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Abstract

In this paper, we study Lipschitz global error bounds for lower semi-continuous convex-along-rays (l.s.c. CAR)
functions. We find a condition that ensures the existence of a global error bound for a CAR function. Moreover, we
find a condition under which an l.s.c. CAR function does not have a Lipschitz global error bound. Finally, we survey
Lipschitz’s global error bounds of an l.s.c. (in particular, an l.s.c. CAR) function from the perspective of abstract
convexity.
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1 Introduction

An error bound is an inequality that restricts the distance from a vector x in a set X to a set S by a residual
function. If X is the whole space, the error bound is called a global error bound, and if X is a neighborhood of the
vector x, the error bound is said to be a local error bound. The study of error bounds has received growing attention
from the community of mathematical programming. Error bounds for convex functions have been studied by many
researchers. We refer the reader to [6, 7, 10, 11, 12, 16, 18, 19, 21, 22, 27]. For l.s.c. functions, error bounds have been
studied in [2, 22, 26]. When the residual function has a linear form, the error bound is called a Lipschitz error bound.
Throughout this paper, by an error bound we mean a Lipschitz error bound. When the residual function has a power
form, the error bound is called a Hölderian error bound (or, an error bound with exponent). See [4, 8, 15, 17, 24]. To
the best of our knowledge, error bounds for CAR functions have not been studied so far. Therefore, we investigate
Lipschitz error bounds of l.s.c. CAR functions on Rn. The rest of this paper is organized as follows. In Section 2, the
required preliminaries are presented. In Section 3, the properties of CAR functions are used to find a condition that
ensures the existence of a Lipschitz global error bound. Also, a condition is found under which a lower semi-continuous
CAR function does not have a global error bound. Finally, some examples are given in this section. In Section 4, error
bounds are investigated from the perspective of abstract convexity.

∗Corresponding author
Email addresses: a423borna@gmail.com (Amir Mahdi Bornayoun), hmohebi@uk.ac.ir (Hossein Mohebi)

Received: June 2022 Accepted: February 2023

http://dx.doi.org/10.22075/ijnaa.2023.27375.3577


2 Bornayoun, Mohebi

2 Preliminaries

This section defines the basic notions that will be used in the rest of this paper.

Definition 2.1. A function f : Q ⊆ Rn −→ R+∞ is called convex-along-rays if the functions fx : R+ −→ R+∞
defined by fx(t) = f(tx) are convex for all x ∈ Q, where Q is a cone and R+∞ = (−∞,+∞].

Definition 2.2. A function f : Rn −→ R+∞ has a Lipschitz global error bound with constant µ > 0 if

dS(x) ≤ µf+(x) (2.1)

for every x ∈ Rn, where f+(x) = max{0, f(x)}, S = {x ∈ Q : f(x) ≤ 0} and dS(x) = inf ∥x− s∥
s∈S

. By (2.1), it suffices

to have dS(x) ≤ µf+(x) for all x ∈ Rn \ S, and in our argument, for all x ∈ Q \ S.

Definition 2.3. A function f : Rn −→ R+∞ has a Lipschitz local error bound with constant µ > 0 if there exists
ε > 0 such that dS(x) ≤ µf+(x) for all x ∈ f−1(0, ε), where f−1(0, ε) = {x ∈ Rn : 0 < f(x) < ε}.

Definition 2.4. A set U ⊆ Rn is called downward if

x ∈ U, x̄ ∈ Rn and x̄ ≤ x imply x̄ ∈ U,

where x̄ ≤ x, that is, x̄i ≤ xi for all i = 1, . . . , n. We let Rn
+ = {x ∈ Rn : xi ≥ 0 ∀ i = 1, . . . , n} and

Rn
++ = {x ∈ Rn : xi > 0 ∀ i = 1, . . . , n}. Also, we say that the set A ⊂ Rn is proper if A ̸= ∅ and A ̸= Rn.

Definition 2.5. A collection G of subsets Vi of Rn, where i is in an index set I, is called linearly regular if there

exists σ > 0 such that d ∩
i∈I

Vi
(x) ≤ σsup

i∈I
dVi

(x) for all x ∈ Rn. See[25]. The function δC(x) =

{
0 x ∈ C
+∞, o.w.

is

called the indicator function of the set C at the point x.

Definition 2.6. The Dini lower directional derivative of the function g at the point x in the direction v is defined by

d+g(x, v) = lim inf
t−→0+

g(x+ tv)− g(x)

t
.

Definition 2.7. Let C be a subset of X, let x ∈ X and p ∈ C. Then p is best approximation to x from C (or a
projection of x onto C) if ∥x − p∥ = dC(x). If every point in X has at least one projection onto C, then C is called
proximal. See [3].

Definition 2.8. Let X be a metric space with metric d. The diameter of a subset C of X is diamC = Sup d(x, y)
x,y∈C

.

See [3].

