Common fixed point $\left(\alpha_{*}-\psi-\beta_{i}\right)$-contractive set-valued mappings on orthogonal Branciari S_{b}-metric space

Mohammad Rashea Shaeria , Jalal Hassanzadeh Asla,*, Madjid Eshaghi Gordjib, Hassan Refaghat ${ }^{\text {a }}$
${ }^{\text {a Department of Mathematics, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran }}$
${ }^{b}$ Department of Mathematics, Semnan University, Semnan, Iran

(Communicated by Ali Farajzadeh)

Abstract

In [24, Khan et al. established some fixed point theorems in complete and compact metric spaces by using altering distance functions. In [16] Gordji et al. described the notion of orthogonal set and orthogonal metric spaces. In [18] Gungor et al. established fixed point theorems on orthogonal metric spaces via altering distance functions. In [25] Lotfy et al, introduced the notion of $\alpha_{*}-\psi$-common rational type mappings on generalized metric spaces with application to fractional integral equations. In [28] K. Royy et al. described the notion of Branciari S_{b}-metric space and related fixed point theorems with an application. In this paper, we introduce the notion of the common fixed point $\left(\alpha_{*}-\psi-\beta_{i}\right)$-contractive set-valued mappings on orthogonal Branciari S_{b}-metric space with the application of the existence of a unique solution to an initial value problem.

Keywords: $\quad\left(\alpha_{*}-\psi-\beta_{i}\right)$-contractive, Branciari S_{b}-metric space, Common fixed point, Solution to an initial value problem
2020 MSC: Primary 47H10; Secondary 54H25

1 Introduction

We know, that the fixed point theory has many applications and was extended by several authors from different views (see for example [1]-34). Harandi et al. [5] introduced the best proximity pairs for upper semi continuous set-valued maps in hyper convex metric spaces. Samet et al [30] introduced the notion of $\alpha-\psi$-contractive type mappings. Hassanzadeh Asl et al. [19, 20] introduced the notion of common fixed point theorems for $\alpha_{*}-\psi$-contractive multifunction. Farajzadeh et al. [13] introduced the on fixed point theorems for (ξ, α, η)-expansive mappings in complete metric spaces. Gungor et al, established fixed point theorems on orthogonal metric spaces via altering distance functions. Lotfy et al. [25] introduced the notion of $\alpha_{*}-\psi$-common rational type mappings on generalized metric spaces with application to fractional integral equations. The aim of this paper is to introduce the notion common fixed point $\left(\alpha_{*}-\psi-\beta_{i}\right)$-contractive set-valued mappings on orthogonal Branciari S_{b}-metric space with application the existence of a unique solution to an initial value problem.

[^0]
2 Preliminaries

In this section, we list some fundamental definitions that are useful tool in consequent analysis. Let 2^{X} denote the family of all nonempty subsets of X.

Definition 2.1. ([24]) A function $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is called an altering distance function if the following properties are satisfied:
$\left(\psi_{1}\right) \psi(0)=0$ and $\psi(t)>0$ for all $t \in(0,+\infty)$;
$\left(\psi_{2}\right) \psi$ is continuous and no-decreasing;
$\left(\psi_{3}\right) \sum_{n=1}^{+\infty} \psi^{n}(t)<\infty$;
$\left(\psi_{4}\right) \psi\left(t_{1}+t_{2}\right) \leq \psi\left(t_{1}\right)+\psi\left(t_{2}\right) ;$
for all $t_{1}, t_{2} \in(0,+\infty)$.
These functions are known in the literature as (c)-comparison functions. It is easily proved that if ψ is a (c)comparison function, then $\psi(t)<t$ for all $t>0$. We denote Ψ as the set of altering distance function ψ.

Definition 2.2. Let $X \neq \emptyset$ and $\perp \subseteq 2^{X} \times 2^{X}$ be a binary relation. If \perp satisfies the following condition

$$
\exists A, B \subseteq X ;\left(\exists y_{0} \in B ; \forall x \in A, x \perp y_{0}\right) \vee\left(\exists x_{0} \in A ; \forall y \in B, x_{0} \perp y\right)
$$

it is called (X, \perp) an orthogonal set.
Definition 2.3. 16] Let (X, \perp) be an orthogonal set. Any two subset $A, B \subseteq X$ are said to be orthogonally relation if $A \perp B \vee B \perp A$.

In the following, we give some examples of orthogonal sets.
Example 2.4. Let $X=\mathbb{Z}, A=\{x \in \mathbb{Z} /|x| \leq 2\}$ and $B=\{x \in \mathbb{Z} / x=2 k, k \in \mathbb{Z}\}$ define $A \perp B$ if there are $m \in A$, $k \in \mathbb{Z}$ and for all $n \in B$ such that $n=k m$. It is easy to see that $A \perp B$. Hence (\mathbb{Z}, \perp) is an orthogonal set.

Example 2.5. Let $X=\mathbb{R}^{2}, A=\{(x, y) / y=a x, a \in \mathbb{R}\}$ and $B=\left\{(x, y) / x^{2}+y^{2}=r^{2}, r \in \mathbb{R}\right\}$ define $A \perp B$ if there are $\left(x_{0}, y_{0}\right) \in A$, for all $(x, y) \in B$ such that $y_{0}^{\prime} \times y^{\prime}=-1$ or there are $\left(x_{0}, y_{0}\right) \in B$, for all $(x, y) \in A$ such that $y^{\prime} \times y_{0}^{\prime}=-1$. It is easy to see that $A \perp B \wedge B \perp A$. Hence $\left(\mathbb{R}^{2}, \perp\right)$ is an O-set.

The extended line is the ordered space $[-\infty ;+\infty]$, considering of all points of the number line \mathbb{R} and two points, denoted by $-\infty,+\infty$ with the usual order relation for points of \mathbb{R}.

Definition 2.6. (9, 16) A map $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on the orthogonal set X, \perp. If the followig condition are satisfied, for all $x, y \in X$ and all distinct $u, v \in X$ each of which is different from x and y :
$(G M S 1) d(x, y)=0$ if and if $x=y$ for any points $x, y \in X$ such that $x \perp y$ and $y \perp x$;
(GMS2) $d(x, y)=d(y, x)$ for any points $x, y \in X$ such that $x \perp y$ and $y \perp x$;
$(G M S 3) d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$ for any points x, y, u and $v \in X$ such that $x \perp u, u \perp v, v \perp y$ and $x \perp y$ considering that if $d(x, u)=\infty$ or $d(u, v)=\infty$ or $d(v, y)=\infty$ then $d(x, u)+d(u, v)+d(v, y)=\infty$.

In this case the orthogonal set X is called generalized orthogonal metric space and is denoted by (X, d, \perp).
In the above definition, if d satisfies only $G M S 1$ and $G M S 2$, then it is called a semi-metric (see, e.g. [33).

Sedghi et al. 31] introduced a new type of metric structure consisting of three variables known as S-metric. Subsequently in the year (2016), N. Souayah and N. Mlaiki [32] investigated the notion of S_{b}-metric spaces which generalized the concept of S-metric spaces.

Definition 2.7. ([29, 31]) A map $S: X^{3} \rightarrow[0, \infty)$ is called an S-metric on the orthogonal set (X, \perp). If the following conditions are satisfied, for all $x, y, z, t \in X$ such that they are ortogonally to each other:
(i) $S(x, y, z)=0$ if and if $x=y=z$;
(ii) $S(x, y, z) \leq S(x, x, t)+S(y, y, t)+S(z, z, t)$.

In this case the orthogonal set (X, \perp) is called orthogonal S-metric space and is denoted by (X, S, \perp).

Example 2.8. (31]) (1) Let \mathbb{R} be the real line and $X=\mathbb{R}^{n}$ and $\|\cdot\|$ a norm on X. Then $S(x, y, z)=\| y+z-$ $2 x\|+\| y-z \|$ is an S-metric on X.
(2) Let \mathbb{R} be the real line. Then $S(x, y, z)=|x-z|+|y-z|$ for all $x, y, z \in \mathbb{R}$ is an S-metric on \mathbb{R}. This S-metric on \mathbb{R} is called the usual S-metric on \mathbb{R}.

Definition 2.9. ([27, 32]) A map $S_{b}: X^{3} \rightarrow[0, \infty)$ is called an S_{b}-metric on the orthogonal set (X, \perp). If the following conditions are satisfied, for all $x, y, z, t \in X$ and such that they are orthogonally to each other and let $s \geq 1$ be a given real number:
(i) $S_{b}(x, y, z)=0$ if and if $x=y=z$;
(ii) $S_{b}(x, y, z) \leq s\left[S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)\right]$.

In this case the orthogonal set (X, \perp) is called orthogonal S_{b}-metric space and is denoted by $\left(X, S_{b}, \perp\right)$.

Example 2.10. ([32]) Let X be a nonempty set and $\operatorname{card}(X) \geq 5$. suppose $X=X_{1} \cup X_{2}$ a partition of X such that $\operatorname{card}\left(X_{1}\right) \geq 4$. Let $s \geq 1$, then

$$
S_{b}(x, y, z)=\left\{\begin{array}{rcc}
0 & \text { if } x=y=z \\
5 & \text { if } x=1=y & \text { and } \\
\frac{1}{n+1} & \text { if } x=1=y \\
\frac{1}{n+2} & \text { if } x=2=y & \text { and } \\
3 & \text { atherwise } & z \geq 3
\end{array}\right.
$$

for all $x, y, z, t \in X$. Then S_{b} is an S_{b}-metric on X with coefficient s.
Definition 2.11. ([28]) A map $\lambda: X^{3} \rightarrow \mathbb{R}_{0}^{+}$is called an Branciari S_{b}-metric on the orthogonal set (X, \perp). If the following conditions are satisfied, for all $x, y, z \in X$ and for $a, b \in X \backslash\{x, y, z\}$ with $a \neq b$ and such that they are ortogonally to each other and let $k \geq 1$ be a given real number:
(i) $\lambda(x, y, z)=0$ if and if $x=y=z$;
(ii)

$$
\begin{equation*}
\lambda(x, y, z) \leq k[\lambda(x, x, a)+\lambda(y, y, a)+\lambda(z, z, b)+\lambda(a, a, b)] . \tag{2.1}
\end{equation*}
$$

In this case the orthogonal set (X, \perp) is called orthogonal Branciari S_{b}-metric space and is denoted by (X, λ, \perp).

