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Abstract

In [24], Khan et al. established some fixed point theorems in complete and compact metric spaces by using altering
distance functions. In [16] Gordji et al. described the notion of orthogonal set and orthogonal metric spaces. In
[18] Gungor et al. established fixed point theorems on orthogonal metric spaces via altering distance functions. In
[25] Lotfy et al, introduced the notion of α∗-ψ-common rational type mappings on generalized metric spaces with
application to fractional integral equations. In [28] K. Royy et al. described the notion of Branciari Sb-metric space
and related fixed point theorems with an application. In this paper, we introduce the notion of the common fixed
point (α∗-ψ-βi)-contractive set-valued mappings on orthogonal Branciari Sb-metric space with the application of the
existence of a unique solution to an initial value problem.
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1 Introduction

We know, that the fixed point theory has many applications and was extended by several authors from different
views (see for example [1]-[34]). Harandi et al. [5] introduced the best proximity pairs for upper semi continuous
set-valued maps in hyper convex metric spaces. Samet et al [30] introduced the notion of α-ψ-contractive type
mappings. Hassanzadeh Asl et al. [19, 20] introduced the notion of common fixed point theorems for α∗-ψ-contractive
multifunction. Farajzadeh et al. [13] introduced the on fixed point theorems for (ξ, α, η)-expansive mappings in
complete metric spaces. Gungor et al, established fixed point theorems on orthogonal metric spaces via altering
distance functions. Lotfy et al. [25] introduced the notion of α∗-ψ-common rational type mappings on generalized
metric spaces with application to fractional integral equations. The aim of this paper is to introduce the notion common
fixed point (α∗-ψ-βi)-contractive set-valued mappings on orthogonal Branciari Sb-metric space with application the
existence of a unique solution to an initial value problem.
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2 Preliminaries

In this section, we list some fundamental definitions that are useful tool in consequent analysis. Let 2X denote the
family of all nonempty subsets of X.

Definition 2.1. ([24]) A function ψ : [0,+∞) → [0,+∞) is called an altering distance function if the following
properties are satisfied:
(ψ1) ψ(0) = 0 and ψ(t) > 0 for all t ∈ (0,+∞);
(ψ2) ψ is continuous and no-decreasing;
(ψ3)

∑+∞
n=1 ψ

n(t) <∞;
(ψ4) ψ(t1 + t2) ≤ ψ(t1) + ψ(t2);

for all t1, t2 ∈ (0,+∞).

These functions are known in the literature as (c)-comparison functions. It is easily proved that if ψ is a (c)-
comparison function, then ψ(t) < t for all t > 0. We denote Ψ as the set of altering distance function ψ.

Definition 2.2. Let X ̸= ∅ and ⊥ ⊆ 2X × 2X be a binary relation. If ⊥ satisfies the following condition

∃A,B ⊆ X; (∃y0 ∈ B;∀x ∈ A, x⊥y0) ∨ (∃x0 ∈ A;∀y ∈ B, x0⊥y)

it is called (X,⊥) an orthogonal set.

Definition 2.3. [16] Let (X,⊥) be an orthogonal set. Any two subset A,B ⊆ X are said to be orthogonally relation
if A⊥B ∨B⊥A.

In the following, we give some examples of orthogonal sets.

Example 2.4. Let X = Z, A = {x ∈ Z/|x| ≤ 2} and B = {x ∈ Z/x = 2k, k ∈ Z} define A⊥B if there are m ∈ A,
k ∈ Z and for all n ∈ B such that n = km. It is easy to see that A⊥B. Hence (Z,⊥) is an orthogonal set.

Example 2.5. Let X = R2, A = {(x, y)/y = ax, a ∈ R} and B = {(x, y)/x2 + y2 = r2, r ∈ R} define A⊥B if there
are (x0, y0) ∈ A, for all (x, y) ∈ B such that y′0 × y′ = −1 or there are (x0, y0) ∈ B, for all (x, y) ∈ A such that
y′ × y′0 = −1. It is easy to see that A⊥B ∧B⊥A. Hence (R2,⊥) is an O-set.

The extended line is the ordered space [−∞; +∞], considering of all points of the number line R and two points,
denoted by −∞,+∞with the usual order relation for points of R.

Definition 2.6. ([9, 16]) A map d : X ×X → [0,∞] is called a generalized metric on the orthogonal set X,⊥. If the
followig condition are satisfied, for all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y:
(GMS1) d(x, y) = 0 if and if x = y for any points x, y ∈ X such that x⊥y and y⊥x;
(GMS2) d(x, y) = d(y, x) for any points x, y ∈ X such that x⊥y and y⊥x;
(GMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for any points x, y, u and v ∈ X such that x⊥u, u⊥v, v⊥y and x⊥y

considering that if d(x, u) = ∞ or d(u, v) = ∞ or d(v, y) = ∞ then d(x, u) + d(u, v) + d(v, y) = ∞.

In this case the orthogonal set X is called generalized orthogonal metric space and is denoted by (X, d,⊥).

In the above definition, if d satisfies only GMS1 and GMS2, then it is called a semi-metric (see, e.g. [33]).

Sedghi et al.[31] introduced a new type of metric structure consisting of three variables known as S-metric. Subse-
quently in the year (2016), N. Souayah and N. Mlaiki [32] investigated the notion of Sb-metric spaces which generalized
the concept of S-metric spaces.

Definition 2.7. ([29, 31]) A map S : X3 → [0,∞) is called an S-metric on the orthogonal set (X,⊥). If the following
conditions are satisfied, for all x, y, z, t ∈ X such that they are ortogonally to each other:
(i) S(x, y, z) = 0 if and if x = y = z ;
(ii) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

In this case the orthogonal set (X,⊥) is called orthogonal S-metric space and is denoted by (X,S,⊥).
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Example 2.8. ([31]) (1) Let R be the real line and X = Rn and ||.|| a norm on X. Then S(x, y, z) = ||y + z −
2x||+ ||y − z|| is an S-metric on X.
(2) Let R be the real line. Then S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R is an S-metric on R. This S-metric

on R is called the usual S-metric on R.

Definition 2.9. ([27, 32]) A map Sb : X3 → [0,∞) is called an Sb-metric on the orthogonal set (X,⊥). If the
following conditions are satisfied, for all x, y, z, t ∈ X and such that they are orthogonally to each other and let s ≥ 1
be a given real number:
(i) Sb(x, y, z) = 0 if and if x = y = z ;
(ii) Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)].

In this case the orthogonal set (X,⊥) is called orthogonal Sb-metric space and is denoted by (X,Sb,⊥).

Example 2.10. ([32]) Let X be a nonempty set and card(X) ≥ 5. suppose X = X1 ∪X2 a partition of X such that
card(X1) ≥ 4. Let s ≥ 1, then

Sb(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,

1
n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

for all x, y, z, t ∈ X. Then Sb is an Sb-metric on X with coefficient s.