3 Error bounds for l.s.c. CAR functions

In this section, we find a condition that ensures the existence of an error bound for an l.s.c. CAR function. Also,
we find some conditions under which an l.s.c. CAR function does not have a global error bound. For an l.s.c. CAR
function f , consider S = {x ∈ Q : f(x) ≤ 0} and define Sx = {t ∈ R+ : fx(t) ≤ 0}. The following lemma reveals the
relationship between S and Sx.

Lemma 3.1. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function. Then, S ̸= ∅ if and only if Sx ̸= ∅ for some
x ∈ Q.

Proof . If S ̸= ∅, then there exists x̄ ∈ Q such that f(x̄) ≤ 0. Then fx̄(1) ≤ 0, that is, 1 ∈ Sx̄. This shows that
Sx̄ ̸= ∅. Conversely, let Sx̄ ̸= ∅ for some x̄ ∈ Q. Then, there exists t̄ ∈ R+ such that fx̄(t̄) ≤ 0, that is, f(t̄x̄) ≤ 0.
Since Q is a cone, t̄x̄ ∈ Q. Therefore, t̄x̄ ∈ S. □

Throughout this paper, we assume that S is non-empty. It is well-known that on a normed space, a proper convex
function f has a local error bound if and only if it has a global error bound. See [26, Proposition 2]. But, this is not
true for a CAR function. The following example reveals this fact.
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Example 3.1. Consider Q = R and the CAR function

f(x) =

{
x+ 1, x ≤ 0,
1, x > 0.

If ε =
1

2
, then dS(x) ≤ µf+(x) for all x ∈ f−1(0, ε) and µ = 1. But, by taking (xk)k≥1 = (k)k≥1 we obtain

dS(xk) −→ +∞ as k −→ +∞, while f+(xk) = 1 for all k ≥ 1. Then f has a local error bound, but it does not have a
global error bound. Define Ax = x.Sx for each x ∈ Q. Then, Ax ⊆ S and Ax is on the ray Rx = {tx : t ≥ 0}.

Lemma 3.2. (i) Given 0 ̸= x′ and 0 ̸= x′′ on the ray Rx̄ = {tx̄ : t ≥ 0}. Then Ax′ = Ax′′ .

(ii) If 0 ̸= x′ and 0 ̸= x′′ satisfy Ax′ = Ax′′ ̸= {0}, then x′ and x′′ are on the same ray, that is, Rx′′ = Rx′ .

Proof . (i) Let 0 ̸= x′ and 0 ̸= x′′ be on the ray Rx̄. Then, x
′′ = t̂x̄ and x′ = t̄x̄ for some t̂ > 0 and t̄ > 0, respectively.

If y′ ∈ Ax′ , then there exists t′ ∈ Sx′ such that y′ = t′x′. Then y′ = t′t̄x̄. Since t′ ∈ Sx′ , thus, fx′(t′) ≤ 0 which

implies f(t′t̄x̄) = f(t′x′) = fx′(t′) ≤ 0. Since x′′ = t̂x̄, it follows that x̄ =
1

t̂
x′′. This implies y′ =

t′t̄

t̂
x′′. Since

ft′t̄

t̂

(x′′) = f(
t′t̄

t̂
x′′) = f(t′t̄x̄) ≤ 0, we obtain

t′t̄

t̂
∈ Sx′′ , which implies y′ =

t′t̄

t̂
x′′ ∈ Ax′′ . Then, Ax′ ⊆ Ax′′ . The

inclusion Ax′′ ⊆ Ax′ can be proved similarly.

(ii) Assume, on the contrary, that x′ and x′′ are not on the same ray. Then, no t > 0 exists such that x′ = tx′′.

Consider 0 ̸= y ∈ Ax′ = Ax′′ . Then y = t′x′ for some t′ > 0 and y = t′′x′′ for some t′′ > 0. So, x′ =
t′′

t′
x′′ = t̂x′′,

where t̂ =
t′′

t′
> 0. This contradiction shows that x′ and x′′ are on the same ray. □ The following lemma gives us a

relationship between the distance from a point on the ray Rx to the set Ax and the distance from a point on R+ to
the set Sx.

Lemma 3.3. For each x ∈ Q, let Ax and Sx be defined as above. If Sx ̸= ∅ for some x ∈ Q, then

dAx
(tx) = ∥x∥dSx

(t) ∀ t ∈ R+. (3.1)

Here, ||.|| refers to the Euclidean norm.

Proof . Let x̄ ∈ Q and Sx̄ ̸= ∅. If x̄ = 0, then Ax̄ = {0} and tx̄ = 0 for all t ≥ 0. Thus, (3.1) holds. Let x̄ ̸= 0. Since
Sx̄ ̸= ∅, Sx̄ ⊆ R+ and fx̄ is l.s.c., Sx̄ is closed and has one of the following forms.

(i) Sx̄ = [a, b] with 0 ≤ a ≤ b < ∞. Then Ax̄ = x̄[a, b]. Now, let t ∈ R+ \ Sx̄. If t > b, then dSx̄
(t) = t− b = |t− b|

and dAx̄
(tx̄) = ∥tx̄−bx̄∥ = ∥x̄∥|t−b| = ∥x̄∥dSx̄

(t). If t < a, a similar reasoning shows dAx̄
(tx̄) = ∥x̄∥|a−t| = ∥x̄∥dSx̄

(t).

