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Abstract

We investigate in this paper a value problem related to the following nonlinear higher-order wave equation

ηtt + ( −∆) mη −
t∫

0

g ( t− s) ( −∆) mη ( s) ds+ ηt = |η|p( x) −2
η.

Firstly, we prove the existence and uniqueness of the local solution under suitable conditions for the relaxation function
g and viable-exponent p ( .) , using a method, which is a mixture of the Faedo-Galarkin and Banach fixed point theorem,
and prove also the solution blows up in finite time. Finally, we give a two-dimensional numerical example to illustrate
the blow-up result.
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1 Introduction

We consider the following boundary value problem:
ηtt + (−∆)

m
η −

t∫
0

g (t− s) (−∆)
m
η (s) ds+ ηt = |η|p(x)−2

η, in Ωt,

η (x, t) = 0, ∂iη
∂vi = 0, i = 1, 2, ...,m− 1, on Γt

η (x, 0) = η0 (x) , ηt (x, 0) = η1 (x) , in Ω,

(1.1)

where m ≥ 1 is a natural number, Ω is a bounded domain in Rn, n ≥ 1, ∂Ω is smooth boundary of Ω, Ωt = Ω× R+,
Γt = ∂Ω × R+, g is the relaxation function satisfying some condition to be specified later. p (.) is given measurable
functions on Ω, satisfying {

2 < p1 ≤ p (x) ≤ p2 ≤ p∗ for n ≤ 2m,
2 < p1 ≤ p (x) ≤ p2 ≤ p∗ for n > 2m.

(1.2)

∗Corresponding author
Email addresses: wissem.boughamsa@univ-skikda.dz (Wissem Boughamsa), a.ouaoua@univ-skikda.dz (Amar Ouaoua)

Received: December 2022 Accepted: February 2023

http://dx.doi.org/10.22075/ijnaa.2023.29383.4149


112 Boughamsa, Ouaoua

with

p∗ =

{
∞, if n ≤ 2m,
2n

n−2m , if n > 2m,

where
p1 := essx∈Ω inf (p (x)) , p2 := essx∈Ω sup (p (x))

We also assume that p (x) satisfy the following condition:

|ξ (x1)− ξ (x2)| ≤ − R

log |x1 − x2|
, for a.e. x1, x2 ∈ Ω, with |x1 − x2| < µ, (1.3)

R > 0, 0 < µ < 1.
The exponents of nonlinearity are given constants:
Many authors looked into the following equation with memory and source terms

ηtt + (−∆)
m
η −

∫ t

0

g (t− s) (−∆)
m
η (x, s) ds = |η|p−2

η. (1.4)

When m = 2, Tahamatani et al [20] in the both instance of nonpositive initial energy and positive initial energy
demostreted the existence of weak solution and proved that solution blow-up in finite time and gave the lifespan
estimates of solutions. In the case of m ≥ 1 and by used the Galerkin’s method Yaojun Ye [23], studied weak global
solution, under appropriate conditions on the relaxtion function g and the positive initial energy as well as the non-
positive initial energy proved that solution blow up in finite time. The higher-order in case when m ≥ 1, equation
(1.4) with damping term and without the viscoelastic term becomes

ηtt + (−∆)
m
η + aηt |ηt|γ−1

= b |η|m−2
η. (1.5)

Brenner et al. [3] proved the existence and uniqueness of classical solutions in the Hilbert space. Pecher in [16] by
used the potential well method, investigated the existence and uniqueness of the Cauchy problem for the equation (1.5) .

For more attached results concerning the existence and asymptotic properties of solutions of (1.1), can also referred
to [2, 4, 6, 11, 12, 13, 14, 21, 24].
The exponents of nonlinearity are given functions:

Messaoudi et al. In [9] considered the following equation:

ηtt −∆η + a |ηt|m(x)−2
ηt = b |η|p(x)−2

η, (1.6)

and used the Faedo-Galerkin method to establish the existence of a unique weak local solution. They also proved
with negative initial that the solution blow up in finite time. Messaoudi and Talahmeh [7], considered the following
equation:

ηtt − div
(
|∇η|r(x)−2 ∇η

)
+ a |ηt|m(x)−2

ηt = b |η|p(x)−2
η, (1.7)

where a, b and are all positive constants. They proved a finite-time blow-up result for the solution with negative initial
energy as well as for certain solutions with positive initial energy; in the case where m (x) = 2 and under suitable
conditions on the exponents, they established a blow-up result for solutions with arbitrary positive initial energy.
In [17] Pişkin studied the global nonexistence of solutions for the Klien-Gorden equation