Definition 2.12. ([28]) An orthogonal Branciari S_{b}-metric on a nonemty set X is said to be symmetric if $\lambda(x, x, y)=$ $\sigma(y, y, x)$ for all $x, y \in X$.

Proposition 2.13. ([28]) (i) Let (X, S, λ) be an orthogonal S-metric spaces (see definition 2.7). The X is also an orthogonal Branciari S_{b}-metric space for $k=2$.
(ii) Let $\left(X, S_{b}, \lambda\right)$ be an orthogonal S_{b}-metric space with coefficient $s \geq 1$ (see definition (2.9). The X is also an orthogonal Branciari S_{b}-metric space for $k=2 s^{2}$.

Proposition 2.14. ([28]) Shows that any orthogonal S-metric space or S_{b}-metric space is also an orthogonal Branciari S_{b}-metric space but there are several orthogonal Branciari S_{b}-metric spaces which are neither orthogonal S-metric spaces nor orthogonal S_{b}-metric spaces.

Example 2.15. ([28]) Let $X=\mathbb{N}$ and $\lambda: X^{3} \rightarrow \mathbb{R}_{0}^{+}$be defined by

$$
\lambda(x, y, z)= \begin{cases}0 & \text { if } x=y=z \\ 5 & \text { if } x=1=y \text { and } z=2 \\ \frac{1}{n+1} & \text { if } x=1=y \text { and } z \geq 3 \\ \frac{1}{n+2} & \text { if } x=2=y \text { and } z \geq 3 \\ 3 & \text { otherwise }\end{cases}
$$

for all $x, y, z, t \in X$. Also we take $\lambda(x, x, y)=\lambda(y, y, x)$ for all $x, y \in X$. Then λ is a symmetric S_{b}-metric space on X for $k=\frac{5}{3}$ but it is nerther an S-metric nor an S_{b}-metric for any $k \geq 1$.

Definition 2.16. ([28]) Let (X, λ, \perp) be an orthogonal Branciari S_{b}-metric space. Then
A sequence x_{n} in an orthogonal Branciari S_{b}-metric space (X, λ, \perp) is called orthogonal Branciari sequence if

$$
\left(\forall n, k \in \mathbb{N} ; x_{n} \perp x_{n+k}\right) \vee\left(\forall n, k \in \mathbb{N} ; x_{n+k} \perp x_{n}\right)
$$

(i) An orthogonal Branciari sequence $\left\{x_{n}\right\}$ in (X, λ, \perp) is said to be orthogonal Branciari convergent to some $z \in X$ if $\lambda\left(x_{n}, x_{n}, z\right) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) An orthogonal Branciari sequence $\left\{x_{n}\right\}$ in (X, λ, \perp) is said to be orthogonal Branciari cauchy if $\lambda\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(ii) (X, λ, \perp) is said to be orthogonal Branciari complete if every orthogonal Branciari cauchy sequence in (X, λ, \perp) is orthogonal Branciari convergent to some element in X.

Definition 2.17. We say that (X, λ, \perp) has the property α-regular orthogonal Branciari S_{b}-metric space if, either (i) $\left\{x_{n}\right\}$ is a monotone orthogonal Branciari sequences in X such that $\alpha\left(x_{n}, x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists an orthogonal Branciari subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x_{n_{k}}, x\right) \geq 1$ for all k. Or
(ii) $\left\{x_{n}\right\}$ is a monotone orthogonal Branciari sequences in X such that $\alpha\left(x_{n+1}, x_{n+1}, x_{n}\right) \geq 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists an orthogonal Branciari subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x, x, x_{n_{k}}\right) \geq 1$ for all k.

Proposition 2.18. [23, 16] Suppose that $\left\{x_{n}\right\}$ is an orthogonal Branciari Cauchy sequence in a (X, λ, \perp) be a orthogonal Branciari S_{b}-metric space with $\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, u\right)=0$ where $u \in X$. Then

$$
\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, z\right)=\lambda(u, u, z)
$$

for all $z \in X$. In particular, the orthogonal Branciari sequence $\left\{x_{n}\right\}$ dose not Branciari converge to z if $z \neq u$.
Definition 2.19. Let (X, λ, \perp) be an orthogonal Branciari S_{b}-metric space. A set-valued mapping $T: X \rightarrow 2^{X}$ is called orthogonal Branciari order closed if for monotone orthogonal Branciari sequences $x_{n} \in X$ and $y_{n} \in T x_{n}$, with $\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x\right) \rightarrow 0$ and $\lim _{n \rightarrow \infty} \lambda\left(y_{n}, y_{n}, y\right) \rightarrow 0$, implies $y \in T x$.

Definition 2.20. Let (X, λ, \perp) be an orthogonal Branciari S_{b}-metric space and $T, S: X \rightarrow 2^{X}$ with given set-valued mappings, $\alpha: X \times X \times X \rightarrow[0,+\infty), \alpha_{*}: 2^{X} \times 2^{X} \times 2^{X} \rightarrow[0,+\infty), \alpha_{*}(A, A, B)=\inf \{\alpha(a, a, b): a \in A, b \in B\}$, $\psi \in \Psi, \Lambda(s, s, T s)=\inf \{\lambda(s, s, z) / z \in T s\}, H_{\lambda}$ is the Hausdorff metric

$$
H_{\lambda}(T x, T x, T y)=\max \left\{\sup _{a \in T x} \Lambda(a, a, T y), \sup _{b \in T y} \Lambda(T x, T x, b)\right\} .
$$

$\beta_{i}: \mathbb{R}^{+}-\{0\} \rightarrow[0,1)$ be four decreasing functions such that $\sum_{i=1}^{4} \beta_{i}(t) \leq 1$ for every $t>0$. One says that T, S are $\alpha_{*}-\psi-\beta_{i}$-orthogonal common contractive set-valued mappings whenever

$$
\begin{align*}
& \alpha_{*}(A x, A x, B y) \psi\left(H_{\lambda}(A x, A x, B y)\right) \leq \beta_{1}(\lambda(x, x, y)) \psi(\lambda(x, x, y)) \\
& +\beta_{2}(\Lambda(x, x, A x)) \psi(\Lambda(x, x, A x))+\beta_{3}(\lambda(y, y, B y)) \psi(\Lambda(y, y, B y)) \tag{2.2}\\
& +\beta_{4}\left(H_{\lambda}(A x, A x, B y)\right) \min \{\psi(\Lambda(x, x, B y), \psi(\Lambda(y, y, A x))\} .
\end{align*}
$$

One says that A, B are an $\alpha_{*}-$ common admissible if

$$
\begin{equation*}
\alpha(x, x, y) \geq 1 \Rightarrow \alpha_{*}(A x, A x, B y) \geq 1 \tag{2.3}
\end{equation*}
$$

$A, B=T$ or $S, A x \perp B y \vee B y \perp A x$ for all $x, y \in X$ where $x \perp y$ and $x \neq y$. One says that a mapping $A, B: X \rightarrow 2^{X}$ is called common orthogonal preserving (\perp-preserving) if $A(x) \perp B(y) \vee A(y) \perp B(x)$ if $x \perp y$.

Example 2.21. (28) Let $X=[0,1)$ and let the metric on X be the Euclidian metric. Define $x \perp y$ if $x y \leq\left\{\frac{x}{6}, \frac{y}{6}\right\}$. X is not complete but it is orthogonal complete. Let $x \perp y$ and $x y \leq \frac{x}{6}$. If x_{k} is an arbitrary Cauchy orthogonal sequence in X, then there exists a subsequence $\left\{x_{k_{n}}\right\}$ of $\left\{x_{k}\right\}$ for which $x_{k_{n}}=0 \vee x_{k_{n}} \leq \frac{1}{6}$ for all $n \in \mathbb{N}$. it follows that $\left\{x_{k_{n}}\right\}$ converges to a $x \in[0,1)$. On the other hand, we know that every Cauchy sequence with a convergent subsequence is convergent. It follows that $\left\{x_{k}\right\}$ is convergent. Let $T, S: X \rightarrow 2^{X}$ be set-valued mapping defined by

$$
T x=\left\{\begin{array}{ll}
{\left[0, \frac{x}{3}\right]} & \text { if } 0 \leq x \leq \frac{1}{3}, \\
0 & \text { if } \frac{1}{3}<x<1
\end{array} \quad \text { and } \quad S x= \begin{cases}{\left[0, \frac{x}{2}\right]} & \text { if } 0 \leq x \leq \frac{1}{2} \\
0 & \text { if } \frac{1}{2}<x<1\end{cases}\right.
$$

Also, $x \perp y$ and $x y \leq \frac{x}{6}$, so $x=0$ or $y \leq \frac{1}{6}$. We have the following cases:
case (1) $x=0$ and $0 \leq y \leq \frac{1}{6}$, then $T x=\{0\}$ and $S y=\left[0, \frac{y}{2}\right]$;
case (2) $x=0$ and $\frac{1}{6}<y \leq \frac{1}{2}$, then $T x=\{0\}$ and $S y=\left[0, \frac{y}{2}\right]$;
case (3) $x=0$ and $\frac{1}{2}<y$, then $T x=\{0\}$ and $S y=\{0\}$;
case (4) $0 \leq x \leq \frac{1}{6}$ and $0 \leq y \leq \frac{1}{6}$, then $T x=\left[0, \frac{x}{3}\right]$ and $S y=\left[0, \frac{y}{2}\right]$;
case (5) $\frac{1}{6}<x \leq \frac{1}{3}$ and $0 \leq y \leq \frac{1}{6}$, then $T x=\left[0, \frac{x}{3}\right]$ and $S y=\left[0, \frac{y}{2}\right]$;
case (6) $\frac{1}{6}<x \leq \frac{1}{3}$ and $\frac{1}{6}<y \leq \frac{1}{2}$, then $T x=\left[0, \frac{x}{3}\right]$ and $S y=\left[0, \frac{y}{2}\right]$;
case (7) $\frac{1}{3}<x$ and $\frac{1}{2}<y$, then $T x=\{0\}$ and $S y=\{0\}$.
These cases implies that $T x S y \leq \frac{T x}{6}$. Hence T and S are common $\perp-$ preserving. Also, one can see that $\|T x-S y\| \leq \frac{1}{2}\|x-y\|$. Hence T, S are common \perp-contraction.

