ≤ G(x1, a1, a1) + G(a1, y1, z1);
for every x1, y1, z1, a1 ∈ X, then the function G is said to be G-metric on X and (X, G) is known as G-metric space.

Definition 1.3. [18] Let Ψ be a family of functions ψ : [0,∞) → [0,∞) satisfying the following properties:
(i)ψ is upper semi-continuous, strictly increasing;
(ii){ψn(t)}n∈N converges to 0 as n→ ∞, for all t > 0;
(iii)ψ(t) < t, for every t > 0.
These functions are known as comparison functions.

Definition 1.4. [3] Two self mappings A and B on (X,G) are said to be weakly compatible if they commute at
coincident points.

Definition 1.5. Let (X,G) be a G metric space and f, g, P,Q be self maps on X.The pairs (P,Q) and (R,S) are
satisfy the joint common limit in the range of mappings (JCLR) property if there exists a sequence {xn} and {yn} in
X such that limn→∞ Pxn = limn→∞Qxn = limn→∞Rxn = limn→∞ Sxn = Qv = Rv
for some v ∈ X.

Definition 1.6. [11] Let (X,G) be a G metric space and f, g, h and j be four self maps. The pairs (f, j) and (g, h)
satisfy common limit range property with respect to j and h, denoted by CLRjh if there exists two sequences {un}
and {vn} in X such that

lim
n→∞

fxn = lim
n→∞

jxn = lim
n→∞

gyn = lim
n→∞

hyn = ℓ ∈ j(X) ∩ h(X).

The main aim of our paper is to establish fixed point theorems with the help of control function and CLR property
in the context of generalized metric space. Our results enhance and unify the results established by [16] and various
other results in the literature.

2 Main Results

Theorem 2.1. Let (X,G) be G-metric space and S1, S2, S3, S4 be self-mappings such that for every x, y ∈ X,∫ G(S1x,S2y,S2y)

0

µ(s)ds ≤ σ

(∫ ν(x,y,z)

0

µ(s)ds

)

where µ : R+ → R is Lebesgue integrable mapping which is summable and non-negative,

σ = {σ/σ : R → R is upper semi continuous, σ(0) = 0 and σ(s) < s for each s > 0}

and
ν(x, y, z) = max{G(S3x, S4y, S4y),G(S3x, S2y, S2y),G(S4y, S2y, S2y),G(S1x, S3x, S3x)}.

Also, satisfying the following condition that the pairs (S1, S3) and (S2, S4) satisfy CLR property with respect to
maps S3 and S4. Further if both the pairs (S1, S3) and (S2, S4) are weakly compatible, then S1, S2, S3, S4 have a
unique common fixed point in X.
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Proof . Let (S1, S3) and (S2, S4) satisfy CLRS3S4
property, therefore there exist two sequences {un} and {vn} such

that
lim
n→∞

S1un = lim
n→∞

S3un = lim
n→∞

S2vn = lim
n→∞

S4vn = w. (2.1)

for some w ∈ S4(X) ∩ S3(X). Since w ∈ S3(X), so there exists a point z ∈ X such that S3z = w. Taking (2.1) into
account, we obtain

lim
n→∞

S1un = lim
n→∞

S3un = lim
n→∞

S2vn = lim
n→∞

S4vn = w = S3z. (2.2)

Next, we claim that S1z = S3z. Suppose on the contrary that S1z ̸= S3z. Substituting x = z and y = vn in the
assumption of Theorem 2.1, we obtain∫ G(S1z,S2vn,S2vn)

0

µ(s)ds ≤ σ(

∫ ν(z,vn,vn)

0

µ(s)ds),

where

ν(z, vn, vn) = max{G(S3z, S4vn, S4vn),G(S3z, S2vn, S2vn),G(S4vn, S2vn, S2vn),G(S1z, S3z, S3z)}.