ηtt −∆η +m2u+ |ηt|m(x)−2
ηt = |η|p(x)−2

η, (1.8)

Antontsev et al. In [2] considered the strong damping Petrovsky equation with variable exponents

ηtt +∆2η −∆ηt + |ηt |m(x)−1 ηt = |η |p(x)−1 η, (1.9)

they proved the local existence and blow up of solution.
Sun-Hye Park in [15] studied a blow up result for the following viscoelastic wave equation with varible exponents

ηtt −∆η +

∫ t

0

g(t− s)∆η(s)ds+ a|η |m(x)−2 ηt = b|η |p(x)−2 η. (1.10)

Our objective in this paper is to study, in section two, we state some notations and assumptions are introduced,
in section third, we prove the existence of local solution, in section foor, we show that the solution with the negative
initial energy blow up in the finite time. In section five, we give a two-dimension numerical example to illustrate the
blow up result.
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2 Preliminaries

We begin this section with some notations and definitions. Let Hm (Ω) be the Sobolev space. Hm
0 (Ω) denotes

the closure in Hm (Ω) of C∞
0 (Ω). we denote the norm ∥Dm.∥2 instead of Hm

0 (Ω) norm ∥.∥Hm
0 (Ω) , where D denotes

the gradient operator, that is Dm. = ∇. =
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)
. Moreover Dm. = ∆j . if m = 2j and Dm. = D∆j . if

m = 2j + 1.

Let ξ : Ω → [1, +∞] be a measurable function. The Lebesque space with variale exponent ξ (.) by:

Lξ(.) (Ω) :=
{
v : Ω → R : measurable in Ω, ϱξ(.) (λv) < +∞, for some λ > 0

}
,

where ϱξ(.) (v) =
∫
Ω

|v (x)|ξ(x) dx.

The set Lξ(.) (Ω) equipped with the Luxemburg’s norm

∥v∥q(.) := inf

λ > 0 :

∫
Ω

∣∣∣∣v (x)λ

∣∣∣∣ξ(x) dx ≤ 1

 ,

Lξ(.) (Ω) is a Banach space [5]. The Sobolev space with variable-exponent W 1,ξ(.) (Ω) is:

W 1,ξ(.) (Ω) :=
{
v ∈ Lξ(.) (Ω) such that ∇v exists and |∇v| ∈ Lξ(.) (Ω)

}
.

This is a Banach space with respect to the norm ∥v∥W 1,ξ(.)(Ω) = ∥v∥ξ(.) +∥∇v∥ξ(.) . Furthermore, we set W
1,ξ(.)
0 (Ω)

to be the closure of C∞
0 (Ω) in the space W 1,ξ(.) (Ω).

Lemma 2.1. [5] If
1 ≤ ξ1 := ess inf

x∈Ω
ξ (x) ≤ ξ (x) ≤ ξ2 := esssup

x∈Ω
ξ (x) < ∞,

then we have
min

{
∥η∥ξ1ξ(.) , ∥η∥ξ2ξ(.)

}
≤ ϱξ(.) (η) ≤ max

{
∥η∥ξ1ξ(.) , ∥η∥ξ2ξ(.)

}
,

for any η ∈ Lq(.) (Ω) .

For that purpose, we assume that

(H) g ∈ C1 ([0,+∞)) is non-negative function satisfaying

1−
∫ t

0

g (s) ds = β > 0, g′ (t) ≤ 0 for t ≥ 0. (2.1)

In the proof of our main result, we shall make use of the following Lemma.

Lemma 2.2. [25] Assume ρ (t) is a twice continuously differentiable satisfying{
ρ′′ (t) + ρ′ (t) ≥ Cρ1+α (t) , t, C, α > 0

ρ (0) > 0, ρ′ (0) ≥ 0.
(2.2)

Then, ρ (t) blows up in finite time.