Definition 2.11. ([28]) A map λ : X3 → R+
0 is called an Branciari Sb-metric on the orthogonal set (X,⊥). If the

following conditions are satisfied, for all x, y, z ∈ X and for a, b ∈ X \ {x, y, z} with a ̸= b and such that they are
ortogonally to each other and let k ≥ 1 be a given real number:
(i) λ(x, y, z) = 0 if and if x = y = z;
(ii)

λ(x, y, z) ≤ k[λ(x, x, a) + λ(y, y, a) + λ(z, z, b) + λ(a, a, b)]. (2.1)

In this case the orthogonal set (X,⊥) is called orthogonal Branciari Sb-metric space and is denoted by (X,λ,⊥).

Definition 2.12. ([28]) An orthogonal Branciari Sb-metric on a nonemty set X is said to be symmetric if λ(x, x, y) =
σ(y, y, x) for all x, y ∈ X.

Proposition 2.13. ([28]) (i) Let (X,S, λ) be an orthogonal S-metric spaces (see definition (2.7)). The X is also an
orthogonal Branciari Sb-metric space for k = 2.
(ii) Let (X,Sb, λ) be an orthogonal Sb-metric space with coefficient s ≥ 1 (see definition (2.9)). The X is also an
orthogonal Branciari Sb-metric space for k = 2s2.

Proposition 2.14. ([28]) Shows that any orthogonal S-metric space or Sb-metric space is also an orthogonal Branciari
Sb-metric space but there are several orthogonal Branciari Sb-metric spaces which are neither orthogonal S-metric
spaces nor orthogonal Sb-metric spaces.

Example 2.15. ([28]) Let X = N and λ : X3 → R+
0 be defined by

λ(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,
1

n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

for all x, y, z, t ∈ X. Also we take λ(x, x, y) = λ(y, y, x) for all x, y ∈ X. Then λ is a symmetric Sb-metric space on X
for k = 5

3 but it is nerther an S-metric nor an Sb-metric for any k ≥ 1.
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Definition 2.16. ([28]) Let (X,λ,⊥) be an orthogonal Branciari Sb-metric space. Then
A sequence xn in an orthogonal Branciari Sb-metric space (X,λ,⊥) is called orthogonal Branciari sequence if

(∀n, k ∈ N;xn⊥xn+k) ∨ (∀n, k ∈ N;xn+k⊥xn)

(i) An orthogonal Branciari sequence {xn} in (X,λ,⊥) is said to be orthogonal Branciari convergent to some z ∈ X
if λ(xn, xn, z) → 0 as n→ ∞.
(ii) An orthogonal Branciari sequence {xn} in (X,λ,⊥) is said to be orthogonal Branciari cauchy if λ(xn, xn, xm) → 0

as n,m→ ∞.
(ii) (X,λ,⊥) is said to be orthogonal Branciari complete if every orthogonal Branciari cauchy sequence in (X,λ,⊥)

is orthogonal Branciari convergent to some element in X.

Definition 2.17. We say that (X,λ,⊥) has the property α−regular orthogonal Branciari Sb-metric space if, either
(i) {xn} is a monotone orthogonal Branciari sequences in X such that α(xn, xn, xn+1) ≥ 1 for all n and xn → x ∈ X

as n → ∞, then there exists an orthogonal Branciari subsequence {xnk
} of {xn} such that α(xnk

, xnk
, x) ≥ 1 for all

k. Or
(ii) {xn} is a monotone orthogonal Branciari sequences inX such that α(xn+1, xn+1, xn) ≥ 1 for all n and xn → x ∈ X

as n→ ∞, then there exists an orthogonal Branciari subsequence {xnk
} of {xn} such that α(x, x, xnk

) ≥ 1 for all k.

Proposition 2.18. [23, 16] Suppose that {xn} is an orthogonal Branciari Cauchy sequence in a (X,λ,⊥) be a or-
thogonal Branciari Sb-metric space with limn→∞ λ(xn, xn, u) = 0 where u ∈ X. Then

lim
n→∞

λ(xn, xn, z) = λ(u, u, z)

for all z ∈ X. In particular, the orthogonal Branciari sequence {xn} dose not Branciari converge to z if z ̸= u.

Definition 2.19. Let (X,λ,⊥) be an orthogonal Branciari Sb-metric space. A set-valued mapping T : X → 2X is
called orthogonal Branciari order closed if for monotone orthogonal Branciari sequences xn ∈ X and yn ∈ Txn, with
limn→∞ λ(xn, xn, x) → 0 and limn→∞ λ(yn, yn, y) → 0, implies y ∈ Tx.

Definition 2.20. Let (X,λ,⊥) be an orthogonal Branciari Sb-metric space and T, S : X → 2X with given set-valued
mappings, α : X × X × X → [0,+∞), α∗ : 2X × 2X × 2X → [0,+∞), α∗(A,A,B) = inf{α(a, a, b) : a ∈ A, b ∈ B},
ψ ∈ Ψ, Λ(s, s, Ts) = inf{λ(s, s, z)/z ∈ Ts}, Hλ is the Hausdorff metric

Hλ(Tx, Tx, Ty) = max{ sup
a∈Tx

Λ(a, a, Ty), sup
b∈Ty

Λ(Tx, Tx, b)}.

βi : R+ − {0} → [0, 1) be four decreasing functions such that
∑4

i=1 βi(t) ≤ 1 for every t > 0. One says that T, S are
α∗-ψ-βi-orthogonal common contractive set-valued mappings whenever

α∗(Ax,Ax,By)ψ(Hλ(Ax,Ax,By)) ≤ β1(λ(x, x, y))ψ(λ(x, x, y))
+β2(Λ(x, x,Ax))ψ(Λ(x, x,Ax)) + β3(λ(y, y,By))ψ(Λ(y, y,By))
+β4(Hλ(Ax,Ax,By))min{ψ(Λ(x, x,By), ψ(Λ(y, y, Ax))}.

(2.2)

One says that A,B are an α∗− common admissible if

α(x, x, y) ≥ 1 ⇒ α∗(Ax,Ax,By) ≥ 1 (2.3)

A,B = T or S, Ax⊥By ∨By⊥Ax for all x, y ∈ X where x⊥y and x ̸= y. One says that a mapping A,B : X → 2X is
called common orthogonal preserving (⊥-preserving) if A(x)⊥B(y) ∨A(y)⊥B(x) if x⊥y.