Letting n→ ∞ in the above inequalities and using (2.2), we obtain

lim
n→∞

ν(z, vn, vn) = max{G(w,w,w),G(w,w,w)),G(w,w,w),G(S1z, w,w)}

= G(S1z, w,w)

and ∫ G(S1z,w,w)

0

µ(s)ds = lim
n→∞

sup

∫ G(S1z,S2vn,S2vn)

0

µ(s)ds

≤ lim
n→∞

supσ(

∫ λ(z,vn,vn)

0

µ(s)ds)

≤ σ( lim
n→∞

sup

∫ λ(z,vn,vn)

0

µ(s)ds)

= σ(

∫ G(S1z,w,w)

0

µ(s)ds)

<

∫ G(S1z,w,w)

0

µ(s)ds,

which is a contradiction. Therefore, S1z = S3z. Hence,

S1z = S3z = w. (2.3)

Since w ∈ j(X), there exists ρ ∈ X such that jρ = w. Substituting, jρ = w in (2.1), we obtain

lim
n→∞

S1un = lim
n→∞

S3un = lim
n→∞

S2vn = lim
n→∞

S4vn = w = jρ. (2.4)

Now, we want to prove that S2ρ = S4ρ. Suppose that S2ρ ̸= S4ρ. Substituting x = un and y = ρ in the assumption
of Theorem 2.1, we obtain∫ G(S1un,S2ρ,S2ρ)

0

µ(s)ds ≤ σ(

∫ ν(un,ρ,ρ)

0

µ(s)ds),

where
ν(un, ρ, ρ) = max{G(S3un, S4ρ, S4ρ),G(S3un, S2ρ, S2ρ),G(S4ρ, S2ρ, S2ρ),G(S1un, S3un, S3un)}.
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Letting n→ ∞ and using (2.4), we obtain

lim
n→∞

ν(un, ρ, ρ) = max{G(w,w,w),G(w,w,w)),G(w,w,w),G(S1un, w, w)}

= G(S1un, w, w)

and ∫ G(S1un,w,w)

0

µ(s)ds = lim
n→∞

sup

∫ G(S1un,S2ρ,S2ρ)

0

µ(s)ds

≤ lim
n→∞

supσ(

∫ λ(un,ρ,ρ)

0

µ(s)ds)

≤ σ( lim
n→∞

sup

∫ λ(un,ρ,ρ)

0

µ(s)ds)

= σ(

∫ G(S1un,w,w)

0

µ(s)ds)

<

∫ G(S1un,w,w)

0

µ(s)ds,

which is a contradiction. Therefore, S2ρ = S4ρ. Hence,

S2ρ = S4ρ = w. (2.5)

From (2.3) and (2.5), we obtain
S1z = S3z = S2ρ = S4ρ = w. (2.6)

Next, we show that w is common fixed point of S1, S2, S3, S4.
Since (S1, S3) and (S2, S4) are weakly compatible, S1z = S3z implies that S3S1z = S1S3z. Now, using (2.6), we obtain

S1w = S3w. (2.7)

Also, S2ρ = S4ρ implies S4S2ρ = S2S4ρ. Now, using (2.6), we obtain

S2w = S4w. (2.8)

Next, we claim that S1w = w. Let us suppose contrary that S1w ̸= w. Substituting x = w and y = ρ in the
assumption of Theorem 2.1, we obtain

∫ G(S1w,S2ρ,S2ρ)

0

µ(s)ds ≤ σ(

∫ ν(w,ρ,ρ)

0

µ(s)ds)

where
ν(w, ρ, ρ) = max{G(S3w, S4ρ, S4ρ),G(S3w, S2ρ, S2ρ),G(S4ρ, S2ρ, S2ρ),G(S1w, S3w, S3w)}.

