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Abstract

In the present paper, we introduce two new subclasses of the function class
∑

of bi-univalent functions defined in the
open unit disc U . Furthermore, we find estimates on the coefficients |a2| and |a3| for functions in these new subclasses.
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1 Introduction

Let G(U) be a class of all analytic functions f in the open unit disk U = {z : |z| < 1} normalized by the conditions
f(0) = 0 and f ′(0) = 1, of the form:

f(z) = z +

∞∑
j=2

ajz
j , (z ∈ U) (1.1)

Let GU be the class of all functions in G(U), which are univalent in U . A function f ∈ G(U) is said to be starlike
if f(U) is a starlike domain with respect to the origin i.e.,the line segment joining any point of f(U) to the origin
lies entirely in f(U) and a function f ∈ G(U) is said to be convex if f(U) is convex domain i.e., the line segment
joining any two points in f(U) lies entirely in f(U). Analytically f ∈ G(U) is starlike, denoted by S∗ if and only if

Re
{

zf ′(z)
f(z)

}
> 0, whereas f ∈ G(U), is convex,denoted by C if and only if Re

{
1 + zf ′′(z)

f ′(z)

}
> 0. The classes S∗(τ)

and C(τ) of starlike and convex functions of order τ(0 ≤ τ ≤ 1) are respectively characterized by

Re

{
zf ′(z)

f(z)

}
> τ, z ∈ U, (1.2)

and
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Re

{
1 +

zf ′′(z)

f ′(z)

}
> τ, z ∈ U. (1.3)

Determination of the bounds for coefficients an is an important problem of geometric function theory as it give
information about the geometric properties of these functions. For example, the bound for the second coefficient a2 of
functions in GU gives the growth and distortion bounds as well as covering theorems. It is well known that the n-th
coefficient an is bounded by n for each f ∈ G(U).

In this paper, we estimate the initial coefficients |a2| and |a3| coefficients problem for certain subclasses of bi-
univalent functions.

The Koebe One-Quarter Theorem [17] proves that the image of U under every univalent function f ∈ GU , contains
the disk of radius 1

4 . Therefore every function f ∈ GU has an inverse f−1 defined by:

f−1(f(z)) = z, (z ∈ U)

and

f(f−1(ω)) = ω, (|ω| < r0(f), r0(f) ≥
1

4
),

where

g(ω) = f−1(ω) = ω +

∞∑
j=2

bjω
j = ω − a2ω

2 + (2a22 − a3)ω
3 − (5a32 − 5a2a3 + a4)ω

4 + ... (1.4)

A function f ∈ G(U) is said to be bi-univalent in the open unit disk U if both the functions f and f−1 are univalent
there. Let

∑
denote the class of all bi-univalent functions defined in the unit disk U . Examples of functions in the

class
∑

are:

z

1− z
, log

z

1− z
, log

√
1 + z

1− z
.

However, the familiar Koebe function is not a member of
∑

. Other common examples of functions in U such as:

2z − z2

2
and

z

1− z2
,

are not members of
∑

either. Finding bounds for the coefficients of classes of bi-univalent functions dates back to
1967 (see Lewin [21]). Brannan and Taha [14] (see also [30]) introduced certain subclasses of the bi-univalent functions
class

∑
similar to the familiar subclasses S∗(τ) and C(τ) (see [14]). Thus, following Brannan and Taha [14] (see also

[30]) a function f ∈ G(U) is in the class S∗∑(τ) of strongly bi-starlike functions of order τ(0 < τ ≤ 1), if each of the
following conditions are satisfied:

f ∈
∑

and

∣∣∣∣arg(zf ′(z)

f(z)

)∣∣∣∣ < τπ

2
, (0 < τ ≤ 1, z ∈ U)

and ∣∣∣∣arg(ωg′(z)

g(z)

)∣∣∣∣ < τπ

2
, (0 < τ ≤ 1, ω ∈ U),

where g is the extension of f−1 to U . The classes S∗∑(τ) and C∑(τ) of bi-starlike functions of order τ , and bi-convex

functions of order τ , corresponding (respectively) to the function classes defined by equations (1.2) and (1.3) were also
introduced analogously. For each of the function classes S∗∑(τ) and C∑(τ), it found non-sharp estimates on the first

two Taylor-Maclaurin coefficients |a2| and |a3| (see [14, 30]).

