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Abstract

In this article, we introduce another new subclass by using q-analogue of the Noor operator and based on it we
investigate a subclass with fixed finitely many coefficients for the univalent holomorphic functions. We obtain a number
of useful properties such as coefficient estimates, extreme points, convexity and convolution-preserving properties.
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1 Introduction

These days, if mathematics is expressed in a combination with other sciences, the motivation for research and study
in the basic sciences will increase, and the geometric and intuitive fields of mathematics will be displayed. The theory
of geometric functions and integration of mathematics and differential has obtained new and useful achievements,
including q-calculus and q-differential equations [13, 22]. Collaborative researchers between mathematics, physics,
geometry and mechanics have called for the study of linear operators in the field of geometric function theory. Because
q-analogue linear operators have brought very effective applications to this group of authors [1, 10, 12]. At the
beginning of the way, we start with the q-analogue of the derivative and integral operator of Ruscheweyh [4, 9], and
then the q-analogue of the Noor integral operator [2, 6] and q-Bernardi differential operators were introduced [21].
The rest of the researchers did not sit idle and introduced new achievements. Among other complex and important
operators are q-Picard and q-Gauss-Weierstrass [7]. But no operator has been given as much importance and attention
as the q-analogue of the Noor integral operator in the field of the theory of geometric functions [3, 16]. In this article,
with the help of this operator, we introduce a new interesting subclass of univalent holomorphic functions, and for this
subclass, we examine and present the estimation of coefficients and some related properties and results, see [15, 20]
and also [11].

Let A indicate the family of analytic functions having the form

f(z) = z +

∞∑
k=2

akz
k
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in the open unit disk D = {z ∈ C : |z| < 1} that are equal to 0 at z = 0 and the derivative of these functions is equal
to one at z = 0. This property is often called normalized property. Furthermore, N as a subclass of A by changing
with negative coefficients is of the type

f(z) = z −
∞∑
k=2

akz
k, (ak ⩾ 0). (1.1)

For functions f and g which are analytic in D and have the form (1.1), we define the Hadamard product (convolution)
of f and g by setting

(f ∗ g)(z) = z −
∞∑
k=2

akbkz
k = (g ∗ f)(z), (z ∈ D).

For more details see [10, 19]. We first review some basic and practical definitions from [18].

Definition 1.1. For 0 < q < 1 the q-derivative of function f ∈ A is defined by the equation

∂qf(z) =
f(zq) − f(z)

z(q − 1)
(z ̸= 0) (1.2)

and ∂qf(z) in z = 0 is equal to f ′(0). According to the above definition for f(z) = z +
∑∞

k=2 akz
k we have

∂q

(
z +

∞∑
k=2

akz
k
)

= 1 +

∞∑
k=2

[k, q]akz
k (k ∈ N, z ∈ D),

where

[k, q] =
1 − qk

1 − q
= 1 +

k−1∑
t=1

qt ([0, q] = 0) (1.3)

and the q-generalized Pochhammer symbol for y ≥ 0 is defined by

[y, q]k =

{
[y, q][y + 1, q] · · · [y + k − 1, q], k ∈ N
1, k = 0

for h(z) = zk, if q → 1 we have

∂qh(z) = [k, q]zk−1 = h
′
(z),

here h
′

follows from that q → 0 and then [k, q] → k.

We finally want to use the function T −1
q,µ+1(z) which has been defined by Arif et. al [8] and define N µ

q f(z) as a
subclass of functions with negative and fixed finitely many coefficient. We have

T −1
q,µ+1 ∗ Tq,µ+1(z) = z∂qf(z) (µ > −1),

where

Tq,µ+1(z) = z −
∞∑
k=2

[µ + 1, q]k−1

[k, q]!
zk.

The right-hand side of the above equality is absolutely convergent in D. We now define the Noor integral operator
N µ

q f(z) by using the definition of q-derivatives and Hadamard product as follows

N µ
q f(z) = T −1

q,µ+1(z) ∗ f(z)

= z −
∞∑
k=2

Ψk−1akz
k (z ∈ D), (1.4)

where

Ψk−1 =
[k, q]!

[µ + 1, q]k−1
(1.5)
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also

[k, q]! =

{
1, k = 0,

[1, q][2, q] · · · [k, q], k ∈ N.

It can be easily checked that
N 0

q f(z) = z∂qf(z), N 1
q f(z) = f(z)

and

lim
q→1−

N µ
q f(z) = z −

∞∑
k=2

k!