Definition 2.22. A subset $B \subseteq X$ is said to be an approximation if for each given $y \in X$, there exists $z \in B$ such that $\Lambda(B, B, y)=\lambda(z, z, y)$.

Definition 2.23. A set-valued mapping $T: X \longrightarrow 2^{X}$ is said to have an approximate values in X if $T x$ is an approximation for each $x \in X$.

Definition 2.24. Let (X, \perp, λ) be an orthogonal Branciari S_{b}-metric space. If $T: X \rightarrow 2^{X}$ is a set-valued mapping, then $x \in X$ is called fixed point for T if and only if $x \in F(x)$. The set $F i x(T):=\{x \in X / x \in T x\}$ is called the fixed point set of T.

3 Main result

We should emphasize that throughout this paper we suppose that all set-valued mappings on an orthogonal symmetric S_{b}-metric space (X, λ, \perp) have closed values.

Lemma 3.1. Let (X, λ, \perp) be an orthogonal symmetric Branciari S_{b}-metric space. Suppose that $T, S: X \rightarrow 2^{X}$ are $\alpha_{*}-\psi-\beta_{i}$-orthogonal common contractive set-valued mappings satisfies the following conditions:
(i) T, S are α_{*}-orthogonal common admissible;
(ii) there exists $x_{0} \in X$ such that,

$$
\left\{x_{0}\right\} \perp T x_{0} \vee\left\{x_{0}\right\} \perp S T x_{0} .
$$

Then $\operatorname{Fix}(T)=F i x(S)$.
Proof. We first show that any fixed point of T is also a fixed point of S and conversely. Since $\operatorname{Fix}(T) \neq F i x(S)$, we may assume there exists $x^{*} \in X$ such that $x^{*} \in F i x(T)$, but $x^{*} \notin F i x(S)$, since $\Lambda\left(x^{*}, x^{*}, S x^{*}\right)>0$. Let $x_{0} \in X$ such that $\left\{x_{0}\right\} \perp T x_{0} \vee\left\{x_{0}\right\} \perp S T x_{0}$. Define the orthogonal Branciari sequence $\left\{x_{n}\right\}$ in X by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ for all $n \in \mathbb{N}_{0}$. If $x_{n_{0}}=x_{n_{0}+1}$ for some $n_{0}>1$, then $x^{*}=x_{n_{0}}$ are a common fixed point for T, S. So, we can assume that $x_{2 n} \notin T x_{2 n}$ and $x_{2 n+1} \notin S x_{2 n+1}$ for all $n \in \mathbb{N}_{0}$. Define

$$
\alpha(x, x, y)= \begin{cases}1 & x \perp y \vee y \perp x \\ 0 & \text { otherwise }\end{cases}
$$

Since T, S are α_{*}-orthogonal common admissible and

$$
\left\{x_{0}\right\} \perp T x_{0} \Rightarrow \alpha_{*}\left(\left\{x_{0}\right\},\left\{x_{0}\right\}, T x_{0}\right) \geq 1,
$$

we have

$$
\begin{gathered}
\alpha\left(x_{0}, x_{0}, x_{1}\right) \geq \alpha_{*}\left(\left\{x_{0}\right\},\left\{x_{0}\right\}, T x_{0}\right) \geq 1 \Rightarrow \alpha_{*}\left(T x_{0}, T x_{0}, S x_{1}\right) \geq 1 \\
\alpha\left(x_{1}, x_{1}, x_{2}\right) \geq \alpha_{*}\left(T x_{0}, T x_{0}, S x_{1}\right) \geq 1 \Rightarrow \alpha_{*}\left(S x_{1}, S x_{1}, T x_{2}\right) \geq 1 \\
\alpha\left(x_{2}, x_{2}, x_{3}\right) \geq \alpha_{*}\left(S x_{1}, S x_{1}, T x_{2}\right) \geq 1 \Rightarrow \alpha_{*}\left(T x_{2}, T x_{2}, S x_{3}\right) \geq 1
\end{gathered}
$$

Inductively, we have

$$
\alpha\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right) \geq 1 \Rightarrow \alpha_{*}\left(T x_{2 n}, T x_{2 n}, S x_{2 n+1}\right) \geq 1
$$

and

$$
\alpha\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right) \geq 1 \Rightarrow \alpha_{*}\left(S x_{2 n+1}, S x_{2 n+1}, T x_{2 n+2}\right) \geq 1
$$

for all $n \in \mathbb{N}_{0}$. Let

$$
\left\{x_{0}\right\} \perp S T x_{0} \Rightarrow \alpha_{*}\left(\left\{x_{0}\right\},\left\{x_{0}\right\}, S T x_{0}\right) \geq 1
$$

Similarly, we have

$$
\alpha\left(x_{2 n}, x_{2 n}, x_{2 n+2}\right) \geq 1 \Rightarrow \alpha_{*}\left(T x_{2 n}, T x_{2 n}, S T x_{2 n}\right) \geq 1
$$

and

$$
\alpha\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+3}\right) \geq 1 \Rightarrow \alpha_{*}\left(S x_{2 n+1}, S x_{2 n+1}, T S x_{2 n+1}\right) \geq 1
$$

for all $n \in \mathbb{N}_{0}$. We obtain

$$
\begin{aligned}
\psi\left(\Lambda\left(x^{*}, x^{*}, S x^{*}\right)\right) \leq & \psi\left(H_{\lambda}\left(T x^{*}, T x^{*}, S x^{*}\right)\right) \leq \alpha_{*}\left(T x^{*}, T x^{*}, S x^{*}\right) \psi\left(H_{\lambda}\left(T x^{*}, T x^{*}, S x^{*}\right)\right) \\
\leq & \beta_{1}\left(\lambda\left(x^{*}, x^{*}, x^{*}\right)\right) \psi\left(\lambda\left(x^{*}, x^{*}, x^{*}\right)\right)+\beta_{2}\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \\
& +\beta_{3}\left(\Lambda\left(S x^{*}, S x^{*}, x^{*}\right)\right) \psi\left(\Lambda\left(S x^{*}, S x^{*}, x^{*}\right)\right) \\
& +\beta_{4}\left(H_{\lambda}\left(T x^{*}, T x^{*}, S x^{*}\right)\right) \min \left\{\psi\left(\Lambda\left(x^{*}, x^{*}, S x^{*}\right), \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right)\right\}\right. \\
= & \beta_{3}\left(\Lambda\left(S x^{*}, S x^{*}, x^{*}\right)\right) \psi\left(\Lambda\left(S x^{*}, S x^{*}, x^{*}\right)\right)<\psi\left(\Lambda\left(S x^{*}, S x^{*}, x^{*}\right)\right) \\
\text { Symmetric }= & \psi\left(\Lambda\left(x^{*}, x^{*}, S x^{*}\right)\right)
\end{aligned}
$$

This is contradiction establishes that $\operatorname{Fix}(T) \subseteq F i x(S)$. A similar argument establishes the reverse containment, and therefore $\operatorname{Fix}(T)=\operatorname{Fix}(S)$.

Theorem 3.2. Let (X, λ, \perp) be a complete orthogonal symmetric Branciari S_{b}-metric space (not necessarily complete metric space). Suppose that $T, S: X \rightarrow 2^{X}$ are $\alpha_{*}-\psi-\beta_{i}$-orthogonal common contractive set-valued mappings satisfies the following conditions:
(i) T, S are α_{*}-orthogonal common admissible;
(ii) there exists $x_{0} \in X$ such that,

$$
\left\{x_{0}\right\} \perp T x_{0} \vee\left\{x_{0}\right\} \perp S T x_{0}
$$

(iii) X has the property α-regular orthogonal Branciari S_{b}-metric space,
(iv) T, S are \perp-preserving set-valued mappings.

Then T, S have common fixed point $x^{*} \in X$. Further, for each $x_{0} \in X$, the iterated orthogonal Branciari sequences $\left\{x_{n}\right\}$ with $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ converges to the common fixed point of T, S.

Proof . By lemma 3.1, we have $\operatorname{Fix}(T)=\operatorname{Fix}(S)$ and we have

$$
\begin{gathered}
\alpha\left(x_{n}, x_{n}, x_{n+1}\right) \geq 1 \vee \alpha\left(x_{n}, x_{n}, x_{n+2}\right) \geq 1 ; \\
\left\{x_{0}\right\} \perp T x_{0} \perp S T x_{0} \cdots \vee\left\{x_{0}\right\} \perp S T x_{0} \perp T S T x_{0} \cdots ; \\
x_{0} \perp x_{1} \perp x_{2} \cdots \vee x_{0} \perp x_{2} \perp x_{3} \cdots ;
\end{gathered}
$$

Thus $x_{n} \perp x_{n+1}$ for all $n \in \mathbb{N}_{0}$. Without loss of generality, we may assume that $T, S: X \rightarrow 2^{X}$ are $\alpha_{*}-\psi-\beta_{i^{-}}$ orthogonal common contractive set-valued mappings. Consider equation 2.2 , with $x=x_{2 n+1}$ and $y=x_{2 n+2}$. Clearly, we have

$$
\begin{align*}
\psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \leq & \alpha_{*}\left(T x_{2 n}, T x_{2 n}, S x_{2 n+1}\right) \psi\left(H \lambda\left(T x_{2 n}, T x_{2 n}, S x_{2 n+1}\right)\right) \\
\leq & \beta_{1}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)+\beta_{2}\left(\Lambda\left(x_{2 n}, x_{2 n}, T x_{2 n}\right)\right) \psi\left(\Lambda\left(x_{2 n}, x_{2 n}, T x_{2 n}\right)\right) \\
& +\beta_{3}\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, S x_{2 n+1}\right)\right) \psi\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, S x_{2 n+1}\right)\right) \\
& \beta_{4}\left(H_{\lambda}\left(T x_{2 n}, T x_{2 n}, S x_{2 n+1}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n}, x_{2 n}, S x_{2 n+1}\right), \psi\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, T x_{2 n}\right)\right)\right\}\right. \\
\leq & \beta_{1}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)+\beta_{2}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \min \left\{\psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+2}\right), \psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+1}\right)\right)\right\} .\right. \tag{3.1}
\end{align*}
$$