Letting n→ ∞ and using (2.6), (2.7), (2.8), we obtain

lim
n→∞

ν(w, ρ, ρ) = max{G(S1w,w,w),G(S1w,w,w)),G(w,w,w),G(S1w, S1w, S1w)}

= G(S1w,w,w)
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and ∫ G(S1w,w,w)

0

µ(s)ds = lim
n→∞

sup

∫ G(S1w,S2ρ,S2ρ)

0

µ(s)ds

≤ lim
n→∞

supσ(

∫ λ(w,ρ,ρ)

0

µ(s)ds)

≤ σ( lim
n→∞

sup

∫ λ(w,ρ,ρ)

0

µ(s)ds)

= σ(

∫ G(S1w,w,w)

0

µ(s)ds)

<

∫ G(S1w,w,w)

0

µ(s)ds,

which is a contradiction. Therefore, S1w = w. From (2.7), we obtain

S1w = S3w = w. (2.9)

In the similar way by substituting x = z, y = w in assumption of Theorem 2.1 and using (2.6), (2.8), we obtain

S2w = S4w = w. (2.10)

Combining (2.9) and (2.10), we obtain

S1w = S3w = w = S2w = S4w.

Consequently, w is a common fixed point of S1, S2, S3 and S4. Lastly, we shall examine the uniqueness of common
fixed point of S1, S2, S3 and S4. Let us assume that ρ1 and ρ2 are two common fixed points of S1, S2, S3 and S4.
Substituting x = ρ1 and y = ρ2 in the presumption of Theorem 2.1, we obtain

∫ G(S1ρ1,S2ρ2,S2ρ2)

0

µ(s)ds ≤ σ

(∫ ν(ρ1,ρ2,ρ2)

0

µ(s)ds

)
,

where

ν(ρ1, ρ2, ρ2) =max{G(S3ρ1, S4ρ2, S4ρ2),G(S3ρ1, S2ρ2, S2ρ2),G(S4ρ2, S2ρ2, S2ρ2),G(S1ρ1, S3ρ1, S3ρ1)}
=max{G(ρ1, ρ2, ρ2),G(ρ1, ρ2, ρ2),G(ρ2, ρ2, ρ2),G(ρ1, ρ1, ρ1)}
=G(ρ1, ρ2, ρ2).

and ∫ G(ρ1,ρ2,ρ2)

0

µ(s)ds ≤ σ

(∫ G(ρ1,ρ2,ρ2)

0

µ(s)ds

)

<

∫ G(ρ1,ρ2,ρ2)

0

µ(s)ds,

which is a logical inconsistency. Therefore, ρ1 = ρ2. Consequently, w is a unique common fixed point of S1, S2, S3 and S4.
□

Theorem 2.2. Let (X,G) be G-metric space and S1, S2, S3, S4 be self-mappings such that for every x, y ∈ X,

∫ G(S1x,S2y,S2y)

0

µ(s)ds ≤ σ

(∫ ν(x,y,z)

0

µ(s)ds

)
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where µ : R+ → R is Lebesgue integrable mapping which is summable and non-negative, σ = {σ/σ : R → R is upper
semi continuous, σ(0) = 0 and σ(s) < s for each s > 0},

ν(x, y, z) = max{G(S3x, S4y, S4y),G(S3x, S2y, S2y),G(S4y, S2y, S2y),G(S1x, S3x, S3x)}.

Also satisfying the following condition that the pairs (S1, S3) and (S2, S4) satisfy E.A property such that S3 or S4

is closed subspace of X. Further if both the pairs (S1, S3) and (S2, S4) are weakly compatible, then S1, S2, S3, S4 have
a unique common fixed point in X.

Corollary 2.3. Let (X,G) be G-metric space and S1, S2 be self-mappings such that for every x, y ∈ X,

∫ G(S1x,S1y,S1z)

0

µ(s)ds ≤ σ

(∫ ν(x,y,z)

0

µ(s)ds

)

where µ : R+ → R is Lebesgue integrable mapping which is summable and non- negative, σ = {σ/σ : R → R is upper
semi continuous, σ(0) = 0 and σ(s) < s for each s > 0},

ν(x, y, z) = max{G((S2x, S2y, S2z),G((S2x, S1x, S1x),G(S2y, S1y, S1y),G(S2z, S1z, S1z)}.

Also satisfying the following condition that the pair (S1, S2) satisfy CLR property with respect to map S2, then
S1 and S2 have a coincidence point in X. Further, if the pair (S1, S2) is weakly compatible, then S1, S2 have a unique
common fixed point in X.