(µ + 1)k−1
akz

k,

which is the familiar Noor integral operator, see [17, 18]. For 0 ⩽ α ⩽ 1 and 0 ⩽ β < 1, the function f ∈ N is in the
class N µ

q (α, β) if it satisfies

Re

{
z∂q
(
N µ

q f(x)
)

+ αz2∂2
q

(
N µ

q f(x)
)

αz∂q
(
N µ

q f(x)
)

+ (1 − α)N µ
q f(x)

}
> β, (1.6)

where ∂q and N µ
q are defined in (1.2) and (1.4) respectively. Also ∂2

q

(
N µ

q f(z)
)

means ∂q
(
∂q(N µ

q f(z))
)
. Now, we

consider the class N µ
q (α, β, dm) consisting of functions with negative and fixed finitely many coefficient of the following

form

f(z) = z −
n∑

m=2

1 − β

Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))
dmzm

−
∞∑

k=n+1

akz
k, (1.7)

where satisfies (1.6). We need the following Lemma which has been proved in a general case in [15].

Lemma 1.2. f(z) ∈ N is in the class N µ
q (α, β) if and only if

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α)) ak < 1 − β,

where Ψk−1 and [k, q] are given by (1.5) and (1.3), respectively.

2 Main results

In this section, we obtain a sharp coefficient bound for functions in the class N µ
q (α, β, dm). We also investigate the

convexity of N µ
q (α, β, dm).

Theorem 2.1. The function f(z) of the form (1.7) is in the class N µ
q (α, β, dm) if and only if

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β
ak < 1 −

n∑
m=2

dm. (2.1)

Proof . Consider

am =
(1 − β)

Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))
dm.

Since N µ
q (α, β, dm) ⊂ N µ

q (α, β), so f ∈ N µ
q (α, β, dm) if and only if

n∑
m=2

Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))

1 − β
am
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+

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β
ak < 1

or

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β
ak < 1 −

n∑
m=2

dm

and this gives the desired result. □

Remark 2.2. By (2.1) we conclude that for k ⩾ n + 1 the following inequality holds

ak ⩽
(1 − β)

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm

)
.

Remark 2.3. Define F (z) by setting

F (z) = z −
n∑

m=2

1 − β

Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))
dmzm

− 1 − β

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm

)
zk.

The inequality (2.1) is sharp for F (z).

Theorem 2.4. The class N µ
q (α, β, dm) is a convex set.

Proof . We have to show that if

fj(z) = z −
n∑

m=2

(1 − β)

Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))
dmzm

−
∞∑

k=n+1

ak,jz
k

is in N µ
q (α, β, dm) for j = 1, 2, . . . , t, then the function F (z) =

∑t
j=1 λjfj(z) is also in N µ

q (α, β, dm) where

t∑
j=1

λj = 1, 0 ⩽
n∑

m=2

dm ⩽ 1

and 0 ⩽ dm ⩽ 1. By Theorem 2.1 we have

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β
ak,j < 1 −

n∑
m=2

dm

for every j = 1, 2, . . . , t. Since

F (z) =

t∑
j=1

λjfj(z)

= z −
n∑

m=2

(1 − β)dm
Ψm−1 ([m, q] (1 + α[m, q] − αβ) + β(1 − α))

−
∞∑

k=n+1

( t∑
j=1

λjak,j

)
zk

and

∞∑
k=n+1

Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β

( t∑
j=1

λjak,j

)
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=

t∑
j=1

( ∞∑
k=n+1

[
Ψk−1 ([k, q] (1 + α[k, q] − αβ) + β(1 − α))

1 − β

]
λj

)

<

t∑
j=1

(
1 −

n∑
m=2

dm

)
λj

= 1 −
n∑

m=2

dm,

so by Theorem 2.1 we get F (z) ∈ N µ
q (α, β, dm). □

3 Geometric properties of N µ
q (α, β, dm)

In this section, we introduce the extreme points of N µ
q (α, β, dm). The special geometric property and convolution-

preserving concept are also investigated.

Theorem 3.1. The extreme points of the class N µ
q (α, β, dm) are the functions fn(z) and fk(z) (k ⩾ n + 1) defined

by setting

fn(z) = z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dm,

fk(z) = z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dmzm

− (1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
zk (k ⩾ n + 1).

Proof . We show that F (z) ∈ N µ
q (α, β, dm) if and only if it can be expressed in the following form

F (z) =

∞∑
k=n

λkfk(z)

where λk ⩾ 0 (k ⩾ n) and
∑∞

k=n λk = 1. Let F (z) =
∑∞

k=n λkfk(z). Then

F (z) = λnfn(z) +

∞∑
k=n+1

λkfk(z)

= λnz − λn

n∑
m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dmzm

+

∞∑
k=n+1

λkz −
∞∑

k=n+1

λk

(
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dmzm

)

−
∞∑

k=n+1

λk

(
(1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
zk

)

= z −
(
λn +

∞∑
k=n+1

λk

) n∑
m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dm

−
∞∑

k=n+1

(1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
λkz

k

= z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dmzm

−
∞∑

k=n+1

(1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
λkz

k.
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Since

∞∑
k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))(1 − β)

(1 − β)Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
λk

=
(

1 −
n∑

m=2

dm

) ∞∑
k=n+1

λk

=
(

1 −
n∑

m=2

dm

)
(1 − λn)

< 1 −
n∑

m=2

dm,

so by Theorem 2.1 we deduce F (z) ∈ N µ
q (α, β, dm).