Then

$$
\begin{align*}
& \left(1-\beta_{3}\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right)\right) \psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \\
& \leq\left(\beta_{1}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)+\beta_{2}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)\right) \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \leq \frac{\left(\beta_{1}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)+\beta_{2}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right)\right)}{\left(1-\beta_{3}\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right)\right)} \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \leq \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) . \tag{3.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \leq \psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}\right)\right), \tag{3.5}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. We have

$$
\begin{equation*}
\psi\left(\lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(\lambda\left(x_{n}, x_{n}, x_{n+1}\right)\right) \leq \ldots \leq \psi^{n}\left(\lambda\left(x_{0}, x_{0}, x_{1}\right)\right) \tag{3.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$. From the property of ψ, we conclude that

$$
\begin{equation*}
\lambda\left(x_{n}, x_{n}, x_{n+1}\right)<\lambda\left(x_{n-1}, x_{n-1}, x_{n}\right), \tag{3.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$, it is clear that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)=0 \tag{3.8}
\end{equation*}
$$

Consider equation 2.2), with $x=x_{2 n}$ and $y=x_{2 n+2}$. Clearly, we have

$$
\begin{align*}
\psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+2}\right)\right) & \leq \alpha_{*}\left(S x_{2 n-1}, S x_{2 n-1}, S x_{2 n+1}\right) \psi\left(H_{\lambda}\left(S x_{2 n-1}, S x_{2 n-1}, S x_{2 n+1}\right)\right) \\
& \leq \beta_{1}\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) \\
& +\beta_{2}\left(\Lambda\left(x_{2 n-1}, x_{2 n-1}, S x_{2 n-1}\right)\right) \psi\left(\Lambda\left(x_{2 n-1}, x_{2 n-1}, S x_{2 n-1}\right)\right) \\
& +\beta_{3}\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, S x_{2 n+1}\right)\right) \psi\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, S x_{2 n+1}\right)\right) \\
& \beta_{4}\left(H_{\lambda}\left(S x_{2 n-1}, S x_{2 n-1}, S x_{2 n+1}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n-1}, x_{2 n-1}, S x_{2 n+1}\right), \psi\left(\Lambda\left(x_{2 n+1}, x_{2 n+1}, S x_{2 n-1}\right)\right)\right\}\right. \\
& \leq \beta_{1}\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) \\
& +\beta_{2}\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}\right)\right) \psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n+2}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+2}\right)\right) \min \left\{\psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+2}\right), \psi\left(\lambda\left(x_{2 n+1}, x_{2 n+1}, x_{2 n}\right)\right)\right\} .\right. \tag{3.9}
\end{align*}
$$

Similarly, consider equation (2.2), with $x=x_{2 n-1}$ and $y=x_{2 n+1}$. Clearly, we have

$$
\begin{aligned}
\psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) & \leq \alpha_{*}\left(T x_{2 n-2}, T x_{2 n-2}, T x_{2 n}\right) \psi\left(H_{\lambda}\left(T x_{2 n-2}, T x_{2 n-2}, T x_{2 n}\right)\right) \\
& \leq \beta_{1}\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n}\right)\right) \psi\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n}\right)\right) \\
& +\beta_{2}\left(\Lambda\left(x_{2 n-2}, x_{2 n-2}, T x_{2 n-2}\right)\right) \psi\left(\Lambda\left(x_{2 n-2}, x_{2 n-2}, T x_{2 n-2}\right)\right) \\
& +\beta_{3}\left(\Lambda\left(x_{2 n}, x_{2 n}, T x_{2 n}\right)\right) \psi\left(\Lambda\left(x_{2 n}, x_{2 n}, T x_{2 n}\right)\right) \\
& \beta_{4}\left(H_{\lambda}\left(T x_{2 n-2}, T x_{2 n-2}, T x_{2 n}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n-2}, x_{2 n-2}, T x_{2 n}\right), \psi\left(\Lambda\left(x_{2 n}, x_{2 n}, T x_{2 n-2}\right)\right)\right\}\right. \\
& \leq \beta_{1}\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n}\right)\right) \psi\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n}\right)\right) \\
& +\beta_{2}\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n-1}\right)\right) \psi\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n-1}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \psi\left(\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)\right) \min \left\{\psi\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n+1}\right), \psi\left(\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}\right)\right)\right\} .\right.
\end{aligned}
$$

Define $a_{2 n}=\lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)$ and $b_{2 n}=\lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)$. Then

$$
\begin{align*}
& \psi\left(a_{2 n}\right) \leq \beta_{1}\left(a_{2 n-1}\right) \psi\left(a_{2 n-1}\right)+\beta_{2}\left(b_{2 n-1}\right) \psi\left(b_{2 n-1}\right)+\beta_{3}\left(b_{2 n}\right) \psi\left(b_{2 n}\right)+ \\
& \beta_{4}\left(a_{2 n}\right) \min \left\{\psi\left(\lambda\left(x_{2 n-2}, x_{2 n-2}, x_{2 n+1}\right), \psi\left(b_{2 n-1}\right)\right\} .\right. \tag{3.10}
\end{align*}
$$

From the (3.8) $\lim _{n \rightarrow \infty} b_{2 n}=\lim _{n \rightarrow \infty} \lambda\left(x_{2 n}, x_{2 n}, x_{2 n+1}\right)=0$. We get

$$
\begin{equation*}
\psi\left(a_{2 n}\right) \leq \beta_{1}\left(a_{2 n-1}\right) \psi\left(a_{2 n-1}\right) \leq \psi\left(a_{2 n-1}\right) \tag{3.11}
\end{equation*}
$$

and hence,

$$
\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} \lambda\left(x_{2 n-1}, x_{2 n-1}, x_{2 n+1}\right)=0 \Rightarrow \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \lambda\left(x_{n-1}, x_{n-1}, x_{n+1}\right)=0 .
$$

Now, we shall prove that $x_{n} \neq x_{m}$ for all $n \neq m$. Assume on the contrary that $x_{n}=x_{m}$ for some $m, n \in \mathbb{N}$ with $n \neq m$. Since $\lambda\left(x_{p}, x_{p}, x_{p+1}\right)>0$ for each $p \in \mathbb{N}$, without loss of generality, we may assume that $m>n+1, m=2 k$ and $n=2 l$ for $k, l \in \mathbb{N}$. Substitute again $x=x_{2 l}=x_{2 k}$ and $y=x_{2 l+1}=x_{2 k+1}$ in 2.2, (3.7) which yields

$$
\begin{align*}
\psi\left(\lambda\left(x_{2 l}, x_{2 l}, x_{2 l+1}\right)\right) & =\psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \leq \alpha_{*}\left(H_{\lambda}\left(S x_{2 k-1}, S x_{2 k-1}, T x_{2 k}\right)\right) \psi\left(H\left(S x_{2 k-1}, S x_{2 k-1}, T x_{2 k}\right)\right) \\
& \leq \beta_{1}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \psi\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \\
& +\beta_{2}\left(\Lambda\left(x_{2 k-1}, x_{2 k-1}, S x_{2 k-1}\right)\right) \psi\left(\Lambda\left(x_{2 k-1}, x_{2 k-1}, S x_{2 k-1}\right)\right) \\
& +\beta_{3}\left(\Lambda\left(x_{2 k}, x_{2 k}, T x_{2 k}\right)\right) \psi\left(\Lambda\left(x_{2 k}, x_{2 k}, T x_{2 k}\right)\right) \\
& \beta_{4}\left(H_{\lambda}\left(T x_{2 k}, T x_{2 k}, S x_{2 k-1}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 k}, x_{2 k}, S x_{2 k-1}\right), \psi\left(\Lambda\left(x_{2 k-1}, x_{2 k-1}, T x_{2 k}\right)\right)\right\}\right. \\
& \leq \beta_{1}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \psi\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \\
& +\beta_{2}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \psi\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 k+1}, x_{2 k+1}, x_{2 k}\right)\right) \min \left\{\psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k}\right), \psi\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k+1}\right)\right)\right\}\right. \\
& =\left(\beta_{1}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right)+\beta_{2}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right)\right) \psi\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \\
& \leq\left(\beta_{1}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right)+\beta_{2}\left(\lambda\left(x_{2 k-1}, x_{2 k-1}, x_{2 k}\right)\right)\right. \\
& \left.+\beta_{3}\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right)\right) \psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right)<\psi\left(\lambda\left(x_{2 k}, x_{2 k}, x_{2 k+1}\right)\right) \tag{3.12}
\end{align*}
$$

which is impossible. Now, we shall prove that $\left\{x_{n}\right\}$ is an orthogonal Branciari Cauchy sequence, that is,

$$
\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x_{n+k}\right)=0 \text { and } x_{n} \perp x_{n+k}
$$

for all $k \in \mathbb{N}$. We have already proved the cases for $k=1$ and $k=2$ in (3.7) and (3.10), respectively. Take arbitrary $k \geq 3$. We discuss two cases.