Furthermore, the energy of problem (1.1) is

E (t) =
1

2
∥ηt (t)∥22 +

1

2

(
1−

∫ t

0

g (s) ds

)
∥Dmη (t)∥22 +

1

2
(g ◦Dmη) (t)

−
∫
Ω

1

p (x)
|η (t)|p(x) dx, (2.3)

where (g ◦Dmv) (t) =
∫ t

0
g (t− s) ∥Dmv (t)−Dmv (s)∥2 ds.
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Lemma 2.3. Suppose (H)and (1.2) hold. Then E (t) decreases, which

E
′
(t) =

1

2
(g′ ◦Dmη) (t)− 1

2
g (t) ∥Dmη (t)∥22 − ∥ηt∥22 ≤ 0,

furthermore,
E (t)− E (0) ≤ 0, t ≥ 0. (2.4)

Proof . Multiplying the first equation in (1.1) by ηt and integrating over Ω, we get∫
Ω

ηtηttdx+

∫
Ω

ηt (−∆)
m
ηdx−

∫
Ω

ηt

t∫
0

g (t− s) (−∆)
m
η (x, s) dxds+

∫
Ω

η2t dx

=

∫
Ω

ηtη |η|p(x)−2
dx,

then use integration par parts, yields

1

2

d

dt

∫
Ω

|ηt|2 dx+

∫
Ω

|Dmη|2 dx

−
t∫

0

g (t− s)

∫
Ω

Dmηt (t)D
mη (s) dxds+

∫
Ω

η2t dx

=
d

dt

∫
Ω

1

p (x)
|η|p(x) dx

 . (2.5)

We take account
t∫
0

g (t− s) ds =
t∫
0

g (s) ds, the third term in (2.5) can be estimated as:

t∫
0

g (t− s)

∫
Ω

Dmηt (t)D
mη (s) dxds

=

t∫
0

g (t− s)

∫
Ω

Dmηt (t) . (D
mη (s)−Dmη (t)) dxds+

t∫
0

g (t− s)

∫
Ω

Dmηt (t) .D
mη (t) dxds

= −1

2

t∫
0

g (t− s)
d

dt

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds+
t∫

0

g (t− s)

 d

dt

1

2

∫
Ω

|Dmη (t)|2 dx

 ds

= −1

2

d

dt

 t∫
0

g (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds


+

1

2

t∫
0

g′ (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds+ 1

2

d

dt

 t∫
0

g (s) ds

∫
Ω

|Dmη (t)|2 dx

− 1

2
g (t)

∫
Ω

|Dmη (t)|2 dx. (2.6)

Insert (2.6) in (2.5) to get

1

2

d

dt


∫
Ω

|ηt|2 dx+

∫
Ω

|Dmη|2 dx

 +
1

2

d

dt

 t∫
0

g (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds


− 1

2

t∫
0

g′ (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds− 1

2

d

dt

t∫
0

g (s) ds

∫
Ω

|Dmη (t)|2 dx+
1

2
g (t)

∫
Ω

|Dmη (t)|2 dx+

∫
Ω

η2t dx

=
d

dt

∫
Ω

1

p (x)
|η|p(x) dx

 .
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We deduce that

d

dt

1

2

∫
Ω

|ηt|2 dx+
1

2

∫
Ω

|Dmη|2 dx−
∫
Ω

1

p (x)
|η|p(x) dx

+
1

2

t∫
0

g (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds− 1

2

t∫
0

g (s) ds

∫
Ω

|Dmη (t)|2 dx


=

1

2

t∫
0

g′ (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds− 1

2
g (t)

∫
Ω

|Dmη (t)|2 dx−
∫
Ω

η2t dx.

Using the equality (g ◦Dmη) (t) =
∫ t

0
g (t− s) ∥Dmη (t)−Dmη (s)∥22 ds, we get

d

dt

{
1

2
∥ηt (t)∥22 +

1

2

(
1−

∫ t

0

g (s) ds

)
∥Dmη (t)∥22 +

1

2
(g ◦Dmη) (t) −

∫
Ω

1

p (x)
|η (t)|p(x) dx


=

1

2

t∫
0

g′ (t− s)

∫
Ω

|Dmη (s)−Dmη (t)|2 dxds− 1

2
g (t)

∫
Ω

|Dmη (t)|2 dx−
∫
Ω

η2t dx,

hence, using (2.3), we obtain

E′ (t) =
1

2
(g′ ◦Dmη)− 1

2
g (t) ∥Dmη∥22 − ∥ηt∥2 ≤ 0.

Using integration of last inequality, we get
E (t) ≤ E (0) (2.7)

□

Lemma 2.4. [8] Suppose that(1.2), (1.3) hold and E (0) < 0.Then the solution of (1.1) satisfies∫
Ω

|η|p(x) dx ≥ c ∥η∥p1

p1
. (2.8)

3 Local existence

In this section, we will prove the nonexistence global solution of (1.1), we state the following lemma witch can be
obtained by using the Faedo-Galerkin method by combining the argument of [9, 15, 22, 23].