Example 2.21. ([28]) Let X = [0, 1) and let the metric on X be the Euclidian metric. Define x⊥y if xy ≤ {x
6 ,

y
6}. X

is not complete but it is orthogonal complete. Let x⊥y and xy ≤ x
6 . If xk is an arbitrary Cauchy orthogonal sequence

in X, then there exists a subsequence {xkn
} of {xk} for which xkn

= 0 ∨ xkn
≤ 1

6 for all n ∈ N. it follows that {xkn
}

converges to a x ∈ [0, 1). On the other hand, we know that every Cauchy sequence with a convergent subsequence is
convergent. It follows that {xk} is convergent. Let T, S : X → 2X be set-valued mapping defined by

Tx =

{
[0, x3 ] if 0 ≤ x ≤ 1

3 ,
0 if 1

3 < x < 1
and Sx =

{
[0, x2 ] if 0 ≤ x ≤ 1

2 ,
0 if 1

2 < x < 1
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Also, x⊥y and xy ≤ x
6 , so x = 0 or y ≤ 1

6 . We have the following cases:
case (1) x = 0 and 0 ≤ y ≤ 1

6 , then Tx = {0} and Sy = [0, y2 ];
case (2) x = 0 and 1

6 < y ≤ 1
2 , then Tx = {0} and Sy = [0, y2 ];

case (3) x = 0 and 1
2 < y, then Tx = {0} and Sy = {0};

case (4) 0 ≤ x ≤ 1
6 and 0 ≤ y ≤ 1

6 , then Tx = [0, x3 ] and Sy = [0, y2 ];
case (5) 1

6 < x ≤ 1
3 and 0 ≤ y ≤ 1

6 , then Tx = [0, x3 ] and Sy = [0, y2 ];
case (6) 1

6 < x ≤ 1
3 and 1

6 < y ≤ 1
2 , then Tx = [0, x3 ] and Sy = [0, y2 ];

case (7) 1
3 < x and 1

2 < y, then Tx = {0} and Sy = {0}.

These cases implies that TxSy ≤ Tx
6 . Hence T and S are common ⊥− preserving. Also, one can see that

||Tx− Sy|| ≤ 1
2 ||x− y||. Hence T , S are common ⊥−contraction.

Definition 2.22. A subset B ⊆ X is said to be an approximation if for each given y ∈ X, there exists z ∈ B such
that Λ(B,B, y) = λ(z, z, y).

Definition 2.23. A set-valued mapping T : X −→ 2X is said to have an approximate values in X if Tx is an
approximation for each x ∈ X.

Definition 2.24. Let (X,⊥, λ) be an orthogonal Branciari Sb-metric space. If T : X → 2X is a set-valued mapping,
then x ∈ X is called fixed point for T if and only if x ∈ F (x). The set Fix(T ) := {x ∈ X/x ∈ Tx} is called the fixed
point set of T .

3 Main result

We should emphasize that throughout this paper we suppose that all set-valued mappings on an orthogonal
symmetric Sb-metric space (X,λ,⊥) have closed values.

Lemma 3.1. Let (X,λ,⊥) be an orthogonal symmetric Branciari Sb-metric space. Suppose that T, S : X → 2X are
α∗-ψ-βi-orthogonal common contractive set-valued mappings satisfies the following conditions:
(i) T, S are α∗-orthogonal common admissible;
(ii) there exists x0 ∈ X such that,

{x0}⊥Tx0 ∨ {x0}⊥STx0.

Then Fix(T ) = Fix(S).

Proof . We first show that any fixed point of T is also a fixed point of S and conversely. Since Fix(T ) ̸= Fix(S),
we may assume there exists x∗ ∈ X such that x∗ ∈ Fix(T ), but x∗ /∈ Fix(S), since Λ(x∗, x∗, Sx∗) > 0. Let x0 ∈ X
such that {x0}⊥Tx0 ∨ {x0}⊥STx0. Define the orthogonal Branciari sequence {xn} in X by x2n+1 ∈ Tx2n and
x2n+2 ∈ Sx2n+1 for all n ∈ N0. If xn0 = xn0+1 for some n0 > 1, then x∗ = xn0 are a common fixed point for T, S. So,
we can assume that x2n /∈ Tx2n and x2n+1 /∈ Sx2n+1 for all n ∈ N0. Define

α(x, x, y) =

{
1 x⊥y ∨ y⊥x
0 otherwise

Since T, S are α∗-orthogonal common admissible and

{x0}⊥Tx0 ⇒ α∗({x0}, {x0}, Tx0) ≥ 1,

we have
α(x0, x0, x1) ≥ α∗({x0}, {x0}, Tx0) ≥ 1 ⇒ α∗(Tx0, Tx0, Sx1) ≥ 1;

α(x1, x1, x2) ≥ α∗(Tx0, Tx0, Sx1) ≥ 1 ⇒ α∗(Sx1, Sx1, Tx2) ≥ 1;

α(x2, x2, x3) ≥ α∗(Sx1, Sx1, Tx2) ≥ 1 ⇒ α∗(Tx2, Tx2, Sx3) ≥ 1.

Inductively, we have
α(x2n, x2n, x2n+1) ≥ 1 ⇒ α∗(Tx2n, Tx2n, Sx2n+1) ≥ 1



110 Rashea Shaeri, Hassanzadeh Asl, Eshaghi Gordji, Refaghat

and
α(x2n+1, x2n+1, x2n+2) ≥ 1 ⇒ α∗(Sx2n+1, Sx2n+1, Tx2n+2) ≥ 1

for all n ∈ N0. Let
{x0}⊥STx0 ⇒ α∗({x0}, {x0}, STx0) ≥ 1.

Similarly, we have
α(x2n, x2n, x2n+2) ≥ 1 ⇒ α∗(Tx2n, Tx2n, STx2n) ≥ 1

and
α(x2n+1, x2n+1, x2n+3) ≥ 1 ⇒ α∗(Sx2n+1, Sx2n+1, TSx2n+1) ≥ 1

for all n ∈ N0. We obtain

ψ(Λ(x∗, x∗, Sx∗)) ≤ψ(Hλ(Tx
∗, Tx∗, Sx∗)) ≤ α∗(Tx

∗, Tx∗, Sx∗)ψ(Hλ(Tx
∗, Tx∗, Sx∗))

≤β1(λ(x∗, x∗, x∗))ψ(λ(x∗, x∗, x∗)) + β2(Λ(x
∗, x∗, Tx∗))ψ(Λ(x∗, x∗, Tx∗))

+ β3(Λ(Sx
∗, Sx∗, x∗))ψ(Λ(Sx∗, Sx∗, x∗))

+ β4(Hλ(Tx
∗, Tx∗, Sx∗))min{ψ(Λ(x∗, x∗, Sx∗), ψ(Λ(x∗, x∗, Tx∗))}

=β3(Λ(Sx
∗, Sx∗, x∗))ψ(Λ(Sx∗, Sx∗, x∗)) < ψ(Λ(Sx∗, Sx∗, x∗))

Symmetric =ψ(Λ(x∗, x∗, Sx∗))

This is contradiction establishes that Fix(T ) ⊆ Fix(S). A similar argument establishes the reverse containment,
and therefore Fix(T ) = Fix(S). □

Theorem 3.2. Let (X,λ,⊥) be a complete orthogonal symmetric Branciari Sb-metric space (not necessarily complete
metric space). Suppose that T, S : X → 2X are α∗-ψ-βi-orthogonal common contractive set-valued mappings satisfies
the following conditions:
(i) T, S are α∗-orthogonal common admissible;
(ii) there exists x0 ∈ X such that,

{x0}⊥Tx0 ∨ {x0}⊥STx0

(iii) X has the property α−regular orthogonal Branciari Sb-metric space,
(iv) T, S are ⊥-preserving set-valued mappings.

Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated orthogonal Branciari sequences
{xn} with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.

Proof . By lemma (3.1), we have Fix(T ) = Fix(S) and we have

α(xn, xn, xn+1) ≥ 1 ∨ α(xn, xn, xn+2) ≥ 1;

{x0}⊥Tx0⊥STx0 · · · ∨ {x0}⊥STx0⊥TSTx0 · · · ;

x0⊥x1⊥x2 · · · ∨ x0⊥x2⊥x3 · · · ;

Thus xn⊥xn+1 for all n ∈ N0. Without loss of generality, we may assume that T, S : X → 2X are α∗-ψ-βi-
orthogonal common contractive set-valued mappings. Consider equation (2.2), with x = x2n+1 and y = x2n+2.
Clearly, we have

ψ(λ(x2n+1, x2n+1, x2n+2)) ≤α∗(Tx2n, Tx2n, Sx2n+1)ψ(Hλ(Tx2n, Tx2n, Sx2n+1))

≤β1(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1)) + β2(Λ(x2n, x2n, Tx2n))ψ(Λ(x2n, x2n, Tx2n))

+ β3(Λ(x2n+1, x2n+1, Sx2n+1))ψ(Λ(x2n+1, x2n+1, Sx2n+1))

β4(Hλ(Tx2n, Tx2n, Sx2n+1))min{ψ(Λ(x2n, x2n, Sx2n+1), ψ(Λ(x2n+1, x2n+1, Tx2n))}
≤β1(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))

+ β3(λ(x2n+1, x2n+1, x2n+2))ψ(λ(x2n+1, x2n+1, x2n+2))

β4(λ(x2n+1, x2n+1, x2n+2))min{ψ(λ(x2n, x2n, x2n+2), ψ(λ(x2n+1, x2n+1, x2n+1))}. (3.1)
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Then
(1− β3(λ(x2n+1, x2n+1, x2n+2)))ψ(λ(x2n+1, x2n+1, x2n+2))
≤ (β1(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1)))ψ(λ(x2n, x2n, x2n+1))

(3.2)

and
ψ(λ(x2n+1, x2n+1, x2n+2)) ≤ (β1(λ(x2n,x2n,x2n+1))+β2(λ(x2n,x2n,x2n+1)))

(1−β3(λ(x2n+1,x2n+1,x2n+2)))
ψ(λ(x2n, x2n, x2n+1)) (3.3)

Thus
ψ(λ(x2n+1, x2n+1, x2n+2)) ≤ ψ(λ(x2n, x2n, x2n+1)). (3.4)

Similarly,
ψ(λ(x2n, x2n, x2n+1)) ≤ ψ(λ(x2n−1, x2n−1, x2n)), (3.5)

for all n ∈ N0. We have

ψ(λ(xn+1, xn+1, xn+2)) ≤ ψ(λ(xn, xn, xn+1)) ≤ . . . ≤ ψn(λ(x0, x0, x1)), (3.6)

for all n ∈ N. From the property of ψ, we conclude that

λ(xn, xn, xn+1) < λ(xn−1, xn−1, xn), (3.7)

for all n ∈ N, it is clear that
lim

n→∞
λ(xn+1, xn+1, xn+2) = 0. (3.8)

Consider equation (2.2), with x = x2n and y = x2n+2. Clearly, we have

ψ(λ(x2n, x2n, x2n+2)) ≤ α∗(Sx2n−1, Sx2n−1, Sx2n+1)ψ(Hλ(Sx2n−1, Sx2n−1, Sx2n+1))
≤ β1(λ(x2n−1, x2n−1, x2n+1))ψ(λ(x2n−1, x2n−1, x2n+1))
+β2(Λ(x2n−1, x2n−1, Sx2n−1))ψ(Λ(x2n−1, x2n−1, Sx2n−1))
+β3(Λ(x2n+1, x2n+1, Sx2n+1))ψ(Λ(x2n+1, x2n+1, Sx2n+1))
β4(Hλ(Sx2n−1, Sx2n−1, Sx2n+1))min{ψ(Λ(x2n−1, x2n−1, Sx2n+1), ψ(Λ(x2n+1, x2n+1, Sx2n−1))}
≤ β1(λ(x2n−1, x2n−1, x2n+1))ψ(λ(x2n−1, x2n−1, x2n+1))
+β2(λ(x2n−1, x2n−1, x2n))ψ(λ(x2n−1, x2n−1, x2n))
+β3(λ(x2n+1, x2n+1, x2n+2))ψ(λ(x2n+1, x2n+1, x2n+2))
β4(λ(x2n, x2n, x2n+2))min{ψ(λ(x2n−1, x2n−1, x2n+2), ψ(λ(x2n+1, x2n+1, x2n))}.

(3.9)

Similarly, consider equation (2.2), with x = x2n−1 and y = x2n+1. Clearly, we have

ψ(λ(x2n−1, x2n−1, x2n+1)) ≤ α∗(Tx2n−2, Tx2n−2, Tx2n)ψ(Hλ(Tx2n−2, Tx2n−2, Tx2n))
≤ β1(λ(x2n−2, x2n−2, x2n))ψ(λ(x2n−2, x2n−2, x2n))
+β2(Λ(x2n−2, x2n−2, Tx2n−2))ψ(Λ(x2n−2, x2n−2, Tx2n−2))
+β3(Λ(x2n, x2n, Tx2n))ψ(Λ(x2n, x2n, Tx2n))
β4(Hλ(Tx2n−2, Tx2n−2, Tx2n))min{ψ(Λ(x2n−2, x2n−2, Tx2n), ψ(Λ(x2n, x2n, Tx2n−2))}
≤ β1(λ(x2n−2, x2n−2, x2n))ψ(λ(x2n−2, x2n−2, x2n))
+β2(λ(x2n−2, x2n−2, x2n−1))ψ(λ(x2n−2, x2n−2, x2n−1))
+β3(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))
β4(λ(x2n−1, x2n−1, x2n+1))min{ψ(λ(x2n−2, x2n−2, x2n+1), ψ(λ(x2n−1, x2n−1, x2n))}.

Define a2n = λ(x2n−1, x2n−1, x2n+1) and b2n = λ(x2n, x2n, x2n+1). Then

ψ(a2n) ≤ β1(a2n−1)ψ(a2n−1) + β2(b2n−1)ψ(b2n−1) + β3(b2n)ψ(b2n)+
β4(a2n)min{ψ(λ(x2n−2, x2n−2, x2n+1), ψ(b2n−1)}.