Case I : Suppose that $S_{n}=\lambda\left(x_{n}, x_{n}, x_{n+1}\right), \psi\left(S_{n}\right)=\alpha_{n} S_{n}$ and $\alpha_{n} \in\left(0, \frac{1}{\sqrt{k}}\right)$. Then

$$
\begin{align*}
& S_{n}=\lambda\left(x_{n}, x_{n}, x_{n+1}\right) \leq \psi\left(\lambda\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)=\alpha_{n-1} \lambda\left(x_{n-1}, x_{n-1}, x_{n}\right) \tag{3.13}\\
& \leq \alpha_{n-1} \psi\left(\lambda\left(x_{n-2}, x_{n-2}, x_{n-1}\right)\right) \leq \cdots \leq \alpha_{n-1} \alpha_{n-2} \cdots \alpha_{1} \alpha_{0} \lambda\left(x_{0}, x_{0}, x_{1}\right)=\alpha^{n} S_{0}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& S_{n}^{*}=\lambda\left(x_{n}, x_{n}, x_{n+2}\right) \leq \psi\left(\lambda\left(x_{n-1}, x_{n-1}, x_{n+1}\right)\right)=\alpha_{n-1} \lambda\left(x_{n-1}, x_{n-1}, x_{n+1}\right) \tag{3.14}\\
& \leq \alpha_{n-1} \psi\left(\lambda\left(x_{n-2}, x_{n-2}, x_{n}\right)\right) \leq \cdots \leq \alpha_{n-1} \alpha_{n-2} \cdots \alpha_{1} \alpha_{0} \lambda\left(x_{0}, x_{0}, x_{1}\right)=\alpha^{n} S_{0}^{*}
\end{align*}
$$

for all $n \geq 1$ and $\alpha=\max _{0 \leq i \leq n-1}\left\{\alpha_{i}\right\}$. Now, we shall prove that $\left\{x_{n}\right\}$ is a orthogonal Branciari Cauchy sequence, that is,

$$
\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x_{n+l}\right)=0
$$

for all $l \in \mathbb{N}$. We have already proved the cases for $l=1$ and $l=2$ in (3.7) and 3.10), respectively. Now for $l=2 m+1$, where $m \geq 1$. Using the inequality 2.1, we have

$$
\begin{align*}
\lambda\left(x_{n}, x_{n}, x_{n+l}\right) \leq & k\left[\lambda\left(x_{n}, x_{n}, x_{n+1}\right)+\lambda\left(x_{n}, x_{n}, x_{n+1}\right)+\lambda\left(x_{n+l}, x_{n+l}, x_{n+2}\right)+\lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right] \\
= & \left.2 k \lambda\left(x_{n}, x_{n}, x_{n+1}\right)+k \lambda\left(x_{n+l}, x_{n+l}, x_{n+2}\right)+k \lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right] \\
\text { Symmetric }= & 2 k \lambda\left(x_{n}, x_{n}, x_{n+1}\right)+k \lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+k \lambda\left(x_{n+2}, x_{n+2}, x_{n+l}\right) \\
\leq & 2 k \lambda\left(x_{n}, x_{n}, x_{n+1}\right)+k \lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+k\left(k \left[\lambda\left(x_{n+2}, x_{n+2}, x_{n+3}\right)\right.\right. \\
& \left.\left.+\lambda\left(x_{n+2}, x_{n+2}, x_{n+3}\right)+\lambda\left(x_{n+l}, x_{n+l}, x_{n+4}\right)+\lambda\left(x_{n+3}, x_{n+3}, x_{n+4}\right)\right]\right) \\
\text { Symmetric }= & 2 k \lambda\left(x_{n}, x_{n}, x_{n+1}\right)+k \lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+2 k^{2} \lambda\left(x_{n+2}, x_{n+2}, x_{n+3}\right) \\
& +k^{2} \lambda\left(x_{n+3}, x_{n+3}, x_{n+4}\right)+k^{2} \lambda\left(x_{n+4}, x_{n+4}, x_{n+2 m+1}\right) \\
\leq & \cdots \\
& \vdots \\
\leq & 2 k\left[\lambda\left(x_{n}, x_{n}, x_{n+1}\right)+\lambda\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right]+2 k^{2}\left[\lambda\left(x_{n+2}, x_{n+2}, x_{n+3}\right)+\lambda\left(x_{n+3}, x_{n+3}, x_{n+4}\right)\right] \\
& +\cdots+2 k^{m}\left[\lambda\left(x_{n+2 m-2}, x_{n+2 m-2}, x_{n+2 m-1}\right)+\lambda\left(x_{n+2 m-1}, x_{n+2 m-1}, x_{n+2 m}\right)\right] \\
& +k^{m} \lambda\left(x_{n+2 m}, x_{n+2 m}, x_{n+2 m+1}\right) \\
\leq & 2\left[\left\{k\left(\alpha_{0}^{n}+\alpha_{0}^{n+1}\right)+k^{2}\left(\alpha_{0}^{n+2}+\alpha_{0}^{n+3}\right)+\cdots+k^{m}\left(\alpha_{0}^{n+2 m-2}+\alpha_{0}^{n+2 m-1}\right)\right\}+k^{m} \alpha_{0}^{n+2 m}\right] S_{0} \\
= & 2 k\left(1+\alpha_{0}\right) \alpha_{0}^{n}\left[1+k \alpha_{0}^{2}+\cdots+k^{m} \alpha_{0}^{2 m}\right] S_{0} \frac{2 k\left(1+\alpha_{0}\right)}{1+k \alpha_{0}^{2}} \alpha_{0}^{n} S_{0} \tag{3.15}
\end{align*}
$$

for all $n \geq 1$. Also for $l=2 m$ we get

$$
\begin{equation*}
\lambda\left(x_{n}, x_{n}, x_{n+2 m}\right) \leq \cdots \leq \frac{2 k\left(1+\alpha_{0}\right)}{1+k \alpha_{0}^{2}} \alpha_{0}^{n} S_{0}+\alpha_{0}^{n}\left(k \alpha^{2}\right)^{m-1} S_{0}^{*} \tag{3.16}
\end{equation*}
$$

for all $n \geq 1$. Thus we proved that $\left\{x_{n}\right\}$ is a orthogonal Branciari Cauchy sequence in the complete metric space (X, λ, \perp), there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x^{*}\right)=0$ by (X, λ, \perp) has the property α-regular Branciari S_{b}-metric space. There exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\alpha_{*}\left(\left\{x_{2 n_{k}+1}\right\},\left\{x_{2 n_{k}+1}\right\},\left\{x^{*}\right\}\right) \geq \alpha_{*}\left(T x_{2 n_{k}}, T x_{2 n_{k}}, T x^{*}\right) \geq 1 \text { for all } k . \tag{3.17}
\end{equation*}
$$

Thus

$$
\begin{align*}
\psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \leq & \psi\left(\lambda\left(x^{*}, x^{*}, x_{2 n_{k}+1}\right)\right)+\psi\left(\Lambda\left(x_{2 n_{k}+1}, x_{2 n_{k}+1}, T x^{*}\right)\right) \\
\leq & \psi\left(\lambda\left(x^{*}, x^{*}, x_{2 n_{k}+1}\right)\right)+\alpha_{*}\left(T x_{2 n_{k}}, T x_{2 n_{k}}, T x^{*}\right) \psi\left(H_{\lambda}\left(T x_{2 n_{k}}, T x_{2 n_{k}}, T x^{*}\right)\right) \\
\leq & \psi\left(\lambda\left(x^{*}, x^{*}, x_{2 n_{k}+1}\right)\right)+\beta_{1}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \\
& +\beta_{2}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\Lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, T x_{2 n_{k}}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, T x^{*}\right), \psi\left(\Lambda\left(x^{*}, x^{*}, T x_{2 n_{k}}\right)\right)\right\}\right. \\
\leq & \psi\left(\lambda\left(x^{*}, x^{*}, x_{2 n_{k}+1}\right)\right)+\beta_{1}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \\
& +\beta_{2}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x_{2 n_{k}+1}\right)\right) \psi\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x_{2 n_{k}+1}\right)\right) \\
& +\beta_{3}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \\
& \beta_{4}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, T x^{*}\right), \psi\left(\lambda\left(x^{*}, x^{*}, x_{2 n_{k}+1}\right)\right)\right\}\right. \\
\leq & \psi(0)+\beta_{1}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi(0)+\beta_{2}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x_{2 n_{k}+1}\right)\right) \psi(0) \\
& +\beta_{3}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \beta_{4}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \min \left\{\psi\left(\Lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, T x^{*}\right), \psi(0)\right\}\right. \\
\leq & \beta_{3}\left(\lambda\left(x_{2 n_{k}}, x_{2 n_{k}}, x^{*}\right)\right) \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right) \\
\leq & \psi\left(\Lambda\left(x^{*}, x^{*}, T x^{*}\right)\right), \tag{3.18}
\end{align*}
$$

for all k, which is impossible. Hence, $\Lambda\left(x^{*}, x^{*}, T x^{*}\right)=\Lambda\left(T x^{*}, T x^{*}, x^{*}\right)=0$ and so $x^{*} \in T x^{*}$. By Lemma (3.1) we have x^{*} common fixed point of T, S.

Corollary 3.3. 24 Let (X, λ, \perp) be an orthogonal symmetric Branciari complete metric space (not necessarily complete metric space $), f, g: X \rightarrow X$ be a self map,$\psi \in \Psi$ be a sub-additive function and $\alpha, \beta, \gamma: \mathbb{R}^{+}-\{0\} \rightarrow[0,1)$ be three decreasing functions such that $(\alpha+2 \beta+\gamma)(t)<1$ for all $t>0$. Suppose that f is \perp-preserving self mapping satisfying the inequality

$$
\begin{align*}
& \psi(\lambda(f x, f x, g y)) \leq \alpha(\lambda(x, x, y)) \psi(\lambda(x, x, y))+\beta(\lambda(x, x, y))[\psi(\lambda(x, x, f x)) \tag{3.19}\\
& +\psi(\lambda(y, y, g y))]+\gamma(\lambda(x, x, y)) \min \{\psi(\Lambda(x, x, g y), \psi(\Lambda(y, y, f x))\}
\end{align*}
$$

for all $x, y \in X$ where $x \perp y$ and $x \neq y$. In this case, there exists a point $x^{*} \in X$ such that for any orthogonal element $x_{0} \in X$, the iteration sequence $\left\{f^{n} x_{0}\right\}$ converges to this point. Also, if f is \perp-continuous at $x^{*} \in X$, then $x^{*} \in X$ is a unique fixed point of f.