(ii) Sx̄ = [a,+∞) with a ≥ 0. If a = 0, then Sx̄ = R+ and Ax̄ = Rx̄, which imply (3.1). If a > 0, then similar to
(i), for each t < a we obtain dAx̄

(tx̄) = ∥x̄∥|a− t| = ∥x̄∥dSx̄
(t). □ To find a condition under which f has a global error

bound, we need to find some conditions under which fx has a global error bound. First, similar to the notations used
in [22], for each t ∈ R+ and x̄ ∈ Q define

N1
Sx̄
(t) = {v ∈ {−1, 1} : dSx̄

(t+ αv) = α for some α > 0},

∂−
NSx̄ = {t ∈ ∂Sx̄ : N1

Sx̄
(t) = {−1}},

∂+
NSx̄ = {t ∈ ∂Sx̄ : N1

Sx̄
(t) = {+1}}

and
∂NSx̄ = {t ∈ ∂Sx̄ : N1

Sx̄
(t) ̸= ∅},

where ∂Sx̄ denotes the boundary of the set Sx̄.

Theorem 3.1. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function, x̄ ∈ Q and Sx̄ be proper. Then, for a
constant γx̄ > 0, the following statements are equivalent.

(i) The global error bound
dSx̄

(t) ≤ γx̄(fx̄)+(t) ∀ t ∈ R+ (3.2)
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holds.

(ii) For each t̄ ∈ ∂+
NSx̄, f

+
x̄ (t̄) ≥ γ−1 for all γ ≥ γx̄, and for each t̄ ∈ ∂−

NSx̄, f
−
x̄ (t̄) ≤ −γ−1 for all γ ≥ γx̄. Here,

f+
x̄ (t̄) = lim

α−→0+

fx̄(t̄+α)−fx̄(t̄)
α and f−

x̄ (t̄) = lim
α−→0+

fx̄(t̄)−fx̄(t̄−α)
α are the right and left derivatives of fx̄ at the point t̄,

respectively.

Proof . Let x̄ ∈ Q and Sx̄ be proper. Consider all the cases in which Sx̄ is proper: Sx̄ = [t1, t2] with 0 ≤ t1 < t2 < +∞,
Sx̄ = [t1,+∞) with 0 < t1, Sx̄ = {0}, and Sx̄ = {t̄} with t̄ > 0.

(i)⇒(ii): Let (i) hold for γx̄ > 0 and Sx̄ = [t1, t2] with t2 > 0. If t1 = 0, then t1 /∈ ∂NSx̄. Thus, let t1 > 0 and t̄ = t1.
Then, N1

Sx̄
(t̄) = {−1} and for each α ∈ (0, t̄], (t̄−α) ∈ R+ \Sx̄. Hence, by (3.2), fx̄(t̄−α) ≥ γ−1

x̄ dSx̄(t̄−α) = γ−1
x̄ α, for

each α ∈ (0, t̄]. Then, −fx̄(t̄− α) ≤ −γ−1
x̄ α. Since fx̄(t̄) = 0, we obtain f−

x̄ (t̄) = lim
α−→0+

fx̄(t̄)−fx̄(t̄−α)
α ≤ −γ−1

x̄ ≤ −γ−1

for all γ ≥ γx̄ > 0.

If t̄ = t2, then N1
Sx̄
(t̄) = {+1} and for each α > 0, t̄+α ∈ R+\Sx̄. Thus, by (3.2), fx̄(t̄+α) ≥ γ−1

x̄ dSx̄(t̄+α) = γ−1
x̄ α,

for each α > 0. Since fx̄(t̄) = 0, similar to the above argument we can write f+
x̄ (t̄) ≥ γ−1 for all γ ≥ γx̄ > 0.

For the other cases considered for Sx̄, similar arguments allow us to conclude (ii). Note that for the case Sx̄ = {t̄},
where t̄ > 0, one has N1

Sx̄
(t̄) = {−1,+1}.

(ii)⇒(i): Let (ii) hold and, Sx̄ = [t1, t2] with t1 > 0 and t2 < +∞. If t̄ = t2, then N1
Sx̄
(t̄) = {+1}. Since

by the hypothesis lim
α−→0+

fx̄(t̄+α)−fx̄(t̄)
α ≥ γ−1, fx̄ is convex, and the fraction fx̄(t̄+α)−fx̄(t̄)

α is increasing relative to α,

fx̄(t̄+ α)− fx̄(t̄) ≥ γ−1α for all α > 0 and all γ ≥ γx̄. Consequently, fx̄(t̄+ α) ≥ γ−1α = γ−1dSx̄
(t̄+ α) for all α > 0

and all γ ≥ γx̄. Set t̄+ α = t > t2. Then, fx̄(t) ≥ γ−1dSx̄(t) for all γ ≥ γx̄. As γ −→ γx̄ one has

dSx̄
(t) ≤ γx̄fx̄(t) = γx̄(fx̄)+(t) ∀ t > t2. (3.3)