(3.10)

From the (3.8) limn→∞ b2n = limn→∞ λ(x2n, x2n, x2n+1) = 0. We get

ψ(a2n) ≤ β1(a2n−1)ψ(a2n−1) ≤ ψ(a2n−1) (3.11)

and hence,

lim
n→∞

a2n = lim
n→∞

λ(x2n−1, x2n−1, x2n+1) = 0 ⇒ lim
n→∞

an = lim
n→∞

λ(xn−1, xn−1, xn+1) = 0.
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Now, we shall prove that xn ̸= xm for all n ̸= m. Assume on the contrary that xn = xm for some m,n ∈ N with
n ̸= m. Since λ(xp, xp, xp+1) > 0 for each p ∈ N, without loss of generality, we may assume that m > n + 1,m = 2k
and n = 2l for k, l ∈ N. Substitute again x = x2l = x2k and y = x2l+1 = x2k+1 in (2.2), (3.7) which yields

ψ(λ(x2l, x2l, x2l+1)) = ψ(λ(x2k, x2k, x2k+1)) ≤ α∗(Hλ(Sx2k−1, Sx2k−1, Tx2k))ψ(H(Sx2k−1, Sx2k−1, Tx2k))
≤ β1(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))
+β2(Λ(x2k−1, x2k−1, Sx2k−1))ψ(Λ(x2k−1, x2k−1, Sx2k−1))
+β3(Λ(x2k, x2k, Tx2k))ψ(Λ(x2k, x2k, Tx2k))
β4(Hλ(Tx2k, Tx2k, Sx2k−1))min{ψ(Λ(x2k, x2k, Sx2k−1), ψ(Λ(x2k−1, x2k−1, Tx2k))}
≤ β1(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))
+β2(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))
+β3(λ(x2k, x2k, x2k+1))ψ(λ(x2k, x2k, x2k+1))
β4(λ(x2k+1, x2k+1, x2k))min{ψ(λ(x2k, x2k, x2k), ψ(λ(x2k−1, x2k−1, x2k+1))}
= (β1(λ(x2k−1, x2k−1, x2k)) + β2(λ(x2k−1, x2k−1, x2k)))ψ(λ(x2k−1, x2k−1, x2k))
+β3(λ(x2k, x2k, x2k+1))ψ(λ(x2k, x2k, x2k+1))
≤ (β1(λ(x2k−1, x2k−1, x2k)) + β2(λ(x2k−1, x2k−1, x2k))
+β3(λ(x2k, x2k, x2k+1)))ψ(λ(x2k, x2k, x2k+1)) < ψ(λ(x2k, x2k, x2k+1))

(3.12)
which is impossible. Now, we shall prove that {xn} is an orthogonal Branciari Cauchy sequence, that is,

lim
n→∞

λ(xn, xn, xn+k) = 0 and xn⊥xn+k

for all k ∈ N. We have already proved the cases for k = 1 and k = 2 in (3.7) and (3.10), respectively. Take arbitrary
k ≥ 3. We discuss two cases.

Case I: Suppose that Sn = λ(xn, xn, xn+1), ψ(Sn) = αnSn and αn ∈ (0, 1√
k
). Then

Sn = λ(xn, xn, xn+1) ≤ ψ(λ(xn−1, xn−1, xn)) = αn−1λ(xn−1, xn−1, xn)
≤ αn−1ψ(λ(xn−2, xn−2, xn−1)) ≤ · · · ≤ αn−1αn−2 · · ·α1α0λ(x0, x0, x1) = αnS0

(3.13)

Similarly, we have

S∗
n = λ(xn, xn, xn+2) ≤ ψ(λ(xn−1, xn−1, xn+1)) = αn−1λ(xn−1, xn−1, xn+1)

≤ αn−1ψ(λ(xn−2, xn−2, xn)) ≤ · · · ≤ αn−1αn−2 · · ·α1α0λ(x0, x0, x1) = αnS∗
0

(3.14)

for all n ≥ 1 and α = max0≤i≤n−1{αi}. Now, we shall prove that {xn} is a orthogonal Branciari Cauchy sequence,
that is,

lim
n→∞

λ(xn, xn, xn+l) = 0,

for all l ∈ N.We have already proved the cases for l = 1 and l = 2 in (3.7) and (3.10), respectively. Now for l = 2m+1,
where m ≥ 1. Using the inequality (2.1), we have

λ(xn, xn, xn+l) ≤k[λ(xn, xn, xn+1) + λ(xn, xn, xn+1) + λ(xn+l, xn+l, xn+2) + λ(xn+1, xn+1, xn+2)]

=2kλ(xn, xn, xn+1) + kλ(xn+l, xn+l, xn+2) + kλ(xn+1, xn+1, xn+2)]

Symmetric =2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + kλ(xn+2, xn+2, xn+l)

≤2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + k(k[λ(xn+2, xn+2, xn+3)

+ λ(xn+2, xn+2, xn+3) + λ(xn+l, xn+l, xn+4) + λ(xn+3, xn+3, xn+4)])

Symmetric =2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + 2k2λ(xn+2, xn+2, xn+3)

+ k2λ(xn+3, xn+3, xn+4) + k2λ(xn+4, xn+4, xn+2m+1)

≤ · · ·
...

≤2k[λ(xn, xn, xn+1) + λ(xn+1, xn+1, xn+2)] + 2k2[λ(xn+2, xn+2, xn+3) + λ(xn+3, xn+3, xn+4)]

+ · · ·+ 2km[λ(xn+2m−2, xn+2m−2, xn+2m−1) + λ(xn+2m−1, xn+2m−1, xn+2m)]

+ kmλ(xn+2m, xn+2m, xn+2m+1)

≤2[{k(αn
0 + αn+1

0 ) + k2(αn+2
0 + αn+3

0 ) + · · ·+ km(αn+2m−2
0 + αn+2m−1

0 )}+ kmαn+2m
0 ]S0

=2k(1 + α0)α
n
0 [1 + kα2

0 + · · ·+ kmα2m
0 ]S0

2k(1 + α0)

1 + kα2
0

αn
0S0 (3.15)
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for all n ≥ 1. Also for l = 2m we get

λ(xn, xn, xn+2m) ≤ · · · ≤ 2k(1+α0)
1+kα2

0
αn
0S0 + αn

0 (kα
2)m−1S∗

0 (3.16)

for all n ≥ 1. Thus we proved that {xn} is a orthogonal Branciari Cauchy sequence in the complete metric space
(X,λ,⊥), there exists x∗ ∈ X such that limn→∞ λ(xn, xn, x

∗) = 0 by (X,λ,⊥) has the property α−regular Branciari
Sb-metric space. There exists a subsequence {xnk

} of {xn} such that

α∗({x2nk+1}, {x2nk+1}, {x∗}) ≥ α∗(Tx2nk
, Tx2nk

, Tx∗) ≥ 1 for all k. (3.17)

Thus

ψ(Λ(x∗, x∗, Tx∗)) ≤ψ(λ(x∗, x∗, x2nk+1)) + ψ(Λ(x2nk+1, x2nk+1, Tx
∗))

≤ψ(λ(x∗, x∗, x2nk+1)) + α∗(Tx2nk
, Tx2nk

, Tx∗)ψ(Hλ(Tx2nk
, Tx2nk

, Tx∗))

≤ψ(λ(x∗, x∗, x2nk+1)) + β1(λ(x2nk
, x2nk

, x∗))ψ(λ(x2nk
, x2nk

, x∗))

+ β2(λ(x2nk
, x2nk

, x∗))ψ(Λ(x2nk
, x2nk

, Tx2nk
))