Example 3.4. Let $X=\mathbb{Z}, A=\{x \in \mathbb{Z}| | x \mid \leq 2\}$ and $B=\{x \in \mathbb{Z} \mid x=2 k, k \in \mathbb{N}\}$ define $A \perp B$ if there are $m \in A$, $k \in \mathbb{Z}$ and for all $n \in B$ such that $n=k m$. It is easy to see that $A \perp B$. Hence (\mathbb{Z}, \perp) is an O-set.
Let $Y \subseteq X$ be a finite set defined as $Y=\{1,2,4,8\}$. Define $\lambda: Y \times Y \times Y \rightarrow[0, \infty)$ as:
$\lambda(1,1,1)=\lambda(2,2,2)=\lambda(4,4,4)=\lambda(8,8,8)=0$,
$\lambda(1,1,2)=\lambda(2,2,1)=3$,
$\lambda(2,2,8)=\lambda(8,8,2)=\lambda(1,1,8)=\lambda(8,8,1)=1$ and
$\lambda(1,1,4)=\lambda(4,4,1)=\lambda(2,2,4)=\lambda(4,4,2)=\lambda(8,8,4)=\lambda(4,4,8)=\frac{1}{2}$.
The function λ is not a metric on Y. Indeed, note

$$
3=\lambda(1,1,2) \geq \lambda(1,1,8)+\lambda(8,8,2)=1+1=2,
$$

that is, the triangle inequality is not satisfied. However, λ is a symmetric Branciari S_{b}-metric on Y and moreover (Y, λ) is a complete symmetric Branciari S_{b}-metric space. Define $T, S: Y \rightarrow 2^{Y}$ as: $T 1=T 2=T 8=\{2,4\}, T 4=\{1,8\}$
and $S 1=S 2=S 4=\{2,8\}, S 8=\{1,2\}, \alpha: Y \times Y \times Y \rightarrow[0,+\infty), \alpha_{*}=\inf \alpha$ as

$$
\alpha(x, x, y))= \begin{cases}1 & x \perp y \vee y \perp x \\ 0 & \text { otherwise }\end{cases}
$$

$\psi(t)=\frac{2}{3} t$. Clearly, T, S satisfies the conditions of Theorem 3.2 and has a common fixed point $x=2$.

4 Some consequences

In this section we give some consequences of the main results presented above. Specifically, we apply our results to generalized metric spaces endowed with a partial order.

4.1 Fixed point theorems for weakly increasing on X has the property α-regular orthogonal symmetric Branciari complete metric space

In the following we provide set-valued versions of the preceding theorem. The results are related to those in ([14]). Let X be a topological space and \preceq be a partial order on X.

Definition 4.1. ([14]). Let A, B be two nonempty subsets of X, the relations between A and B are definers follows: $\left(r_{1}\right)$ If for every $a \in A$, there exists $b \in B$ such that $a \preceq b$, then $A \prec_{1} B$.
$\left(r_{2}\right)$ If for every $b \in B$ there exists $a \in A$, such that $a \preceq b$, then $A \prec_{2} B$.
$\left(r_{3}\right)$ If $A \prec_{1} B$ and $A \prec_{2} B$, then $A \prec B$.
Definition 4.2. ([11, [12). Let (X, \preceq) be a partially ordered set. Two mappings $f, g: X \rightarrow X$ are said to be weakly increasing if $f x \preceq g f x$ and $g x \preceq f g x$ hold for all $x \in X$.

Note that, two weakly increasing mappings need not be nondecreasing.
Example 4.3. Let $X=\mathbb{R}^{+}$endowed with usual ordering. Let $f, g: X \rightarrow X$ defined by

$$
f x=\left\{\begin{array}{ll}
x & \text { if } 0 \leq x \leq 1, \\
0 & \text { if } 1<x<\infty
\end{array} \text { and } g x= \begin{cases}\sqrt{x} & \text { if } 0 \leq x \leq 1, \\
0 & \text { if } 1<x<\infty\end{cases}\right.
$$

then it is obvious that $f x \leq g f x$ and $g x \leq f g x$ for all $x \in X$. Thus f and g are weakly increasing mappings. Note that both f and g are not nondecreasing.

Definition 4.4. ([3]) Let (X, \preceq) be a partially ordered set. Two mapping $F, G: X \rightarrow 2^{X}$ are said to be weakly increasing with respect to \prec_{1} if for any $x \in X$ we have $F x \prec_{1} G y$ for all $y \in F x$ and $G x \prec_{1} F y$ for all $y \in G x$. Similarly two maps $F, G: X \rightarrow 2^{X}$ are said to be weakly increasing with respect to \prec_{2} if for any $x \in X$ we have $G y \prec_{2} F x$ for all $y \in F x$ and $F y \prec_{2} G x$ for all $y \in G x$.

Now we give some examples.
Example 4.5. ([3]) Let $X=[1, \infty)$ and \leq be usual order on X. Consider two mappings $F, G: X \rightarrow 2^{X}$ defined by $F x=\left[1, x^{2}\right]$ and $G x=[1,2 x]$ for all $x \in X$. Then the pair of mappings F and G are weakly increasing with respect to \prec_{2} but not \prec_{1}. Indeed, since

$$
G y=[1,2 y] \prec_{2}\left[1, x^{2}\right]=F x \text { for all } y \in F x
$$

and

$$
F y=\left[1, y^{2}\right] \prec_{2}[1,2 x]=G x \text { for all } y \in G x
$$

so F and G are weakly increasing with respect to \prec_{2} but $F 2=[1,4] \succ_{1}[1,2]=G 1$ for $1 \in F 2$, so F and G are not weakly increasing with respect to \prec_{1}.

Example 4.6. ([3]) Let $X=[1, \infty)$ and \leq be usual order on X. Consider two mappings $F, G: X \rightarrow 2^{X}$ defined by $F x=[0,1]$ and $G x=[x, 1]$ for all $x \in X$. Then the pair of mappings F and G are weakly increasing with respect to \prec_{1} but not \prec_{2}. Indeed, since

$$
F x=[0,1] \prec_{1}[y, 1]=G y \text { for all } y \in F x
$$

and

$$
G x=[x, 1] \prec_{1}[0,1]=F y \text { for all } y \in G x
$$

so F and G are weakly increasing with respect to \prec_{1} but $G 1=1 \succ_{2} 0,1=F 1$ for $1 \in F 1$, so F and G are not weakly increasing with respect to \prec_{2}.

Theorem 4.7. Let $(X, \preceq, \perp, \lambda)$ be a partially ordered orthogonal symmetric Branciari complete metric space (not necessarily complete metric space). Suppose that $T, S: X \rightarrow 2^{X}$ are $\alpha_{*}-\psi$ - β_{i}-orthogonal common contractive setvalued mappings for all $x, y \in X$ with $x \prec_{1} y$ or $x \perp y$ satisfies the following conditions:
(i) T and S be a weakly increasing pair on X w.r.t \prec_{1};
(ii) there exists $x_{0} \in X$ such that $\left\{x_{0}\right\} \prec_{1} T x_{0}$ and $\left\{x_{0}\right\} \prec_{1} S T x_{0}$ or $\left\{x_{0}\right\} \perp T x_{0}$ and $\left\{x_{0}\right\} \perp S T x_{0}$;
(iii) X has the property α-regular orthogonal symmetric Branciari complete metric space,
(iv) T, S are \perp-preserving set-valued mappings.

Then T, S have common fixed point $x^{*} \in X$. Further, for each $x_{0} \in X$, the iterated O-sequence $\left\{x_{n}\right\}$ with $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ converges to the common fixed point of T, S.

Proof . Define the orthogonal sequence x_{n} in X by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ for all $n \in \mathbb{N}_{0}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}_{0}$, then $x^{*}=x_{n}$ is a common fixed point for T, S. Using that the pair of set-valued mappings T and S is weakly increasing and by define $\alpha: X \times X \times X \rightarrow[o,+\infty)$

$$
\alpha(x, x, y)= \begin{cases}1, & x \preceq y \vee x \perp y \\ 0, & \text { otherwise } .\end{cases}
$$

It can be easily shown that the orthogonal sequence x_{n} is nondecreasing w.r.t, \preceq i.e; and $\alpha_{*}\left(\left\{x_{0}\right\},\left\{x_{0}\right\}, T x_{0}\right) \geq$ $1 \Rightarrow \exists x_{1} \in T x_{0}$, such that $\alpha\left(x_{0}, x_{0}, x_{1}\right) \geq 1 \Rightarrow x_{0} \preceq x_{1} \vee x_{0} \perp x_{1}$. Now since T and S are weakly increasing with respect to \prec_{1}, we have $x_{1} \in T x_{0} \prec_{1} S x_{1}$. Thus there exist some $x_{2} \in S x_{1}$ such that $x_{1} \preceq x_{2} \vee x_{1} \perp x_{2}$. Again since T and S are weakly increasing with respect to \prec_{1}, we have $x_{2} \in S x_{1} \prec_{1} T x_{2}$. Thus there exist some $x_{3} \in T x_{2}$ such that $x_{2} \preceq x_{3} \vee x_{2} \perp x_{3}$. Continue this process, we will get a nondecreasing orthogonal sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ which satisfies $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n=1}, n=0,1,2,3, \cdots$ We get

$$
x_{0} \preceq x_{1} \preceq x_{2} \preceq \cdots \preceq x_{2 n} \preceq x_{2 n+1}
$$

or

$$
x_{2 n+2} \preceq \cdots
$$

or

$$
x_{0} \perp x_{1} \perp x_{2} \perp \cdots \perp x_{2 n} \perp x_{2 n+1} \perp x_{2 n+2} \perp \cdots
$$

In particular x_{n}, x_{n+k} are comparable for all $k \in \mathbb{N} . \alpha\left(x_{n}, x_{n}, x_{n+k}\right) \geq 1$ for all $n \in \mathbb{N}_{0}$ and by (4) we have $\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x_{n+k}\right)=0$. Following the proof of Theorem (3.2). Thus we proved that $\left\{x_{n}\right\}$ is a orthogonal Cauchy sequence in the orthogonal symmetric Branciari complete metric space (X, \perp, λ), there exists $x^{*} \in X$ such that

$$
\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x^{*}\right)=0
$$

and condition (iii), there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$. Then x^{*} is a common fixed point of T, S.