Now, let t̄ = t1 > 0. Then N1
Sx̄
(t̄) = {−1}, which implies (t̄ − α) ∈ R+ \ Sx̄ for each α ∈ (0, t̄]. Since by

the hypothesis lim
α−→0+

fx̄(t̄)−fx̄(t̄−α)
α ≤ −γ−1 for all γ ≥ γx̄, and the fraction fx̄(t̄)−fx̄(t̄−α)

α is decreasing relative to α,

fx̄(t̄− α) ≥ γ−1α = γ−1dSx̄(t̄− α) for all α ∈ (0, t̄] and all γ ≥ γx̄. Set t̄− α = t ∈ [0, t1). As γ −→ γx̄, one has
dSx̄

(t) ≤ γx̄fx̄(t) = γx̄(fx̄)+(t), for all t ∈ [0, t1). Then, by (3.3), we obtain dSx̄
(t) ≤ γx̄fx̄(t) = γx̄(fx̄)+(t), for all

t ∈ R+ \ Sx̄. Since this inequality holds for each t ∈ Sx̄, (3.2) holds.

For the other cases considered for Sx̄, arguments similar to the one above imply (3.2). Hence, (i) holds. □

The following theorem, which can be applied to find a global error bound for each function fx, is a special case of
[22, Theorem 3.3].

Theorem 3.2. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function, and x̄ ∈ Q with Sx̄ ̸= ∅. Then, fx̄ has a
global error bound if and only if there exists a constant β > 0 such that

|ξ| ≥ β ∀ ξ ∈ ∂fx̄(t) ∀t ∈ R+ \ Sx̄, (3.4)

where ∂fx̄(t) is the classical subdifferential of the function fx̄ at the point t.

Proof . Let (3.4) hold. Consider t̄ ∈ R+ \ Sx̄ fixed and arbitrary. By (3.4), (−β, β) ∩ ∂fx̄(t̄) = ∅. Then, for some
ht̄ ∈ {1,−1} one has

sup
ξ∈∂fx̄(t̄)

ξht̄ ≤ inf
u∈(−β,+β)

uht̄ = −β. (3.5)

Since fx̄ is convex, for each t̄ ∈ int(dom(fx̄)),

f+
x̄ (t̄, ht̄) = sup

ξ∈∂fx̄(t̄)

ξht̄. (3.6)

Here, f+
x̄ (t̄, ht̄) is the right directional derivative of the function fx̄ at the point t̄ in the direction ht̄. Thus, by (3.5),

f+
x̄ (t̄, ht̄) ≤ −β. For each t̄ /∈ dom(fx̄) one has fx̄(t̄) = +∞. Then, f+

x̄ (t̄, ht̄) = −∞ for each ht̄ ∈ {−1,+1} and we can
write ∂fx̄(t̄) = ∅. Consequently, by (3.5) and (3.6) one has f+

x̄ (t̄, ht̄) = −∞ ≤ −β. Hence, for each point t̄ mentioned

above there exists ht̄ ∈ {−1,+1} such that f+
x̄ (t̄, ht̄) ≤ −β. Then, by [22, Theorem 3.1], dSx̄

(t̄) ≤ 1

β
(fx̄)+(t̄).

Now, consider the case t̄ ∈ bd(dom(fx̄)), where bd refers to boundary. Since fx̄ is proper, l.s.c. and convex, dom(fx̄)
is a non-empty, closed and convex subset of R+, and it has the form [c, d] or [c,+∞) with d < +∞ and 0 ≤ c < +∞.
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Then, bd(dom(fx̄)) has at most two points. Consider t̄ = c and t̄ = d. Since by the hypothesis t̄ ∈ R+ \ Sx̄, we

find that (fx̄)+(c) = fx̄(c) > 0 and (fx̄)+(d) = fx̄(d) > 0. Consider µ′ = max{ dSx̄
(c)

(fx̄)+(c)
,

dSx̄
(d)

(fx̄)+(d)
} < +∞ and

µx̄ = max{ 1
β
, µ′}. On the other hand, since dSx̄

(t) = 0 for all t ∈ Sx̄, we obtain dSx̄
(t) ≤ µx̄(fx̄)+(t) for all t ∈ R+,

that is, fx̄ has a global error bound.

Conversely, let fx̄ have a global error bound with constant γ > 0. Then, by [22, Theorem 3.1 (i)⇒ (v)], for each

t ∈ R+ \ Sx̄ there exists ht ∈ {−1,+1} such that f+
x̄ (t, ht) ≤

−1

γ
. Then for each ht ∈ {−1,+1},

sup{−|ξ||ht| : ξ ∈ ∂fx̄(t)} ≤ sup{ξht : ξ ∈ ∂fx̄(t)} ≤ f+
x̄ (t, ht) ≤

−1

γ
.