Conversely, suppose F (z) ∈ N µ
q (α, β, dm). By putting

λk =
Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 dm

) ak (k ⩾ n + 1)

we have λk ⩾ 0 and if we set λn = 1 −
∑∞

k=n+1 λk, we reach

F (z) = z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
dmzm

−
∞∑

k=n+1

(1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

dm
)
λkz

k

= fn(z) −
∞∑

k=n+1

(
z −

n∑
m=2

(1 − β)dm
Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))

zm − fk(z)

)
λk

= fn(z) −
∞∑

k=n+1

(
fn(z) − fk(z)

)
λk

=
(

1 −
∞∑

k=n+1

λk

)
fn(z) +

∞∑
k=n+1

λkfk(z)

=

∞∑
k=n

λkfk(z).

Hence, the proof is complete. □

Theorem 3.2. Let f(z) ∈ N µ
q (α, β, dm). If

cm =
(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
d2m (2 ⩽ m ⩽ n), (3.1)

then the function G defined by

G(z) = z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
cmzm −

∞∑
k=n+1

akz
k

is also in N µ
q (α, β, dm).

Proof . Since Ψm−1([m, q] (1 + α [m, q] − αβ) + β(1 − α)) > 1, we get

cm =
(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
d2m
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< dm

⩽ 1.

So, 0 ⩽
∑n

m=2 cm <
∑n

m=2 dm ⩽ 1 and hence

∞∑
k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) ak

<

∞∑
k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 dm

) ak

< 1.

This completes the proof. □

Theorem 3.3. Let f, g ∈ N µ
q (α, β, dm). Then

(f ∗ g)(z) = z −
n∑

m=2

(1 − β)2[
Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))

]2 d2mzm

−
∞∑

k=n+1

akbkz
k,

is in N µ
q (α, β0, cm), where cm (2 ⩽ m < n) is defined by (3.1) and

β0 ⩽
M − [k, q] − α([k, q])2

M + α([k, q] − 1) + 1
,

M =
Ψk−1

1 −
∑n

m=2 cm

(
[k, q]

(
1 + α[k, q] − αβ

)
+ β(1 − α)

1 − β

)2

. (3.2)

Proof . By (3.1) we have

(f ∗ g)(z) = z −
n∑

m=2

(1 − β)

Ψm−1([m, q](1 + α[m, q] − αβ) + β(1 − α))
cmzm

−
∞∑

k=n+1

akbkz
k.

By applying Theorem 3.2 we get

∞∑
k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) ak < 1

and
∞∑

k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) bk < 1.

It is now sufficient to show that

∞∑
k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) akbk

≤
∞∑

k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) √
akbk

⩽ 1.
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We use the Cauchy-Schwartz inequality for this purpose and find the largest β0 such that

∞∑
k=n+1

Ψk−1

(
[k, q](1 + α[k, q] − αβ0

)
+ β0(1 − α)

(1 − β0)
(
1 −

∑n
m=2 cm

) akbk

⩽
∞∑

k=n+1

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(1 − β)
(
1 −

∑n
m=2 cm

) √
akbk

⩽ 1

or equivalently

√
akbk ⩽

(1 − β0)
(
[k, q](1 + α[k, q] − αβ) + β(1 − α)

)
(1 − β)

(
[k, q](1 + α[k, q] − αβ0) + β0(1 − α)

) , (k ⩾ n + 1).

This inequality holds when

(1 − β)

Ψk−1([k, q](1 + α[k, q] − αβ) + β(1 − α))

(
1 −

n∑
m=2

cm
)

⩽
(1 − β0)

(
[k, q]

(
1 + α[k, q] − αβ

)
+ β(1 − α)

)
(1 − β)

(
[k, q](1 + α[k, q] − αβ0) + β0(1 − α)

)
or equivalently

β0 ⩽
M − [k, q] − α([k, q])2

M + α([k, q] − 1) + 1
,

where M is given by (3.2). This completes the proof. □

In the forthcoming article, we verify the connection between the class defined in this article and bi-univalent
functions. We consider Lucas polynomials [6] and Faber polynomial [14] and we discuss their characteristics through
the q-analogue of the Noor integral operator.
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