Theorem 4.8. Let $(X, \preceq, \perp, \lambda)$ be a partially ordered orthogonal symmetric Branciari complete metric space (not necessarily complete metric space). Suppose that $T, S: X \rightarrow 2^{X}$ are $\alpha_{*}-\psi$ - β_{i}-orthogonal common contractive setvalued mappings for all $x, y \in X$ with $x \prec_{2} y$ or $x \perp y$ satisfies the following conditions:
(i) T and S be a weakly increasing pair on X w.r.t \prec_{2};
(ii) there exists $x_{0} \in X$ such that $T x_{0} \prec_{2}\left\{x_{0}\right\}$ and $\left.S T x_{0}\right\} \prec_{2}\left\{x_{0}\right\}$ or $T x_{0} \perp\left\{x_{0}\right\}$ and $S T x_{0} \perp\left\{x_{0}\right\}$;
(iii) X has the property α-regular orthogonal symmetric Branciari complete metric space,
(iv) T, S are \perp-preserving set-valued mappings.

Then T, S have common fixed point $x^{*} \in X$. Further, for each $x_{0} \in X$, the iterated orthogonal sequence $\left\{x_{n}\right\}$ with $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ converges to the common fixed point of T, S.

Proof . Define the orthogonal sequence x_{n} in X by $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}$ for all $n \in \mathbb{N}_{0}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}_{0}$, then $x^{*}=x_{n}$ is a common fixed point for T, S. Using that the pair of set-valued mappings T and S is weakly increasing and by define

$$
\alpha(x, x, y)= \begin{cases}1, & x \succeq y \vee x \perp y \\ 0, & \text { otherwise } .\end{cases}
$$

It can be easily shown that the sequence x_{n} is non increasing w.r.t, \preceq i.e; and

$$
\alpha_{*}\left(x_{0}, x_{0},\left\{T x_{0}\right\}\right) \geq 1 \Rightarrow \exists x_{1} \in T x_{0}, \text { such that } \alpha\left(x_{0}, x_{0}, x_{1}\right) \geq 1 \Rightarrow x_{0} \succeq x_{1}
$$

Now since T and S are weakly increasing with respect to \prec_{2}, we have $S x_{1} \prec_{2} T x_{0}$. Thus there exist some $x_{2} \in S x_{1}$ such that $x_{1} \succeq x_{2}$. Again since T and S are weakly increasing with respect to \prec_{2}, we have $T x_{2} \preceq_{2} S x_{1}$. Thus there exist some $x_{3} \in T x_{2}$ such that $x_{2} \succeq x_{3}$. Continue this process, we will get a non increasing sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ which satisfies $x_{2 n+1} \in T x_{2 n}$ and $x_{2 n+2} \in S x_{2 n+1}, n=0,1,2,3, \cdots$ We get

$$
x_{0} \succeq x_{1} \succeq x_{2} \succeq \cdots \succeq x_{2 n} \succeq x_{2 n+1} \succeq x_{2 n+2} \succeq \cdots
$$

or

$$
x_{0} \perp x_{1} \perp x_{2} \perp \cdots \perp x_{2 n} \perp x_{2 n+1} \perp x_{2 n+2} \perp \cdots
$$

In particular x_{n+k}, x_{n} are comparable for all $k \in \mathbb{N}, \alpha\left(x_{n+k}, x_{n+k}, x_{n}\right) \geq 1$ for all $n \in \mathbb{N}_{0}$ and by (4) we have $\lim _{n \rightarrow \infty} \lambda\left(x_{n+k}, x_{n+k}, x_{n}\right)=0$. Following the proof of Theorem 3.2 , thus we proved that $\left\{x_{n}\right\}$ is a orthogonal Cauchy sequence in the orthogonal complete metric space (X, \perp, d), there exists $x^{*} \in X$ such that

$$
\lim _{n \rightarrow \infty} \lambda\left(x_{n}, x_{n}, x^{*}\right)=0
$$

and condition (iii), there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$. Then x^{*} is a common fixed point of T, S.

4.2 Application

In this section, we study the existence of a unique solution to an initial value problem, as an application to the our common fixed point theorem.
Let us consider Cauchy problem for the first order differential equations system

$$
\left\{\begin{array}{cll}
x^{\prime}=f(t, x(t), y(t)), & t \in R, & x(0)=x_{0} \tag{4.1}\\
y^{\prime}=g(t, y(t), x(t)), & t \in R, & y(0)=y_{0}
\end{array}\right.
$$

Theorem 4.9. Given a point $\left(t_{0}, x_{0}, y_{0}\right) \in R \times R^{n} \times R^{n}$ and consider the differential equations system 4.1). Let P be a Picard mapping defined by

$$
\left\{\begin{align*}
(P x)(t) & =x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau), y(\tau)) d \tau \tag{4.2}\\
(P y)(t) & =y_{0}+\int_{t_{0}}^{t} f(\tau, y(\tau), x(\tau)) d \tau
\end{align*}\right.
$$

Note that $(P x)\left(t_{0}\right)=x_{0}$ and $(P y)\left(t_{0}\right)=y_{0}$ for any x, y. The mappings $x, y: I \rightarrow R^{n}$ are a solution to the differential equations system (4.1) with the initial condition $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$ if and only if $x=P x$ and $y=P y$, where the functions $f, g: I \times R \times R \rightarrow R$ are defined in the domain $D=\left\{(t, x, y) ;\left|t-t_{0}\right| \leq a,\left|x-x_{0}\right| \leq b,\left|y-y_{0}\right| \leq c\right\}$, $x_{0}, y_{0} \in R$ and satisfied the condition

$$
\begin{equation*}
\left|f\left(t, x_{1}, y_{1}\right)-g\left(t, x_{2}, y_{2}\right)\right| \leq \frac{K}{2\left|t-t_{0}\right|}\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right), \quad 0<K<1 \tag{4.3}
\end{equation*}
$$

Let $M=\max _{(t, x(t), y(t)) \in D}\{|f(t, x(t), y(t))|,|g(t, x(t), y(t))|\}$. There exists $d=\min \left\{a, \frac{b}{M}, \frac{c}{M}\right\}$ such that

$$
\begin{equation*}
D_{0}=\left\{(t, x, y) /\left|t-t_{0}\right| \leq d,\left|x-x_{0}\right| \leq M\left|t-t_{0}\right|,\left|y-y_{0}\right| \leq M\left|t-t_{0}\right|\right\} \tag{4.4}
\end{equation*}
$$

lies in D. We are trying to find a solution $\varphi(t, x, y)$ and $\varphi(t, y, x)$ for the differential equations system 4.1) with initial condition $\varphi\left(t_{0}, x, y\right)=x_{0}$ and $\varphi\left(t_{0}, y, x\right)=y_{0}$ expressed in the form $\varphi(t, x, y)=x_{0}+h(t, x, y)$ and $\varphi(t, y, x)=$
$y_{0}+h(t, y, x)$. Then the mapping φ defined on the $\left\{(t, x, y) ;\left|t-t_{0}\right| \leq d,\left|x-x_{0}\right| \leq b,\left|y-y_{0}\right| \leq c\right\}$ is the general solution of (4.1). Let

$$
X=\left\{h(t, x, y) /(t, x, y) \in D_{0}\right\} .
$$

Note that $h\left(t_{0}, x, y\right)=0$ for any $h \in X$. In space X, we define a relation \perp by

$$
\begin{equation*}
h_{1} \perp h_{2} \Longleftrightarrow\left\|h_{1}\right\|\left\|h_{2}\right\| \leq d\left(\left\|h_{1}\right\| \vee\left\|h_{2}\right\|\right), \tag{4.5}
\end{equation*}
$$

where $\left\|h_{1}\right\| \vee\left\|h_{2}\right\|=\left\|h_{1}\right\| o r\left\|h_{2}\right\|$ which is an orthogonality relation on X. Let $\lambda: X \times X \times X \rightarrow[0, \infty]$ be given by

$$
\lambda(x, y, z)=\|x-z\|+\|y-z\|
$$

then

$$
\begin{equation*}
\lambda\left(h_{1}, h_{1}, h_{2}\right)=\left\|h_{1}-h_{2}\right\|+\left\|h_{1}-h_{2}\right\|=2 \sup _{(t, x, y) \in D_{0}}\left|h_{1}(t, x, y)-h_{2}(t, x, y)\right| . \tag{4.6}
\end{equation*}
$$

Hence the orthogonal symmetric Branciari metric space (X, \perp, λ) is complete. A mappings $A, B:(X, \perp, \lambda) \rightarrow$ (X, \perp, λ) can be defined by

$$
\left\{\begin{array}{l}
(A h)(t, x, y)=\int_{t_{0}}^{t} f\left(\tau, x_{0}+h(\tau, x, y), y_{0}+h(\tau, y, x)\right) d \tau \tag{4.7}\\
(B h)(t, y, x)=\int_{t_{0}}^{t} g\left(\tau, y_{0}+h(\tau, y, x), x_{0}+h(\tau, x, y)\right) d \tau
\end{array}\right.
$$

We now discuss some properties of mappings A and B.
i) A and B are \perp-preserving mappings;
ii) $\lambda\left(A h_{1}, A h_{1}, B h_{2}\right) \leq \delta \lambda\left(h_{1}, h_{1}, h_{2}\right)$ for any h_{1} and h_{2} in X such that $h_{1} \perp h_{2}$ and $0 \leq \delta<1$;
iii) A or B is \perp-continuous mapping;

Proof . i) We recall that A and B are \perp-preserving mappings if for $h_{1}, h_{2} \in X, h_{1} \perp h_{2}$, we have $A h_{1} \perp B h_{2}$.