Thus,

inf{|ξ| : ξ ∈ ∂fx̄(t)} = − sup{−|ξ| : ξ ∈ ∂fx̄(t)} = − sup{−|ξ||ht| : ξ ∈ ∂fx̄(t)} ≥ 1

γ
.

Then, by choosing β =
1

γ
, (3.4) holds. □ In the following example, we use the above theorem to find µx for each

x ∈ Q. Also, we show that if fx has a global error bound for each x ∈ Q, then the condition that f has a global error
bound is not necessary.

Example 3.2. Consider Q = R2 and f(x) = x1 +
√
x2
1 + x2

2. Then, S = {x ∈ R2 : x1 ≤ 0, x2 = 0}. Consider the
following cases for any x ∈ Q.

(i) {x = 0}. (ii) {x ∈ R2 : x1 > 0}. (iii) {x ∈ R2 : x1 < 0, x2 = 0}. (iv) {x ∈ R2 : x1 < 0, x2 ̸= 0}. (v)
{x ∈ R2 : x1 = 0, x2 ̸= 0}.

In (i), (ii), (iii), (iv) and (v), Sx = R+, Sx = {0}, Sx = R+, Sx = {0}, and Sx = {0} for each x, respectively. Then,
Sx ̸= ∅ for each x ∈ Q. In (i) and (iii), for each x, fx has a global error bound for all constants µx > 0. For the other
cases, we use the subdifferential. For each x in the other cases, ∂fx(t) = {x1 + ∥x∥}. By Theorem 3.2, for each such
x, fx has a global error bound with constant µx = 1

x1+∥x∥ . Thus, for each x in each case, fx has a global error bound.

On the other hand, by taking xk = (−k, 2)k≥1, dS(xk) −→ 2 and f(xk) = −k +
√
k2 + 4 −→ 0 as k −→ +∞.

Thus, f does not have a global error bound, while for each x ∈ Q, fx has a global error bound.

Assume that for each x ∈ Q, fx has a global error bound. Here, we consider the collection {Bi : i ∈ I}, where I is
an index set, as a partition of Q\S, that is, Q\S = ∪

i∈I
Bi, Bi∩Bj = ∅, for all i ̸= j, where each Bi is a set of elements

of Q \ S such that for each x ∈ Bi, µx is attained in the same form. For instance, in Example 3.2, Q \ S = ∪
1≤i≤3

Bi,

where B1, B2, B3 contain all x in the cases (ii), (iv) and (v), respectively.

In the following theorem, a condition is given that ensures the existence of a global error bound for an l.s.c. CAR
function f .

Theorem 3.3. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function. Also, assume that for each x ∈ Q, fx has
a global error bound with constant µx > 0. Finally, let sup

i∈I
sup
x∈Bi

(∥x∥µx) < +∞. Then, f has a global error bound.

Here, the collection {Bi : i ∈ I} is a partition of Q \ S, mentioned above.

Proof . One has S = ∪
x∈Q

Ax. Indeed, let x′ ∈ S. Then fx′(1) = f(x′) ≤ 0 which implies 1 ∈ Sx′ and accordingly,

x′ = x′.1 ∈ Ax′ ⊆ ∪
x∈Q

Ax.

Conversely, let x′ ∈ ∪
x∈Q

Ax. Then, there exists x̄ ∈ Q such that x′ ∈ Ax̄ = x̄.Sx̄. Therefore, there exists t̄ ∈ Sx̄

such that x′ = t̄x̄. Since t̄ ∈ Sx̄, it follows that fx̄(t̄) ≤ 0. Thus f(x′) = f(t̄x̄) = fx̄(t̄) ≤ 0 and so, x′ ∈ S. Hence,
S = ∪

x∈Q
Ax.

Now, suppose that S ̸= Rn and x′ ∈ Q \S. Otherwise, the inequality of error bound holds. Consider the collection
{Bi : i ∈ I} as a partition of Q \S. Then, there exists an index i′ ∈ I such that x′ ∈ Bi′ . By the equality S = ∪

x∈Q
Ax,
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Lemma 3.3 and the hypothesis, one has

dS(x
′) ≤dAx′ (x

′) = ∥x′∥dSx′ (1)

≤∥x′∥µx′(fx′)+(1) = ∥x′∥µx′f+(x
′)

≤ sup
x∈Bi′

(∥x∥µx)f+(x
′)

≤sup
i∈I

sup
x∈Bi

(∥x∥µx)f+(x
′).

Since by the hypothesis sup
i∈I

sup
x∈Bi

(∥x∥µx) < +∞, and since dS(x
′) = 0 for all x′ ∈ S, we conclude that dS(x

′) ≤

µf+(x
′), for all x′ ∈ Q with µ = sup

i∈I
sup
x∈Bi

(∥x∥µx) < +∞. □

Note that using the non-emptiness of S and the hypothesis of the theorem, µ > 0. Also, when the set S is not
clearly given (in which case Q \S cannot be clearly determined), we may use a collection {Bi : i ∈ I} for the whole Q.