Lemma 3.1. Assume that (1.2) and (1.3) hold and (η0,η1) ∈
(
Hm

0 (Ω) , L2 (Ω)
)
and give f (t, x) a fixed function on

Ω× (0, t).Then there existe a unique local solution η of


ηtt + (−∆)

m
η −

t∫
0

g (t− s) (−∆)
m
η (s) ds+ ηt = f (t, x) , in Ωt,

η (x, t) = 0, ∂iη
∂vi = 0, i = 1, 2, ...,m− 1, on Γt

η (x, 0) = η0 (x) , ηt (x, 0) = η1 (x) , in Ω,

(3.1)

Satisfying η ∈ L∞ ((0, T ) , Hm
0 (Ω)) , ηt ∈ L∞((0, T ) , L2 (Ω))∩L2 (Ω× (0, T )), where f ∈ L2 (Ω× (0, T )) . Now,

we prove the local existence of (1.1) by using the method of Banach fixed point theorem.

Theorem 3.2. Suppose that (1.2) holds. Suppose further that

2 ≤ p1 ≤ p (x) ≤ p2 ≤ 2 (n−m)

n− 2m
, (n > 2m) (3.2)

and (η0,η1) ∈
(
Hm

0 (Ω) , L2 (Ω)
)
. Then there exists T > 0, such that (1.1) has unique local solution

η ∈ L∞ ((0, T ) , Hm
0 (Ω)) , ηt ∈ L∞((0, T ) , L2 (Ω)) ∩ L2 (Ω× (0, T )) .
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Proof . Let v ∈ L∞ ((0, T ) , Hm
0 (Ω)) and f (v) = |v|p(x)−2

v, we have

∥f (v)∥2 =

∫
Ω

|v|2p(x)−2
dx ≤

∫
Ω

|v|2p2−2
dx+

∫
Ω

|v|2p1−2
dx < ∞,

Since

2p1 − 2 ≤ 2p2 − 2 ≤ 2n

n− 2m
, (n > 2m) .

We have
f (v) ∈ L∞ ((0, t) , Hm

0 (Ω)) ⊂ L2 (Ω× (0, T )) .

Therefore, for each v ∈ L∞ ((0, T ) , Hm
0 (Ω)), there existe a unique

η ∈ L∞ ((0, T ) , Hm
0 (Ω)) , ηt ∈ L∞((0, T ) , L2 (Ω)) ∩ L2 (Ω× (0, T ))

Satisfying the following problem
ηtt + (−∆)

m
η −

t∫
0

g (t− s) (−∆)
m
η (s) ds+ ηt = f (v) , in Ωt,

η (x, t) = 0, ∂iη
∂vi = 0, i = 1, 2, ...,m− 1, on Γt

η (x, 0) = η0 (x) , ηt (x, 0) = η1 (x) , in Ω,

(3.3)

Let a map G : XT −→ XT by G (v) = u, where

XT =
{
w ∈ L∞ ((0, T ) , Hm

0 (Ω)) , wt ∈ L∞((0, T ) , L2 (Ω))
}
.

where, XT is Banach space with respect to the norm

∥w∥XT
=

1

2
sup
(0,T )

∥wt∥22 +
1

2
l sup
(0,T )

∥Dmw∥22 .

Multiplying the equation (3.3) by ηt and integrating over Ω× (0, t) , to get

1

2
∥ηt (t)∥22 +

1

2

(
1−

∫ t

0

g (s) ds

)
∥Dmη (t)∥22 +

1

2
(g ◦Dmη) (t)

−
∫ t

0

[
1

2
(g′ ◦Dmη) (s)− 1

2
g (s) ∥Dmη (s)∥22

]
ds+

∫ t

0

∫
Ω

η2t dxds
1

2
∥η1∥22 +

1

2
∥Dmη0∥22 +

∫ t

0

∫
Ω

|v|2p(x)−2
vηtdxds.