$$
\begin{align*}
\left|\left(A h_{1}\right)(t, x, y)\right| & =\left|\int_{t_{0}}^{t} f\left(\tau, x_{0}+h_{1}(\tau, x, y), y_{0}+h_{1}(\tau, y, x)\right) d \tau\right| \\
& \leq \int_{t_{0}}^{t}\left|f\left(\tau, x_{0}+h_{1}(\tau, x, y), y_{0}+h_{1}(\tau, y, x)\right)\right| d \tau \\
& \leq \int_{t_{0}}^{t} M d \tau=M\left|t-t_{0}\right| \\
& \leq M \frac{d}{M}=d \tag{4.8}
\end{align*}
$$

So,

$$
\begin{equation*}
\left\|A h_{1}\right\|\left\|B h_{2}\right\| \leq d\left\|B h_{2}\right\| . \tag{4.9}
\end{equation*}
$$

This means that $\left\|A h_{1}\right\| \perp\left\|B h_{2}\right\|$.
ii) Let h_{1}, h_{2} in X and $h_{1} \perp h_{2}$ we have

$$
\begin{align*}
& \left|\left(A h_{1}\right)(t, x, y)-\left(B h_{2}\right)(t, y, x)\right| \\
= & \left|\int_{t_{0}}^{t} f\left(\tau, x_{0}+h_{1}(\tau, x, y), y_{0}+h_{1}(\tau, y, x)\right) d \tau-\int_{t_{0}}^{t} g\left(\tau, x_{0}+h_{2}(\tau, x, y), y_{0}+h_{2}(\tau, y, x)\right) d \tau\right| \\
= & \mid \int_{t_{0}}^{t}\left(f\left(\tau, x_{0}+h_{1}(\tau, x, y), y_{0}+h_{1}(\tau, y, x)\right)-g\left(\tau, x_{0}+h_{2}(\tau, x, y), y_{0}+h_{2}(\tau, y, x)\right) d \tau \mid\right. \\
\leq & \int_{t_{0}}^{t}\left|f\left(\tau, x_{0}+h_{1}(\tau, x, y), y_{0}+h_{1}(\tau, y, x)\right)-g\left(\tau, x_{0}+h_{2}(\tau, x, y), y_{0}+h_{2}(\tau, y, x)\right)\right| d \tau \\
\leq & \int_{t_{0}}^{t}\left(\frac{K}{2\left|t-t_{0}\right|}\left|x_{0}+h_{1}(\tau, x, y)-x_{0}-h_{2}(\tau, x, y)\right|+\frac{K}{2\left|t-t_{0}\right|}\left|y_{0}+h_{1}(\tau, y, x)-y_{0}-h_{2}(\tau, y, x)\right|\right) d \tau \\
= & \int_{t_{0}}^{t} \frac{K}{2\left|t-t_{0}\right|}\left(2\left|h_{1}(\tau, x, y)-h_{2}(\tau, x, y)\right|\right) d \tau=K| | h_{1}-h_{2}| | . \tag{4.10}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left\|A h_{1}-B h_{2}\right\| \leq K\left\|h_{1}-h_{2}\right\| \tag{4.11}
\end{equation*}
$$

iii) Suppose $\left\{h_{n}\right\}$ is an orthogonal sequence in X such that $\left\{h_{n}\right\}$ converging to $h \in X$. Because A or B is \perp-preserving, $\left\{A h_{n}\right\}$ or $\left\{B h_{n}\right\}$ is an orthogonal sequence in X. For any $n \in \mathbf{N}$, by $i i$ we have

$$
\begin{equation*}
\left\|A h_{n}(t, x, y)-A h(t, x, y)\right\| \leq K\left\|h_{n}-h\right\| . \tag{4.12}
\end{equation*}
$$

As n goes to infinity, it follows that A is \perp-continuous mapping. The mapping A or B defined above is \perp preserving and \perp-continuous on generalized orthogonal metric space (X, λ, \perp). Mapping A and B satisfies of Theorem (3.2). Thus, existence and uniqueness of its fixed point $h_{0} \in X$ has been guaranteed by Theorem (3.2). We are looking for solutions expressed in the form $\varphi(t, x, y)=x_{0}+h(t, x, y)$ and $\varphi(t, y, x)=y_{0}+h(t, y, x)$. If h is a common fixed point of A and B then $\psi(t, x, y)=x_{0}+A h(t, x, y)$ and $\varphi(t, y, x)=y_{0}+B h(t, y, x)$ is a common fixed point of our Picard $P(\varphi)$. Hence

$$
\begin{align*}
P(\varphi(t, x, y)) & =x_{0}+(A h)(t, x, y) \\
& =x_{0}+\int_{t_{0}}^{t} f\left(\tau, x_{0}+h(\tau, x, y), y_{0}+h(\tau, y, x)\right) d \tau \\
& =x_{0}+\int_{t_{0}}^{t} f(\tau, \psi(t, x, y), \varphi(t, y, x)) d \tau \\
& =\psi(t, x, y) . \tag{4.13}
\end{align*}
$$

Similarly $P(\varphi(t, y, x))=\varphi(t, y, x)$. By Theorem (3.2), $\varphi(t, x, y)$ and $\varphi(t, y, x)$ are a solutions of the differential equations system 4.1) if and only if $P(\varphi(t, y, x))=\varphi(t, y, x)$ and $P(\varphi(t, x, y))=\varphi(t, x, y)$.

Acknowledgements

The first, second and fourth authors were supported by Tabreiz Branch, Islamic Azad university, Iran. The second author was supported by Semnan University, Iran.

References

[1] M. Abbas, T. Nazir and S. Radenovic, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett. 24 (2011), 1520-1526.
[2] H.H. Alsulami, S. Chandok, M.A. Taoudi and I.M. Erhan, Some common fixed points theorems for $\alpha_{*}-\psi$-common rational type contractive and weakly increasing multi-valued mappings on ordered metric spaces, Fixed Point Theory and Appl. 2015 (2015), 97.
[3] I. Altun and V. Rakocevic, Ordered cone metric spaces and fixed point results, Comput. Math. Appl. 60 (2010), no. 5, 1145-1151.
[4] A. Amini-Harandi, Coupled and tripled fixed point theory in partially ordered metric spaces with application to initial value problem, Math. Comput. Model. 57 (2013), 9-10, 2343-2348.
[5] A. Amini-Harandi, A.P. Farajzadeh, D. ORegan and R.P. Agarwal, Best proximity pairs for upper semi continuous set-valued maps in hyper convex metric spaces, Fixed Point Theory Appl. 2008 (2008), 1-5.
[6] M. Asadi, H. Soleimani and S. M. Vaezpour, An order on subsets of cone metric spaces and fixed points of set-valued contractions, Fixed Point Theory Appl. 2009 (2009), Article ID 723203, 8 pages.
[7] M. Asadi, E. Karapinar and A. Kumar, $\alpha-\psi$-Geraghty contractions on generalized metric spaces, J. Inequal. Appl. 2014 (2014).
[8] M. Asadi, E. Karapinar and P. Salimi, A new approach to G-metric and related fixed point theorems, J. Inequal. Appl. 2013 (2013).
[9] A. Branclari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debe. 57 (2000), 31-37.
[10] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), no. 3, 465-477.
[11] B.C. Dhage, Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc. 36 (1999), no. 3, 565-578.
[12] B.C. Dhage, D. ORegan and R.P. Agarwal, Common fixed theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Apple. Math Stoch. Anal. 16 (2003), no. 3, 243-248.
[13] A. Farajzadeh, A. Kaewcharoen and P. Lahawech, On fixed point theorems for (ξ, α, η)-expansive mappings in complete metric spaces, Int. J. Pure Appl. Math. 102 (2015), no. 1, 129-146.
[14] Y. Feng and S. Liu, Fixed point theorems for multi-valued increasing operators in partially ordered spaces, Soochow J. Math. 30 (2004), no. 4, 461-469.
[15] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. Theory Meth. Appl. 11 (1987), 623-632.
[16] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and O. Yeol Je Ch, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 2017, 569-578.
[17] M. Eshaghi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear and Topological Algebra 6 (2017), 251-260.
[18] N.B. Gungor and D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conf. Proc. 2183 (2019), 040011.
[19] J. Hassanzadeh Asl, Common fixed point theorems for $\alpha-\psi$-contractive type mappings, Int. J. Anal. 2013 (2013), Article ID 654659, 7 pages.
[20] J. Hassanzadeh Asl, Sh. Rezapour and N. Shahzad, On fixed points of $\alpha-\psi$-contractive multifunctions, Fixed Point Theory Appl. 2012 (2012), 212.
[21] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Math. 5 (2020), no. 4, 3125-3137.
[22] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, R-topological spaces and SR-topological spaces with their applications, Math. Sci. 14 (2020), no. 3, 249-255.
[23] W.A. Kirk and N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl. 2013 (2013), Article ID 129.
[24] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), no. 1, 1-9.
[25] F. Lotfy and J. Hassanzadeh Asl, Some fixed point theorems for $\alpha_{*}-\psi$-common rational type mappings on generalized metric spaces with application to fractional integral equations, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 245-260.
[26] M. Ramezani, H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl. 8 (2017), no. 2, 23-28.
[27] Y. Rohen, T. Dosenović and S. Radenović, A fixed point theorems in S_{b}-metric spaces, Filomat 31 (2017), 3335-3346.
[28] K. Royy and M. Sahaz, Branciari S_{b}-metric space and related fixed point theorems with an application, Appl. Math. E-Notes 22 (2022), 8-17.
[29] S. Sedghi and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (2014), 113-124.
[30] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[31] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), 258-266.
[32] N. Souayah and N. Mlaiki, A fixed point theorem in S_{b}-metric spaces, J. Math. Computer Sci. 16 (2016), 131—139.
[33] W.A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), no. 2, 361-373.
[34] P. Zangenehmehr, A.P. Farajzadeh and S.M. Vaezpour, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity 19 (2015), no. 2, 333-340.

[^0]: * Corresponding author

 Email addresses: m.r.shaeri64@gmail.com (Mohammad Rashea Shaeri), jalal.hasanzadeh172@gmail.com \& j_hasanzadeh@iaut.ac.ir (Jalal Hassanzadeh Asl), madjid.eshaghi@gmail.com \& meshaghi@semnan.ac.ir (Madjid Eshaghi Gordji), h.refaghat@iaut.ac.ir. (Hassan Refaghat)