+ β3(λ(x2nk
, x2nk

, x∗))ψ(Λ(x∗, x∗, Tx∗))

β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(Λ(x∗, x∗, Tx2nk
))}

≤ψ(λ(x∗, x∗, x2nk+1)) + β1(λ(x2nk
, x2nk

, x∗))ψ(λ(x2nk
, x2nk

, x∗))

+ β2(λ(x2nk
, x2nk

, x2nk+1))ψ(λ(x2nk
, x2nk

, x2nk+1))

+ β3(λ(x2nk
, x2nk

, x∗))ψ(Λ(x∗, x∗, Tx∗))

β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(λ(x∗, x∗, x2nk+1))}
≤ψ(0) + β1(λ(x2nk

, x2nk
, x∗))ψ(0) + β2(λ(x2nk

, x2nk
, x2nk+1))ψ(0)

+ β3(λ(x2nk
, x2nk

, x∗))ψ(Λ(x∗, x∗, Tx∗))β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(0)}
≤β3(λ(x2nk

, x2nk
, x∗))ψ(Λ(x∗, x∗, Tx∗))

≤ψ(Λ(x∗, x∗, Tx∗)), (3.18)

for all k, which is impossible. Hence, Λ(x∗, x∗, Tx∗) = Λ(Tx∗, Tx∗, x∗) = 0 and so x∗ ∈ Tx∗. By Lemma (3.1) we
have x∗ common fixed point of T, S. □

Corollary 3.3. [24] Let (X,λ,⊥) be an orthogonal symmetric Branciari complete metric space( not necessarily com-
plete metric space ), f, g : X → X be a self map ,ψ ∈ Ψ be a sub-additive function and α, β, γ : R+ − {0} → [0, 1)
be three decreasing functions such that (α+ 2β + γ)(t) < 1 for all t > 0. Suppose that f is ⊥-preserving self mapping
satisfying the inequality

ψ(λ(fx, fx, gy)) ≤ α(λ(x, x, y))ψ(λ(x, x, y)) + β(λ(x, x, y))[ψ(λ(x, x, fx))
+ψ(λ(y, y, gy))] + γ(λ(x, x, y))min{ψ(Λ(x, x, gy), ψ(Λ(y, y, fx))}, (3.19)

for all x, y ∈ X where x⊥y and x ̸= y. In this case, there exists a point x∗ ∈ X such that for any orthogonal element
x0 ∈ X, the iteration sequence {fnx0} converges to this point. Also, if f is ⊥-continuous at x∗ ∈ X , then x∗ ∈ X is
a unique fixed point of f .

Example 3.4. Let X = Z, A = {x ∈ Z||x| ≤ 2} and B = {x ∈ Z|x = 2k, k ∈ N} define A⊥B if there are m ∈ A,
k ∈ Z and for all n ∈ B such that n = km. It is easy to see that A⊥B. Hence (Z,⊥) is an O-set.
Let Y ⊆ X be a finite set defined as Y = {1, 2, 4, 8}. Define λ : Y × Y × Y → [0,∞) as:
λ(1, 1, 1) = λ(2, 2, 2) = λ(4, 4, 4) = λ(8, 8, 8) = 0,
λ(1, 1, 2) = λ(2, 2, 1) = 3,
λ(2, 2, 8) = λ(8, 8, 2) = λ(1, 1, 8) = λ(8, 8, 1) = 1 and
λ(1, 1, 4) = λ(4, 4, 1) = λ(2, 2, 4) = λ(4, 4, 2) = λ(8, 8, 4) = λ(4, 4, 8) = 1

2 .

The function λ is not a metric on Y. Indeed, note

3 = λ(1, 1, 2) ≥ λ(1, 1, 8) + λ(8, 8, 2) = 1 + 1 = 2,

that is, the triangle inequality is not satisfied. However, λ is a symmetric Branciari Sb-metric on Y and moreover (Y, λ)
is a complete symmetric Branciari Sb-metric space. Define T, S : Y → 2Y as: T1 = T2 = T8 = {2, 4}, T4 = {1, 8}



114 Rashea Shaeri, Hassanzadeh Asl, Eshaghi Gordji, Refaghat

and S1 = S2 = S4 = {2, 8}, S8 = {1, 2}, α : Y × Y × Y → [0,+∞), α∗ = inf α as

α(x, x, y)) =

{
1 x⊥y ∨ y⊥x
0 otherwise

ψ(t) = 2
3 t. Clearly, T, S satisfies the conditions of Theorem (3.2) and has a common fixed point x = 2.

4 Some consequences

In this section we give some consequences of the main results presented above. Specifically, we apply our results
to generalized metric spaces endowed with a partial order.

4.1 Fixed point theorems for weakly increasing on X has the property α-regular orthogonal symmetric
Branciari complete metric space

In the following we provide set-valued versions of the preceding theorem. The results are related to those in ([14]).
Let X be a topological space and ⪯ be a partial order on X.

Definition 4.1. ([14]). Let A,B be two nonempty subsets of X, the relations between A and B are definers follows:
(r1) If for every a ∈ A, there exists b ∈ B such that a ⪯ b, then A ≺1 B.
(r2) If for every b ∈ B there exists a ∈ A, such that a ⪯ b, then A ≺2 B.
(r3) If A ≺1 B and A ≺2 B, then A ≺ B.

Definition 4.2. ([11], [12]). Let (X,⪯) be a partially ordered set. Two mappings f, g : X → X are said to be weakly
increasing if fx ⪯ gfx and gx ⪯ fgx hold for all x ∈ X.

Note that, two weakly increasing mappings need not be nondecreasing.

Example 4.3. Let X = R+ endowed with usual ordering. Let f, g : X → X defined by

fx =

{
x if 0 ≤ x ≤ 1,
0 if 1 < x <∞ and gx =

{ √
x if 0 ≤ x ≤ 1,

0 if 1 < x <∞

then it is obvious that fx ≤ gfx and gx ≤ fgx for all x ∈ X. Thus f and g are weakly increasing mappings. Note
that both f and g are not nondecreasing.

Definition 4.4. ([3]) Let (X,⪯) be a partially ordered set. Two mapping F,G : X → 2X are said to be weakly
increasing with respect to ≺1 if for any x ∈ X we have Fx ≺1 Gy for all y ∈ Fx and Gx ≺1 Fy for all y ∈ Gx.
Similarly two maps F,G : X → 2X are said to be weakly increasing with respect to ≺2 if for any x ∈ X we have
Gy ≺2 Fx for all y ∈ Fx and Fy ≺2 Gx for all y ∈ Gx.

Now we give some examples.

Example 4.5. ([3]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X → 2X defined by
Fx = [1, x2] and Gx = [1, 2x] for all x ∈ X. Then the pair of mappings F and G are weakly increasing with respect
to ≺2 but not ≺1 . Indeed, since

Gy = [1, 2y] ≺2 [1, x2] = Fx for all y ∈ Fx

and
Fy = [1, y2] ≺2 [1, 2x] = Gx for all y ∈ Gx

so F and G are weakly increasing with respect to ≺2 but F2 = [1, 4] ≻1 [1, 2] = G1 for 1 ∈ F2, so F and G are not
weakly increasing with respect to ≺1 .