(3.4)

Using the Young and the Sobolev-Poincare inequalities, we obtain∣∣∣∣∫
Ω

|v|p(x)−2
vηtdx

∣∣∣∣ ≤ δ

4
∥ηt (t)∥22 +

4

δ

∫
Ω

|v|2p(x)−2
dx

≤ δ

4
∥ηt (t)∥22 +

4

δ

(∫
Ω

|v|2p2−2
dx+

∫
Ω

|v|2p1−2
dx

)
≤ δ

4
∥ηt (t)∥22 +

4c∗
δ

(
∥Dmv∥2p2−2

2 + ∥Dmv∥2p1−2
2

)
(3.5)

Thus by (3.4) and (3.5), we get

1

2
∥ηt (t)∥22 +

1

2
l ∥Dmη (t)∥22 ≤ k0 +

δT

4
sup
(0, T )

∥ηt (t)∥22 +
4c∗
δ

(∫ T

0

∥Dmv∥2p2−2
2 +

∫ T

0

∥Dmv∥2p1−2
2

)
ds.
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Then we have

1

2
sup
(0, T )

∥ηt (t)∥22 +
1

2
l sup
(0, T )

∥Dmη (t)∥22 ≤ k0 +
δT

4
sup
(0, T )

∥ηt (t)∥22 +
4c∗T

δl2p2−2

[∫ T

0

∥v∥p2−1
XT

+

∫ T

0

∥v∥p1−1
XT

]
,

where k0 = 1
2 ∥η1∥

2
2 +

1
2 ∥D

mη0∥22 and c∗ is the embedding constant. Taking δT = 1, we get

1

2
sup
(0, T )

∥ηt (t)∥22 +
1

2
l sup
(0, T )

∥Dmη (t)∥22 ≤ 2k0 +
8c∗T

δl2p2−2

[
∥v∥p2−1

XT
+ ∥v∥p1−1

XT

]
.

Then
∥η∥XT

≤ K + Tα
[
∥v∥p2−1

XT
+ ∥v∥p1−1

XT

]
.

Choosing M0 large enough and T Sufficiently small such that

∥η∥XT
≤ K + 2TαM2p2−2

0 ≤ M0.

If K ≤ M2
0 and T ≤ T0 <

M2
0−K

2αM
2P2−2
0

. Thus, we have G : Λ −→ Λ, where

Λ =
{
w ∈ XT , ∥w∥XT

≤ M2
0

}
.

Next, we show that G is contraction. For this purpose, let η1 = G (v1) and η2 = G (v2) and set η = η1 − η2
satisfyies 

ηtt + (−∆)
m
η −

t∫
0

g (t− s) (−∆)
m
η (s) ds+ (η1t − η2t)

= |v1|p(x)−2
v1 − |v2|p(x)−2

v2 in Ω× (0, t)

η (x, t) = 0, ∂iη
∂vi = 0, i = 1, 2, ...,m− 1, on Γt

η (x, 0) = ηt (x, 0) = 0, in Ω,

(3.6)

Multiplying (3.6) by ηt = η1t − η2t and integrate on Ω× (0, t), we get

1

2
∥ηt (t)∥22 +

1

2

(
1−

∫ t

0

g (s) ds

)
∥Dmη (t)∥22 +

1

2
(g ◦Dmη) (t)

−
∫ t

0

[
1

2
(g′ ◦Dmη) (s)− 1

2
g (s) ∥Dmη (s)∥22

]
ds+

∫ t

0

∥η1t − η2t∥2 dx+

∫ t

0

∫
Ω

(
|v1|p(x)−2

v1 − |v2|p(x)−2
v2

)
ηtds.

Then, we have
1

2
∥ηt (t)∥22 +

1

2
l ∥Dmη (t)∥22 ≤

∫ t

0

∫
Ω

(h (v1)− h (v2)) ηtdxds, (3.7)

where h (s) = |s|p(x)−2
s. Now, we estimate I =

∫ t

0

∫
Ω
(h (v1)− h (v2)) ηtdxds.We get

I ≤
∣∣∣∣∫ t

0

∫
Ω

(h (v1)− h (v2)) ηtdxds

∣∣∣∣ ≤ ∫
Ω

|h′ (ξ)| |v| ∥ηt∥ dx,

where v = v1 − v2 and ξ = αv1 + (1− α) v2, 1 ≥ α ≥ 0. By the Young inequality implies

I ≤ δ

2
∥ηt (t)∥22 +

2

δ

∫
Ω

|h′ (ξ)|2 |v|2 dx

≤ δ

2
∥ηt (t)∥22 +

2 (p2 − 1)
2

δ

∫
Ω

|αv1 + (1− α) v2|2(p(x)−2) |v|2 dx

≤ δ

2
∥ηt (t)∥22 +

2 (p2 − 1)

δ

(∫
Ω

|v|
2n

n−2m dx

)n−2m
n
[∫

Ω

|αv1 + (1− α) v2|
n
m (p(x)−2)

] 2m
n

≤ δ

2
∥ηt (t)∥22 + cδ

(∫
Ω

|v|
2n

n−2m dx

)n−2m
n
[∫

Ω

|αv1 + (1− α) v2|
n
m (p2−2)

dx +

∫
Ω

|αv1 + (1− α) v2|
n
m (p2−2)

dx

] 2m
n

.