The above theorem is applicable and gives us the constant of the global error bound. In the following examples,
we obtain the constant of the global error bound using the above theorems.

Example 3.3. Consider Q = R2 and f(x) =


x2
1 + 3∥x∥2

|x2|
, x2 ̸= 0,

0 x2 = 0.
Then, S = {x ∈ R2 : x1 ∈ R, x2 = 0}. Here,

the partition of Q\S has one element B̂ = {x ∈ R2 : x1 ∈ R, x2 ̸= 0} = Q\S. For each x ∈ B̂, ∂fx(t) = {x
2
1 + 3∥x∥2

|x2|
}.

Then for each x ∈ B̂, fx has a global error bound with constant µx =
|x2|

x2
1 + 3∥x∥2

. Now, consider sup
x∈B̂

(∥x∥µx) =

sup
x2 ̸=0

(
∥x∥|x2|

x2
1 + 3∥x∥2

) =
1

3
.

Then, f has a global error bound with constant µ =
1

3
.

Example 3.4. Consider Q = R3 and f(x) =


x2
1 + x2

2 + x2
3

x3 − x2
, x3 > x2,

0, x3 = x2,
+∞. x3 < x2

Then, one has S = {x ∈ R3 : x2 = x3}. Consider B1 = {x ∈ R3 : x3 > x2} and B2 = {x ∈ R3 : x3 < x2}. For
each x ∈ B1 we can write Sx = {0}. Also, for each x ∈ B2 one has Sx = {0}. Since f(x) = +∞ for each x ∈ B2,
the inequality of error bound holds for such points. Thus, it suffices to check theorems 3.2 and 3.3 for each x ∈ B1.

For such x we can write ∂fx(t) = {x
2
1 + x2

2 + x2
3

x3 − x2
}. Then, by Theorem 3.2, fx has a global error bound with constant

µx =
x3 − x2

x2
1 + x2

2 + x2
3

, for each x ∈ B1. Now, consider sup
x∈B1

(∥x∥µx) = sup
x∈B1

∥x∥(x3 − x2)

x2
1 + x2

2 + x2
3

= sup
x∈B1

x3 − x2√
x2
1 + x2

2 + x2
3

=
√
2.

Then, f has a global error bound with constant
√
2.

Note: It is clear that x ∈ S if and only if 1 ∈ Sx. In particular, when Sx = R+, we conclude that x ∈ S.

Example 3.5. Consider Q = {x ∈ R2 : 0 ≤ x2 ≤ x1} ∪ {x ∈ R2 : x1 ≤ x2 ≤ 0} and f(x) = x2
1 − x2

2 + x1.
Then, S = {x ∈ Q : −1 ≤ x1 ≤ 0, x1 ≤ x2 ≤ 0} ∪ {x ∈ Q : x1 ≤ −1, x1 ≤ x2 ≤ −

√
x2
1 + x1}. Consider

B1 = {x ∈ Q : 0 ≤ x2 ≤ x1} and B2 = {x ∈ Q : x1 ≤ −1, x1 ≤ −
√

x2
1 + x1 ≤ x2 ≤ 0}. Here, Q \ S ⊆ B1 ∪B2. Then,

it is sufficient to apply Theorem 3.2 and Theorem 3.3 for B1 and B2. For each x ∈ B1 one has Sx = {0}, and for each

x ∈ B2 one has Sx = [0, t̄], where t̄ =
−x1

x2
1 − x2

2

> 0. For each x ∈ Q, ∂fx(t) = {2t(x2
1 − x2

2) + x1}. By Theorem 3.2, for

each x ∈ B1, |ξ| ≥ x1 for all ξ ∈ ∂fx(t) and each t ∈ R+ \ Sx.

For each x ∈ B2, |ξ| ≥ −x1 > 0, for all ξ ∈ ∂fx(t) and each t ∈ R+ \ [0, t̄], with t̄ =
−x1

x2
1 − x2

2

> 0. Then for each

x ∈ B1, fx has a global error bound with constant µx =
1

x1
> 0, and for each x ∈ B2, fx has a global error bound with
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constant µx =
−1

x1
> 0. Now, consider sup

x∈B1

(∥x∥µx) = sup
x∈B1

(
∥x∥
x1

) =
√
2 and sup

x∈B2

(∥x∥µx) = sup
x1≤−1

x1≤−
√

x2
1+x1≤x2≤0

(
−∥x∥
x1

) =

√
2. Then,

sup
i∈I

sup
x∈Bi

(∥x∥µx) = max{ sup
x∈B1

(∥x∥µx), sup
x∈B2

(∥x∥µx)} = max{
√
2,
√
2} =

√
2.

Thus, f has a global error bound with constant
√
2.

Example 3.6. Consider Q = R− × R× R+ and f(x) = −x3
1 − x1x

2
2 + ∥x∥+ x3. By checking that Sx = {0} for each

x ∈ Q, we obtain Ax = {0} for each x ∈ Q. Then, S = ∪
x∈Q

Ax = {0}. We obtain Q \ S = B = {x ∈ Q : x ̸= 0}.