Corollary 2.4. Let (X,G) be G-metric space and S1, S2, S3 be self-mappings such that for every x, y ∈ X,

∫ G(S1x,S2y,S2y)

0

µ(s)ds ≤ σ

(∫ ν(x,y,z)

0

µ(s)ds

)

where µ : R+ → R is Lebesgue integrable mapping which is summable and non-negative, σ = {σ/σ : R → R is upper
semi continuous, σ(0) = 0 and σ(s) < s for each s > 0},

ν(x, y, z) = max{G((S3x, S2y, S2y),G((S3y, S1x, S1x),G(S3x, S1y, S1y),G(S3y, S2x, S2x)}.

Also satisfying the following condition that the pairs (S1, S2) and (S1, S3) satisfy CLR property with respect to
maps S2 and S3. Further, if the pair (S1, S2) and (S1, S3) are weakly compatible, then S1, S2 and S3 have a unique
common fixed point in X.

Example 2.5. Let (X,G) be G-metric space with the metric G(x, y, z) = |x−y|+|y−z|+|z−x|}, for all x, y, z in X =
(0, 5). Let S1, S2, S3 and S4 be four self-mappings such that for every x, y ∈ X, t > 0,

S1x =

{
1 if x ∈ (0, 4]
1
8 otherwise

; S2x =

{
1 if x ∈ (0, 4]
1
9 otherwise

S3x =

{
1 if x ∈ (0, 4]
1
5 otherwise

and S4x =

{
1 if x ∈ (0, 4]
1
4 otherwise.

Let {un} = 1
n and {vn} = 1

n+1 be two sequences in X. Then,

lim
n→∞

S1un = lim
n→∞

S1(
1

n
) = 1;

lim
n→∞

S2vn = lim
n→∞

S2(
1

n+ 1
) = 1;

lim
n→∞

S3vn = lim
n→∞

S3(
1

n+ 1
) = 1;

lim
n→∞

S4un = lim
n→∞

S4(
1

n
) = 1.
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Therefore,
lim

n→∞
S1un = lim

n→∞
S2vn = lim

n→∞
S3vn = lim

n→∞
S4un = 1.

So, (S1, S3) and (S2, S4) enjoys the CLRS3S4 property. Let us define µ(s) = 4s, and σ(s) = s
4 . Whenever,

x, y ∈ [0, 4], then, S1x = S2y = S3y = S4x = 1, which implies that

ν(x, y, z) = 0 = max{G(S3x, S4y, S4y),G(S3x, S2y, S2y),G(S4y, S2y, S2y),G(S1x, S3x, S3x)}.

Also, G(S1x, S2y, S2y) = 0. Therefore,∫ G(S1x,S2y,S2y)

0

µ(s)ds = 0 = σ(

∫ ν(x,y,z)

0

µ(s)ds)

Whenever, x, y ∈ [4, 5], then S1x = 1
8 , S2y = 1

9 , S3x = 1
4 and S4y = 1

5 . Therefore,∫ G(S1x,S2y,S2y)

0

µ(s)ds =

∫ 2× 1
72

0

4sds = 2s2
∣∣∣∣2× 1

72

0

= 2× 1

1296
=

1

648
= 0.001543.

Also, ν(x, y, z) = max{ 1
10 ,

10
36 ,

8
45 ,

1
4} = 1

4 . Thus,

σ(

∫ ν(x,y,z)

0

µ(s)ds) = σ(

∫ 1
4

0

4sds) =
1

4
× (

∫ 1
4

0

4sds) =
1

4
× 2× 1

16
= 0.03125.

From above two equations, it follows that∫ G(S1x,S2y,S2y)

0

µ(s)ds ≤ σ(

∫ ν(x,y,z)

0

µ(s)ds).

Now, hypothesis of Theorem 2.1 is fulfilled. Therefore, S1, S2, S3 and S4 have a unique common fixed point in X
which is x = 1.

3 Conclusion

In this paper, the fixed point results are investigated with the aid of CLR property for two pairs of functions in
the context of G−metric space. Additionally, an illustrative example and corollaries are provided to demonstrate the
main results. Our results can be utilized to find solution of fractional non-linear differential and integral equations.
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