(3.8)
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Since 2 ≤ p1 ≤ p (x) ≤ p2 ≤ 2(n−m)
n−2m , (n > 2) , we get

I ≤ δ

2
∥ηt (t)∥22 + cδc∗ ∥Dmv∥22

(
∥Dmv1∥2(p2−2)

2 + ∥Dmv1∥2(p1−2)
2 + ∥Dmv2∥2(p2−2)

2 + ∥Dmv2∥2(p1−2)
2

)
≤ δ

2
∥ηt (t)∥22 + 4cδ,lc∗M

2(p2−2)
0 ∥Dmv∥22 .

Therefore, (3.7) takes the form

1

2
sup
(0, T )

∥ηt (t)∥22 +
1

2
l sup
(0,T )

∥Dmη (t)∥22 ≤ δ

2
T0

1

2
sup
(0, T )

∥ηt (t)∥22 + 4cδ,lc∗T0M
2(p2−2)
0 sup

(0, T )

∥Dmv∥22 .

Then, we arrive at

∥η∥XT
≤ δT0 ∥η∥XT

+ 8cδ,lc∗T0M
2(p2−2)
0 ∥v∥XT

.

We take δ small sufficient, we obtain
∥η∥XT

≤ λT0 ∥v∥XT
.

There exists T0 small for that λT0 < 1, then we get

∥η∥XT
≤ θ ∥v∥XT

, 0 < θ < 1.

Then, G is a contraction maping. Thus, implies that the unique solution η ∈ Λ satisfied G (η) = η. Thus, η is
nonglobal solution of (1.1). □

4 Blow up of solution

Now we state our main result

Theorem 4.1. Suppose that (H) holds. Assume further∫ t

0

g (s) ds <
p1 (p1 − 2)

(p1 − 1)
2 , ∀t ≥ 0, (4.1)

and the initial condition
(η0, η1) ∈ Hm

0 (Ω)× L2 (Ω) ,

satisfying
E (0) < 0 and η0η1 > 0.

Then the solution of (1.1) blows up in finite time.

Proof . To apply the Lemma 2.2, the following is defined:

ρ (t) =
1

2

∫
Ω

|η (x, t)|2 dx.

Therefore,

ρ′ (t) =

∫
Ω

ηηtdx, ρ
′′ (t) =

∫
Ω

(
ηηtt + |ηt|2

)
dx. (4.2)
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By using the first equation of (1.1), the second equation of (4.2) becomes

ρ′′ (t) =

∫
Ω

(
ηηtt + |ηt|2

)
dx =

∫
Ω

ηηttdx+

∫
Ω

|ηt|2 dx

=

∫
Ω

|ηt|2 dx+

∫
Ω

η (t)

− (−∆)
m
η (t) +

t∫
0

g (t− s) (−∆)
m
η (s) ds− ηt + |η (t)|p(x)−2

η (t)

 dx

=

∫
Ω

|ηt|2 dx−
∫
Ω

|Dmη (t)|2 dx−
∫
Ω

η (t) ηtdx+

∫
Ω

|η (t)|p(x) dx

+

t∫
0

g (t− s)

∫
Ω

Dmη (t) .Dmη (s) dxds.

We add and subtract the term
t∫
0

g (t− s)
∫
Ω

Dmη (t) .Dmη (t) dxds, and we take account that

t∫
0

g (t− s)
∫
Ω

Dmη (t) .Dmη (t) dxds =
t∫
0

g (t− s) ds
∫
Ω

Dmη (t) .Dmη (t) dx, we obtain

ρ′′ (t) =

∫
Ω

|ηt|2 dx−
∫
Ω

|Dmη|2 dx−
∫
Ω

ηηtdx+

∫
Ω

|η|p(x) dx+

t∫
0

g (t− s)

∫
Ω

Dmη (t) .Dmη (t) dxds

−
t∫

0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds.