Consider x ∈ Q \ S. Then, ∂fx(t) = {3t2(−x3
1 − x1x

2
2) + ∥x∥ + x3} for each x ∈ Q \ S. Therefore, |ξ| ≥ ∥x∥ + x3

for each ξ ∈ ∂fx(t) and each t ∈ R+ \ Sx. This implies that for each x ∈ Q \ S = B, fx has a global error bound

with constant µx =
1

∥x∥+ x3
and sup

x∈B
(∥x∥µx) = sup

x∈B
(

∥x∥
∥x∥+ x3

) = 1. Consequently, f has a global error bound with

constant µ = 1.

It is important to determine the conditions under which an l.s.c. CAR function does not have a global error bound.
The following theorem presents a necessary condition for an l.s.c. CAR function f to have a global error bound (or
equivalently, a sufficient condition for f to have no global error bounds).

Similar to the definitions of N1
Sx̄
(t) and ∂NSx̄, we define

N1
S(x) = {v ∈ Rn : ∥v∥ = 1 and dS(x+ αv) = α for some α > 0}

and ∂NS = {x ∈ ∂S : N1
S(x) ̸= ∅}. Here, ∂S refers to the boundary of the set S.

Theorem 3.4. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function that has a global error bound with con-

stant µ > 0. Let 0 ̸= x̄ ∈ Q, ∂NSx̄ ̸= ∅ and for each t ∈ ∂NSx̄,
x̄

∥x̄∥
or

−x̄

∥x̄∥
∈ N1

S(tx̄). Then, fx̄ has a global error bound.

Proof . Let t ∈ ∂NSx̄. Then t ∈ ∂Sx̄ and so, tx̄ ∈ ∂S. Since
x̄

∥x̄∥
or

−x̄

∥x̄∥
∈ N1

S(tx̄), we find that tx̄ ∈ ∂NS. Since f

has a global error bound with constant µ > 0, by [22, Corollary 2.8] one has

inf{d+f(tx̄, u) : u ∈ N1
S(tx̄)} ≥ 1

µ
. (3.7)

Here d+f(tx̄, u) is lower Dini directional derivative of the function f at the point tx̄ in the direction u.

Now, if
x̄

∥x̄∥
∈ N1

S(tx̄), then by (3.7),

d+f(tx̄,
x̄

∥x̄∥
) ≥ 1

µ
.

Thus,

lim inf
β−→0+

f(tx̄+ β
x̄

∥x̄∥
)− f(tx̄)

β
≥ 1

µ

which implies

lim inf
β−→0+

fx̄(t+
β

∥x̄∥
(1))− fx̄(t)

β
≥ 1

µ
.

Set α =
β

∥x̄∥
. Then,

lim inf
α−→0+

fx̄(t+ α(1))− fx̄(t)

α
≥ ∥x̄∥

µ
.

This implies

d+fx̄(t, 1) ≥
∥x̄∥
µ

. (3.8)
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If
−x̄

∥x̄∥
∈ N1

S(tx̄), then similar to the above argument we obtain

lim inf
α−→0+

fx̄(t+ α(−1))− fx̄(t)

α
≥ ∥x̄∥

µ
.

Then,

d+fx̄(t,−1) ≥ ∥x̄∥
µ

. (3.9)

Since f+
x̄ (t, 1) ≥ d+fx̄(t, 1), and f+

x̄ (t,−1) ≥ d+fx̄(t,−1) (where f+
x̄ (t, .) is the right directional derivative of fx̄),

and since for each t ∈ ∂NSx̄, ∅ ≠ N1
Sx̄
(t) ⊆ {1,−1},

inf{f+
x̄ (t, u) : u ∈ N1

Sx̄
(t)} = min{f+

x̄ (t, 1), f+
x̄ (t,−1)} ≥ ∥x̄∥

µ
.

Since t ∈ ∂NSx̄ is arbitrary and the function fx̄ is proper, l.s.c. and convex, by [22, Theorem 3.1 (iii)⇒(i)], fx̄ has

a global error bound with constant µx̄ =
µ

∥x̄∥
. □

The following corollary has an applicable role for an l.s.c. CAR function.

Corollary 3.1. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function. Also, let 0 ̸= x̄ ∈ Q, ∂NSx̄ ̸= ∅ and for

each t ∈ ∂NSx̄,
x̄

∥x̄∥
or

−x̄

∥x̄∥
∈ N1

S(tx̄). If fx̄ does not have a global error bound, then f does not have a global error

bound.

The following two examples show that under the conditions presented in Corollary 3.1, when fx does not have a
global error bound for some x ∈ Q, f also does not have a global error bound.

Example 3.7. Consider Q = R2 and f(x) =

{
ex1x2 + x2

2 − 1, x1 ≥ 0, x2 ≤ 0,
+∞. otherwise.