Motivated by the earlier works of Atshan et al. [6, 7, 8, 9, 10, 11, 12], Srivastava et al. [29] and Frasin and Aouf
[18] (see also [2, 3, 15, 16, 20, 22, 24, 25, 26, 32] and [1, 4, 5, 19, 23, 28, 31, 33]). In this paper, we introduce two
new subclasses J∝∑(λ,m, n, τ) and J∝∑(λ,m, n, δ) of the function class

∑
, that generalize the previous defined classes.

This subclasses are defined with the aid of new integral operator T ∝
m,n of analytic functions involving binomial series

in the open unit disk U . In addition, upper bounds for the second and third coefficients for functions in this new
subclasses are derive.

We introduce the following integral operator in the class J∝∑ of analytic functions defined as follow:
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Lemma 1.1. Let f ∈ GU ,m, n > 0 and ∝∈ N. The integral operator denoted T ∝
m,n defined as:

T ∝
m,n : GU −→ GU

T ∝
m,nf(z) =

1

β(m+ 1, n+ 1)

∫ ∞

0

tm−1

(1− t)m+n
f(tz)dt

= z +

∞∑
j=2

(
β(m+ j, n+ j)

β(m+ 1, n+ 1)

)∝

ajz
j ,

where β(m,n) =
∫ 1

0
tm+1

(1−t)1−n dt.

Proof .

Tm,nf(z) =
1

β(m+ 1, n+ 1)

∫ ∞

0

tm−1

(1− t)m+n
f(tz)dt

=
1

β(m+ 1, n+ 1)

∫ ∞

0

tm−1

(1 + t)m+n

tz +

∞∑
j=2

tjajz
j

 dt

=
1

β(m+ 1, n+ 1)

z ∫ ∞

0

tm

(1 + t)m+n
dt+

 ∞∑
j=2

ajz
j

∫ ∞

0

tm+j−1

(1 + t)m+n
dt

 .

Let x = t
(1+t) . Then t = x

1−x and dt = dx
(1−x)2 . If t = 0, we obtain x = 0, while if t = ∞, we obtain x = 1.

=
1

β(m+ 1, n+ 1)

z ∫ 1

0

(
x

1−x

)m

(
1 + x

1−x

)m+n

dx

(1− x)2
+

 ∞∑
j=2

ajz
j

∫ 1

0

(
x

1−x

)m+j−1

(
1 + x

1−x

)m+n

dx

(1− x)2


=

1

β(m+ 1, n+ 1)

z ∫ 1

0

xm

(1− x)2−n
dx+

 ∞∑
j=2

ajz
j

∫ 1

0

xm+j−1

(1− x)1+j−n
dx


=

1

β(m+ 1, n+ 1)

zβ(m+ 1, n+ 1) +

 ∞∑
j=2

ajz
j

β(m+ j, n+ j)


= z +

∞∑
j=2

β(m+ j, n+ j)

β(m+ 1, n+ 1)
ajz

j .

In general,

T ∝
m,nf(z) = z +

∞∑
j=2

(
β(m+ j, n+ j)

β(m+ 1, n+ 1)

)∝

ajz
j = z +

∞∑
j=2

(
Kj

m,n

)∝
ajz

j .

A function f ∈ GU is called bi-univalent in the open unit disk U if both f and f−1 are univalent in U . □

In order to derive our main results, we have to recall here the following Lemma [13, 27].

Lemma 1.2. If p ∈ P , then |pi| ≤ 2 for each i, where P is the family of all analytic functions p, for which Re{p(z) > 0}
where: p(z) = 1 + p1z + p2z

2 + ... .