Example 4.6. ([3]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X → 2X defined by
Fx = [0, 1] and Gx = [x, 1] for all x ∈ X. Then the pair of mappings F and G are weakly increasing with respect to
≺1 but not ≺2 . Indeed, since

Fx = [0, 1] ≺1 [y, 1] = Gy for all y ∈ Fx
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and
Gx = [x, 1] ≺1 [0, 1] = Fy for all y ∈ Gx

so F and G are weakly increasing with respect to ≺1 but G1 = 1 ≻2 0, 1 = F1 for 1 ∈ F1, so F and G are not weakly
increasing with respect to ≺2 .

Theorem 4.7. Let (X,⪯,⊥, λ) be a partially ordered orthogonal symmetric Branciari complete metric space (not
necessarily complete metric space). Suppose that T, S : X → 2X are α∗-ψ-βi-orthogonal common contractive set-
valued mappings for all x, y ∈ X with x ≺1 y or x⊥y satisfies the following conditions:
(i) T and S be a weakly increasing pair on X w.r.t ≺1;
(ii) there exists x0 ∈ X such that {x0} ≺1 Tx0 and {x0} ≺1 STx0 or {x0}⊥Tx0 and {x0}⊥STx0;
(iii) X has the property α-regular orthogonal symmetric Branciari complete metric space,
(iv) T, S are ⊥-preserving set-valued mappings.

Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated O−sequence {xn} with
x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.

Proof . Define the orthogonal sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If xn = xn+1

for some n ∈ N0, then x
∗ = xn is a common fixed point for T, S. Using that the pair of set-valued mappings T and S

is weakly increasing and by define α : X ×X ×X → [o,+∞)

α(x, x, y) =

{
1, x ⪯ y ∨ x⊥y
0, otherwise.

It can be easily shown that the orthogonal sequence xn is nondecreasing w.r.t, ⪯ i.e; and α∗({x0}, {x0}, Tx0) ≥
1 ⇒ ∃x1 ∈ Tx0, such that α(x0, x0, x1) ≥ 1 ⇒ x0 ⪯ x1 ∨ x0⊥x1. Now since T and S are weakly increasing with
respect to ≺1, we have x1 ∈ Tx0 ≺1 Sx1. Thus there exist some x2 ∈ Sx1 such that x1 ⪯ x2 ∨ x1⊥x2. Again since T
and S are weakly increasing with respect to ≺1, we have x2 ∈ Sx1 ≺1 Tx2. Thus there exist some x3 ∈ Tx2 such that
x2 ⪯ x3 ∨ x2⊥x3. Continue this process, we will get a nondecreasing orthogonal sequence {xn}∞n=1 which satisfies
x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n=1, n = 0, 1, 2, 3, · · · We get

x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ x2n ⪯ x2n+1

or
x2n+2 ⪯ · · ·

or
x0⊥x1⊥x2⊥ · · ·⊥x2n⊥x2n+1⊥x2n+2⊥ · · · .

In particular xn, xn+k are comparable for all k ∈ N. α(xn, xn, xn+k) ≥ 1 for all n ∈ N0 and by (4) we have
limn→∞ λ(xn, xn, xn+k) = 0. Following the proof of Theorem (3.2). Thus we proved that {xn} is a orthogonal Cauchy
sequence in the orthogonal symmetric Branciari complete metric space (X,⊥, λ), there exists x∗ ∈ X such that

lim
n→∞

λ(xn, xn, x
∗) = 0

and condition (iii), there exists a subsequence {xnk
} of {xn}. Then x∗ is a common fixed point of T, S. □

Theorem 4.8. Let (X,⪯,⊥, λ) be a partially ordered orthogonal symmetric Branciari complete metric space (not
necessarily complete metric space). Suppose that T, S : X → 2X are α∗-ψ-βi-orthogonal common contractive set-
valued mappings for all x, y ∈ X with x ≺2 y or x⊥y satisfies the following conditions:
(i) T and S be a weakly increasing pair on X w.r.t ≺2;
(ii) there exists x0 ∈ X such that Tx0 ≺2 {x0} and STx0} ≺2 {x0} or Tx0⊥{x0} and STx0⊥{x0};
(iii) X has the property α-regular orthogonal symmetric Branciari complete metric space,
(iv) T, S are ⊥-preserving set-valued mappings.

Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated orthogonal sequence {xn} with
x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.
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Proof . Define the orthogonal sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If xn = xn+1

for some n ∈ N0, then x
∗ = xn is a common fixed point for T, S. Using that the pair of set-valued mappings T and S

is weakly increasing and by define

α(x, x, y) =

{
1, x ⪰ y ∨ x⊥y
0, otherwise.

It can be easily shown that the sequence xn is non increasing w.r.t, ⪯ i.e; and

α∗(x0, x0, {Tx0}) ≥ 1 ⇒ ∃x1 ∈ Tx0, such that α(x0, x0, x1) ≥ 1 ⇒ x0 ⪰ x1.

Now since T and S are weakly increasing with respect to ≺2, we have Sx1 ≺2 Tx0. Thus there exist some x2 ∈ Sx1
such that x1 ⪰ x2. Again since T and S are weakly increasing with respect to ≺2, we have Tx2 ⪯2 Sx1. Thus there
exist some x3 ∈ Tx2 such that x2 ⪰ x3. Continue this process, we will get a non increasing sequence {xn}∞n=1 which
satisfies x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1, n = 0, 1, 2, 3, · · · We get

x0 ⪰ x1 ⪰ x2 ⪰ · · · ⪰ x2n ⪰ x2n+1 ⪰ x2n+2 ⪰ · · ·

or
x0⊥x1⊥x2⊥ · · ·⊥x2n⊥x2n+1⊥x2n+2⊥ · · · .

In particular xn+k, xn are comparable for all k ∈ N, α(xn+k, xn+k, xn) ≥ 1 for all n ∈ N0 and by (4) we have
limn→∞ λ(xn+k, xn+k, xn) = 0. Following the proof of Theorem (3.2), thus we proved that {xn} is a orthogonal
Cauchy sequence in the orthogonal complete metric space (X,⊥, d), there exists x∗ ∈ X such that

lim
n→∞

λ(xn, xn, x
∗) = 0

and condition (iii), there exists a subsequence {xnk
} of {xn}. Then x∗ is a common fixed point of T, S. □

4.2 Application

In this section, we study the existence of a unique solution to an initial value problem, as an application to the our
common fixed point theorem.
Let us consider Cauchy problem for the first order differential equations system{

x′ = f(t, x(t), y(t)), t ∈ R, x(0) = x0
y′ = g(t, y(t), x(t)), t ∈ R, y(0) = y0

(4.1)

Theorem 4.9. Given a point (t0, x0, y0) ∈ R ×Rn ×Rn and consider the differential equations system (4.1). Let P
be a Picard mapping defined by {