We recall that
t∫
0

g (t− s) ds =
t∫
0

g (s) ds, then

ρ′′ (t) =

∫
Ω

|ηt|2 dx−
∫
Ω

|Dmη|2 dx−
∫
Ω

ηηtdx+

∫
Ω

|η|p(x) dx+

t∫
0

g (s) ds

∫
Ω

Dmη (t) .Dmη (t) dx

−
t∫

0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds

So that,

ρ′′ (t) =−

1−
t∫

0

g (s) ds

∫
Ω

|Dmη (t)|2 dx−
t∫

0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds

+

∫
Ω

|η|p(x) dx+

∫
Ω

|ηt|2 dx−
∫
Ω

ηηtdx. (4.3)

Using the following Young inequality

ab ≤ δa2 +
1

4δ
b2,

for a, b ∈ R, and δ > 0, we estimate

t∫
0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds =

∫
Ω

Dmη (t)

t∫
0

g (t− s) (Dmη (t)−Dmη (s)) dsdx

≤
∫
Ω

δ |Dmη (t)|2 dx+

∫
Ω

1

4δ

 t∫
0

g (t− s) (Dmη (t)−Dmη (s)) ds

2

dx
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Using the Hölder inequality, we get

t∫
0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds

≤ δ

∫
Ω

|Dmη (t)|2 dx+
1

4δ

∫
Ω

 t∫
0

g (t− s) ds

 t∫
0

g (t− s) |Dmη (t)−Dmη (s)|2 ds

 dx

= δ

∫
Ω

|Dmη (t)|2 dx+
1

4δ

 t∫
0

g (t− s) ds

 t∫
0

g (t− s) ∥Dmη (t)−Dmη (s)∥22 ds

= δ

∫
Ω

|Dmη (t)|2 dx+
1

4δ

 t∫
0

g (t− s) ds

 (g ◦Dmη) (t)

= δ

∫
Ω

|Dmη (t)|2 dx+
1

4δ

 t∫
0

g (s) ds

 (g ◦Dmη) (t) .

We deduce that

−
t∫

0

g (t− s)

∫
Ω

Dmη (t) . (Dmη (t)−Dmη (s)) dxds ≥− δ

∫
Ω

|Dmη (t)|2 dx− 1

4δ

 t∫
0

g (s) ds

 (g ◦Dmη) (t) . (4.4)

By combining (4.3) and (4.4), we get

ρ′′ (t) ≥−

1 + δ −
t∫

0

g (s) ds

 ∥Dmη∥22 −
1

4δ

 t∫
0

g (s) ds

 (g ◦Dmη) (t) +

∫
Ω

|η|p(x) dx+

∫
Ω

|ηt|2 dx−
∫
Ω

ηηtdx.

Now, we exploit (2.3) to substitute for ∥Dmη∥22. Therefore,

ρ′′ (t) + ρ′ (t) ≥ − 2

β

1 + δ −
t∫

0

g (s) ds

E (t) +

1 +

1 + δ −
t∫
0

g (s) ds

β


∫
Ω

|ηt|2 dx

+


1 + δ −

t∫
0

g (s) ds

β
− 1

4δ

(∫ t

0

g (s) ds

) (g ◦Dmη) +

1− 2

1 + δ −
t∫
0

g (s) ds

βp1


∫
Ω

|η|p(x) dx.

Using Lemma 2.2, we get

ρ′′ (t) + ρ′ (t) ≥ − 2

β

1 + δ −
t∫

0

g (s) ds

E (t) +

1 +

1 + δ −
t∫
0

g (s) ds

β


∫
Ω

|ηt|2 dx

+


1 + δ −

t∫
0

g (s) ds

β
− 1

4δ

(∫ t

0

g (s) ds

) (g ◦Dmη) + c

1− 2

1 + δ −
t∫
0

g (s) ds

βp1

 ∥η∥p1

p1
. (4.5)

At this point δ > 0 is chosen so that:

1 + δ −
t∫
0

g (s) ds

β
− 1

4δ

(∫ t

0

g (s) ds

)
≥ 0
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c

1− 2

1 + δ −
t∫
0

g (s) ds

βp1

 > 0

This is, of course, possible by (4.1).Thus by using (2.4) and the negative initial energy, (4.5) becomes:

ρ′′ (t) + ρ′ (t) ≥ γ ∥η∥p1

p1 (4.6)

where γ = c

1− 2
1+δ−

t∫
0

g(s)ds

βp1

 . Now, we use Hölder’s inequality to estimate

∫
Ω

|η|2 dx ≤
(∫

Ω

|η|p1 dx
) 2

p1
(∫

Ω

1dx

) p1−2
p1

.

where |Ω| is measure of the doman Ω, then(∫
Ω

|η|p1 dx

) 2
p1

≥
(∫

Ω

|η|2 dx
)
|Ω|

2−p1
p1 .