2 Coefficient Bounds for the Function Class J∝∑(λ,m, n, τ )

Definition 2.1. A function f given by 2.1 is said to be in the class J∝∑(λ,m, n, τ), if the following are holds such
that 0 ≤ τ ≤ 1, m, n > 0 and ∝∈ N:
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f ∈
∑

and

∣∣∣∣arg((1− λ)
T ∝
m,nf(z)

z
+ λ(T ∝

m,nf(z))
′
)∣∣∣∣ < τπ

2
, (2.1)

and

g ∈
∑

and

∣∣∣∣arg((1− λ)
T ∝
m,ng(ω)

ω
+ λ(T ∝

m,ng(ω))
′
)∣∣∣∣ < τπ

2
, (2.2)

where λ ≥ 1, z, ω ∈ U , and g = f−1.

Theorem 2.2. Let a function (z) given by 2.1, be in the class J∝∑(λ,m, n, τ) 0 ≤ τ ≤ 1, λ ≥ 1 and m,n > 0. Then:

|a2| ≤
2τ√

2τ(1 + 2λ)(K3
m,n)

2∝ + (1− τ)(1 + λ)2(K2
m,n)

2∝

and

|a3| ≤
4τ2

(1 + λ)2(K2
m,n)

2∝ +
2τ

(1 + λ)(K3
m,n)

∝ .

Proof . It follows from (2.1) and (2.2):

(1− λ)
T ∝
m,nf(z)

z
+ λ(T ∝

m,nf(z))
′ = [u(z)]τ (2.3)

(1− λ)
T ∝
m,ng(ω)

ω
+ λ(T ∝

m,ng(ω))
′ = [v(ω)]τ , (2.4)

where u(z) and v(ω) in P and have the form:

u(z) = 1 + u1z + u2z
2 + ... (2.5)

v(ω) = 1 + v1ω + v2ω
2 + ... (2.6)

Now, equating the coefficients in (2.3) and (2.4), we get:

(1 + λ)(K2
m,n)

∝a2 = τu1 (2.7)

(1 + 2λ)(K3
m,n)

∝a3 = τu2 +
τ(τ − 1)

2
u2
1 (2.8)

−(1 + λ)(K2
m,n)

∝a2 = τv1 (2.9)

(1 + 2λ)(K3
m,n)

∝(2a22 − a3) = τv2 +
τ(τ − 1)

2
v21 (2.10)

From (2.7) and (2.9) we get:
u1 = −v1, (2.11)

and

2(1 + λ)2(K2
m,n)

2∝a22 = τ2(u2
1 + v21), (2.12)

now by adding (2.8), (2.10):

2(1 + 2λ)(K3
m,n)

∝(a22) = τ(u2 + v2) +
τ(τ − 1)

2
(u2

1 + v21).

By using (2.12):

2(1 + 2λ)(K3
m,n)

∝(a22) = τ(u2 + v2) +
τ(τ − 1)

2

2(1 + 2λ)2(K2
m,n)

2∝a22
τ2

.
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Therefore, we have:

a22 =
τ2(u2 + v2)

2τ(1 + 2λ)(K3
m,n)

∝ + (1− τ)(1 + λ)2(K2
m,n)

2∝ .

Applying Lemma 1.2 for the coefficients u2 and v2, we have:

|a2| ≤
2τ√

2τ(1 + 2λ)(K3
m,n)

∝ + (1− τ)(1 + λ)2(K2
m,n)

2∝

Next, in order to find the bound on |a3| by subtracting (2.10) from (2.8), we get:

2(1 + 2λ)(K3
m,n)

∝a3 − 2(1 + 2λ)(K3
m,n)

∝(a22) = τ(u2 + v2) +
τ(τ − 1)

2
(u2

1 − v21).

Or equivalent:

a3 =
τ2(u2

1 − v21)

2(1 + λ)2(K2
m,n)

2∝ +
τ(u2 − v2)

2(1 + λ)(K3
m,n)

∝

Applying Lemma 1.2 for the coefficients u1, u2, v1 and v2, we have:

|a3| ≤
4τ2

(1 + λ)2(K2
m,n)

2∝ +
2τ

(1 + 2λ)(K3
m,n)

∝ .

This completes the proof. □

Corollary 2.3. Let a function f(z) given by 2.1, be in the class J∝∑(1,m, n, τ) 0 ≤ τ ≤ 1 and m,n > 0. Then:

|a2| ≤
√
2τ√

3τ(K3
m,n)

∝ + 2(1− τ)(K2
m,n)

2∝

and

|a3| ≤
τ2

(K2
m,n)

2∝ +
2τ

3(K3
m,n)

∝ .