(Px)(t) = x0 +
∫ t

t0
f(τ, x(τ), y(τ))dτ

(Py)(t) = y0 +
∫ t

t0
f(τ, y(τ), x(τ))dτ

(4.2)

Note that (Px)(t0) = x0 and (Py)(t0) = y0 for any x, y. The mappings x, y : I → Rn are a solution to the differential
equations system (4.1) with the initial condition x(t0) = x0 and y(t0) = y0 if and only if x = Px and y = Py, where
the functions f, g : I × R × R → R are defined in the domain D = {(t, x, y); |t − t0| ≤ a, |x − x0| ≤ b, |y − y0| ≤ c},
x0, y0 ∈ R and satisfied the condition

|f(t, x1, y1)− g(t, x2, y2)| ≤
K

2|t− t0|
(|x1 − x2|+ |y1 − y2|), 0 < K < 1. (4.3)

Let M = max(t,x(t),y(t))∈D{|f(t, x(t), y(t))|, |g(t, x(t), y(t))|}. There exists d = min{a, b
M , c

M } such that

D0 = {(t, x, y)/|t− t0| ≤ d, |x− x0| ≤M |t− t0|, |y − y0| ≤M |t− t0|}, (4.4)

lies in D. We are trying to find a solution φ(t, x, y) and φ(t, y, x) for the differential equations system (4.1) with
initial condition φ(t0, x, y) = x0 and φ(t0, y, x) = y0 expressed in the form φ(t, x, y) = x0 + h(t, x, y) and φ(t, y, x) =
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y0 + h(t, y, x). Then the mapping φ defined on the {(t, x, y); |t − t0| ≤ d, |x − x0| ≤ b, |y − y0| ≤ c} is the general
solution of (4.1). Let

X = {h(t, x, y)/(t, x, y) ∈ D0}.

Note that h(t0, x, y) = 0 for any h ∈ X. In space X, we define a relation ⊥ by

h1⊥h2 ⇐⇒ ||h1||||h2|| ≤ d(||h1|| ∨ ||h2||), (4.5)

where ||h1|| ∨ ||h2|| = ||h1||or||h2|| which is an orthogonality relation on X. Let λ : X ×X ×X → [0,∞] be given by

λ(x, y, z) = ||x− z||+ ||y − z||

then
λ(h1, h1, h2) = ||h1 − h2||+ ||h1 − h2|| = 2 sup

(t,x,y)∈D0

|h1(t, x, y)− h2(t, x, y)|. (4.6)

Hence the orthogonal symmetric Branciari metric space (X,⊥, λ) is complete. A mappings A,B : (X,⊥, λ) →
(X,⊥, λ) can be defined by {

(Ah)(t, x, y) =
∫ t

t0
f(τ, x0 + h(τ, x, y), y0 + h(τ, y, x))dτ

(Bh)(t, y, x) =
∫ t

t0
g(τ, y0 + h(τ, y, x), x0 + h(τ, x, y))dτ

(4.7)

We now discuss some properties of mappings A and B.
i) A and B are ⊥-preserving mappings;
ii) λ(Ah1, Ah1, Bh2) ≤ δλ(h1, h1, h2) for any h1 and h2 in X such that h1⊥h2 and 0 ≤ δ < 1;
iii) A or B is ⊥-continuous mapping;

Proof . i) We recall that A and B are ⊥-preserving mappings if for h1, h2 ∈ X,h1⊥h2, we have Ah1⊥Bh2.

|(Ah1)(t, x, y)| =
∣∣∣∣∫ t

t0

f(τ, x0 + h1(τ, x, y), y0 + h1(τ, y, x))dτ

∣∣∣∣
≤
∫ t

t0

|f(τ, x0 + h1(τ, x, y), y0 + h1(τ, y, x))|dτ

≤
∫ t

t0

Mdτ =M |t− t0|

≤M d

M
= d. (4.8)

So,
||Ah1||||Bh2|| ≤ d||Bh2||. (4.9)

This means that ||Ah1||⊥||Bh2||.
ii) Let h1, h2 in X and h1⊥h2 we have

|(Ah1)(t, x, y)− (Bh2)(t, y, x)|

=

∣∣∣∣∫ t

t0

f(τ, x0 + h1(τ, x, y), y0 + h1(τ, y, x))dτ −
∫ t

t0

g(τ, x0 + h2(τ, x, y), y0 + h2(τ, y, x))dτ

∣∣∣∣
=

∣∣∣∣∫ t

t0

(f(τ, x0 + h1(τ, x, y), y0 + h1(τ, y, x))− g(τ, x0 + h2(τ, x, y), y0 + h2(τ, y, x))dτ

∣∣∣∣
≤
∫ t

t0

|f(τ, x0 + h1(τ, x, y), y0 + h1(τ, y, x))− g(τ, x0 + h2(τ, x, y), y0 + h2(τ, y, x))|dτ

≤
∫ t

t0

(
K

2|t− t0|
|x0 + h1(τ, x, y)− x0 − h2(τ, x, y)|+

K

2|t− t0|
|y0 + h1(τ, y, x)− y0 − h2(τ, y, x)|)dτ

=

∫ t

t0

K

2|t− t0|
(2|h1(τ, x, y)− h2(τ, x, y)|)dτ = K||h1 − h2||. (4.10)
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Thus,
||Ah1 −Bh2|| ≤ K||h1 − h2||. (4.11)

iii) Suppose {hn} is an orthogonal sequence in X such that {hn} converging to h ∈ X. Because A or B is
⊥-preserving, {Ahn} or {Bhn} is an orthogonal sequence in X. For any n ∈ N, by ii we have

||Ahn(t, x, y)−Ah(t, x, y)|| ≤ K||hn − h||. (4.12)

As n goes to infinity, it follows that A is ⊥-continuous mapping. The mapping A or B defined above is ⊥-
preserving and ⊥-continuous on generalized orthogonal metric space (X,λ,⊥). Mapping A and B satisfies of Theorem
(3.2). Thus, existence and uniqueness of its fixed point h0 ∈ X has been guaranteed by Theorem (3.2). We are looking
for solutions expressed in the form φ(t, x, y) = x0 + h(t, x, y) and φ(t, y, x) = y0 + h(t, y, x). If h is a common fixed
point of A and B then ψ(t, x, y) = x0 + Ah(t, x, y) and φ(t, y, x) = y0 + Bh(t, y, x) is a common fixed point of our
Picard P (φ). Hence

P (φ(t, x, y)) =x0 + (Ah)(t, x, y)

=x0 +

∫ t

t0

f(τ, x0 + h(τ, x, y), y0 + h(τ, y, x))dτ

=x0 +

∫ t

t0

f(τ, ψ(t, x, y), φ(t, y, x))dτ

=ψ(t, x, y). (4.13)

Similarly P (φ(t, y, x)) = φ(t, y, x). By Theorem (3.2), φ(t, x, y) and φ(t, y, x) are a solutions of the differential
equations system (4.1) if and only if P (φ(t, y, x)) = φ(t, y, x) and P (φ(t, x, y)) = φ(t, x, y). □
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