So, ∫
Ω

|η|p1 dx ≥
(∫

Ω

|η|2 dx
) p1

2

|Ω|
2−p1

2 . (4.7)

From the expression of ρ (t) = 1
2

∫
Ω
|η (x, t)|2 dx,we get

2ρ (t) =

∫
Ω

|η (x, t)|2 dx.

Then

(2ρ (t))
p1
2 =

(∫
Ω

|η (x, t)|2 dx
) p1

2

. (4.8)

Combining (4.7), (4.8),and (4.6) yield

ρ′′ (t) + ρ′ (t) ≥ 2
p1
2 γ (ρ (t))

p1
2 |Ω|

2−p1
2

We simplify the last inequality, we arrive at

ρ′′ (t) + ρ′ (t) ≥ ϖρ1+α (t) (4.9)

where

ϖ = 2
p1
2 γ |Ω|

2−p1
2 > 0, α =

p1 − 2

2

Therefore ρ (t) blows up in the finite time. □

5 Numerical example

Now, we present an example to illustrate numerically the result of Theorem 4.1. For solve problem (1.1), we

consider m = 1, n = 2 where the domain is taken to be Ω = [−1, 1]
2
. We chosen g (t) = λe−t, (0 < λ < 1),

η0 (x1, x2) = η1 (x1, x2) = 3(2 − x2
1 + x2

2), such that 0 > E (0), η0η1 > 0, and we take p (x1, x2) = 4.8, which satisfy
condition (1.2).
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5.1 Numerical method

We first choose a suitable numerical scheme to discretize (1.1) using finite differences for the time variable t and the
space variable x = (x1, x2). Comprehensive details about the finite difference methods, see in [18, 19]. We subdivide
the time interval [0, T ] into N equal subintervals [tn−1, tn] , tn = n δt, n = 1, 2, ..., N + 1, where δt is the time
step.

Let ηn (x) = η (x1, x2, tn) , and use the finite-difference formulas:

∂tη
n (x) =

ηn (x)− ηn−1 (x)

δt
.

and

∂ttη
n (x) =

ηn+1 (x)− 2ηn (x) + ηn−1 (x)

(δt)
2 .

Then the discrete problem of (1.1) reads: Let η0 and η1, calculate
{
η2, η3, ..., ηn+1

}
such that

ηn+1

(δt)2
−∆ηn+1 = 2ηn−ηn−1

(δt)2
− ηn−ηn−1

δt

−
∫ tn+1

0
g (tn+1 − s)∆ηn (s) ds+ |ηn|p(x1,x2)−2

ηn, in Ω
ηn+1 = 0, on ∂Ω
η0 = η0, η1 = η0 + (δt) η1, in Ω

. (5.1)

Problem (5.1) is solved iteratively by using the history data ηn and ηn−1 in the second side of the equation, satisfies
the boundary-value problem: {

ηn+1

(δt)2
−∆ηn+1 = F

(
ηn, ηn−1

)
, in Ωh

ηn+1 = 0, on ∂Ωh

(5.2)

where F
(
ηn, ηn−1

)
= 2ηn−ηn−1

(δt)2
− ηn−ηn−1

δt −
∫ tn+1

0
g (tn+1 − s)∆ηn (s) ds+ |ηn|p(x1,x2)−2

ηn.

5.2 Numerical results

Now, we present the results of the numerical scheme (5.1). The numerical results are obtained using the Matlab
codes.
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The parameters that have been set up for numerical experiments are:

� Number of discretisation points is: 100× 100;

� Time step is: δt = 0.01;

� The spatial discretisation step h ≃ 0.01;

� λ = 10−3.

Figures. 1, 2, 3 and 4 present ηn for iterations n = 16 (t = 0.16), n = 26 (t = 0.26), n = 29 (t = 0.29) and n = 30
(t = 0.30) respectively.

Figure. 4 present ηn for iteration n = 30 (t = 0.30), which the blowup.

In conclusion, the previous numerical example verifies and agrees with the results of Theorem 4.1.
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