Definition 2.4. A function f given by 2.1 is said to be in the class J∝∑(λ,m, n, δ), if the following are holds such
that λ ≥ 1, 0 ≤ δ ≤ 1,m, n > 0 and ∝∈ N:

f ∈
∑

and Re

(
(1− λ)

T ∝
m,nf(z)

z
+ λ(T ∝

m,nf(z))
′
)

> δ, (2.13)

and

g ∈
∑

and Re

(
(1− λ)

T ∝
m,ng(ω)

ω
+ λ(T ∝

m,ng(ω))
′
)

> δ, (2.14)

where z, ω ∈ U , and g = f−1.

Theorem 2.5. Let a function f(z) given by 2.1, be in the class J∝∑(λ,m, n, δ) 0 ≤ δ ≤ 1, λ ≥ 1 and m,n > 0. Then:

|a2| ≤

√
2(1− δ)

(1 + 2λ)(K3
m,n)

∝

and

|a3| ≤
4(1− δ)2

(1 + λ)2(K2
m,n)

2∝ +
2(1− δ)

(1 + 2λ)(K3
m,n)

∝
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Proof . It follows from (2.13) and (2.14):

(1− λ)
T ∝
m,nf(z)

z
+ λ(T ∝

m,nf(z))
′ = δ + (1− δ)u(z), (2.15)

(1− λ)
T ∝
m,ng(ω)

ω
+ λ(T ∝

m,ng(ω))
′ = δ + (1− δ)v(ω), (2.16)

where u(z) and v(ω) have the form (2.5) and (2.6), respectively. Now, equating the coefficients in (2.3) and (2.4),
equating coefficients in (2.15) and (2.16), we get:

(1 + λ)(K2
m,n)

∝a2 = (1− δ)u1 (2.17)

(1 + 2λ)(K3
m,n)

∝a3 = (1− δ)u2 (2.18)

−(1 + λ)(K2
m,n)

∝a2 = (1− δ)v1 (2.19)

(1 + 2λ)(K3
m,n)

∝(2a22 − a3) = (1− δ)v2. (2.20)

From (2.17) and (2.19) we get:
u1 = −v1, (2.21)

and
2(1 + λ)2(K2

m,n)
2∝a22 = (1− δ)2(u2

1 + v21). (2.22)

Now by adding (2.18), (2.20):
2(1 + 2λ)(K3

m,n)
∝(a22) = (1− δ)(u2 + v2).

Therefore, we have:

a22 =
(1− δ)(u2 + v2)

2(1 + 2λ)(K3
m,n)

∝

Applying Lemma 1.2 for the coefficients u2 and v2, we have:

|a2| ≤

√
2(1− δ)

(1 + 2λ)(K3
m,n)

∝

Next, in order to find the bound on |a3| by subtracting (2.20) from (2.18), we get:

2(1 + 2λ)(K3
m,n)

∝a3 − 2(1 + 2λ)(K3
m,n)

∝(a22) = (1− δ)2(u2 − v2).

Or equivalent:

a3 =
(1− δ)2(u2

1 − v21)

2(1 + λ)2(K2
m,n)

2∝ +
(1− δ)2(u2 − v2)

2(1 + 2λ)(K3
m,n)

∝ .

Applying Lemma 1.2 for the coefficients u1, u2, v1 and v2, we have:

|a3| ≤
4(1− δ)2

(1 + λ)2(K2
m,n)

2∝ +
2(1− δ)

(1 + 2λ)(K3
m,n)

∝

This completes the proof. □

Corollary 2.6. Let a function f(z) given by 2.1, be in the class J∝∑(1,m, n, δ) 0 ≤ δ ≤ 1 and m,n > 0. Then:

|a2| ≤

√
2(1− δ)

3(K3
m,n)

∝

and

|a3| ≤
(1− δ)2

(K2
m,n)

2∝ +
2(1− δ)

3(K3
m,n)

∝ .
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