Then S = {x ∈ R2 : x1 ≥

ln(1− x2
2)

x2
,−1 < x2 < 0} ∪ {x ∈ R2 : x1 ≥ 0, x2 = 0}. Consider B = {x ∈ Q : x1 = 0, x2 < 0}. For each

x ∈ B one has Sx = {0} and ∂fx(t) = {2tx2
2}. If x̄ ∈ B, then by Theorem 3.2, no µx̄ > 0 exists such that |ξ| ≥ µx̄

for each ξ ∈ ∂fx̄(t) and each t ∈ R+ \ Sx̄ = R++. Then, for such x̄ (and for each x ∈ B), fx̄ (also, each fx) does not

have a global error bound. Now, consider x̄ = (0,−1) ∈ B. Then,
x̄

∥x̄∥
= (0,−1) and Sx̄ = {0}. Since N1

Sx̄
(0) = {1},

t̄ = 0 ∈ ∂NSx̄ = {0}. By checking, there exist α > 0 with dS(t̄x̄ + α
x̄

∥x̄∥
) = dS(α

x̄

∥x̄∥
) = dS((0,−α)) = α. Then

x̄

∥x̄∥
∈ N1

S(t̄x̄) for t̄ = 0 ∈ ∂NSx̄ = {0}. Since fx̄ does not have a global error bound, by Corollary 3.1, f does not

have a global error bound.

Example 3.8. Consider Q = R− × R− and f(x) = x1x2 + x2
1. Then, S = {x ∈ Q : x1 = 0}. Consider B = {x ∈ Q :

x1 ̸= 0} = Q\S. Then for each x ∈ B, Sx = {0} and ∂fx(t) = {2t(x1x2+x2
1)}. By Theorem 3.2, for each x ∈ B, fx does

not have a global error bound. Consider x̄ = (−2, 0) ∈ B. Then,
x̄

∥x̄∥
= (−1, 0) and Sx̄ = {0}. Since N1

Sx̄
(0) = {1},

t̄ = 0 ∈ ∂NSx̄ = {0}. For α = 1 one has dS(t̄x̄ + α
x̄

∥x̄∥
) = dS((−α, 0)) = α. Then,

x̄

∥x̄∥
= (−1, 0) ∈ N1

S(t̄x̄) and fx̄

does not have a global error bound. Thus, f does not have a global error bound.

Note that if Sx̄ = ∅ for some x̄ ∈ Q, then fx̄ does not have a global error bound (d∅(t) = +∞ by convention). But,
f may or may not have a global error bound. To see this, consider the following two examples.

Example 3.9. Consider Q = R2 and f(x) =

{
−|x1|+ 1, x1 ≤ 1,
0, x1 > 1.

Then, S = {x ∈ R2 : x1 ≤ −1, x2 ∈ R} ∪ {x ∈

R2 : x1 ≥ +1, x2 ∈ R}. Consider B = {x ∈ R2 : x1 = 0, x2 ∈ R}. For each x ∈ B, Sx = ∅. Then, fx does not have a
global error bound for such x. But, it is easy to check that f has a global error bound with constant µ = 1.

Example 3.9 shows that if f has a global error bound,it may happen that for some x ∈ Q \ S, fx does not have a
global error bound.
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Example 3.10. Consider Q = R2
+ ∪ R2

− and f(x) = x1x2 − x1 + 2. Then, S = {x ∈ Q : 0 ≤ x2 < 1, x1 ≥ −2

x2 − 1
}.

Consider B = {x ∈ Q : x1 ≤ 0, x2 = 0}. For each x ∈ B, Sx = ∅. Then for such x, the function fx does not have
a global error bound. On the other hand, by taking xk = (0, k)k≥1, as k −→ +∞ one has dS(xk) −→ +∞, while
f(xk) = 2 for all k ≥ 1. Thus, f does not have a global error bound.

The following theorem shows that under some conditions different from those presented in Theorem 3.4, when the
function f has a global error bound, fx also has a global error bound.

Theorem 3.5. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. CAR function which has a global error bound with
constant µ > 0. Assume that the set S is bounded, 0 ̸= x̄ ∈ Q, and there exists M > 0 such that fx̄(t) ≥ M for all
t ∈ R+ \ Sx̄. Then, fx̄ has a global error bound.

Proof . Let 0 ̸= x̄ ∈ Q and t ∈ R+ \ Sx̄ be arbitrary, and assume that the above condition holds. Then tx̄ ∈ Q \ S
and since S is proximal (is closed in Rn), there exists x′ ∈ ∂S such that dS(tx̄) = ∥tx̄ − x′∥. Since Sx̄ ̸= ∅ and it is
closed, there exists t̄ ∈ ∂Sx̄ such that t̄x̄ ∈ ∂Ax̄ and dAx̄

(tx̄) = ∥tx̄− t̄x̄∥. Then,
dAx̄(tx̄) = ∥tx̄ − t̄x̄∥ ≤ ∥tx̄ − x′∥ + ∥x′ − t̄x̄∥ = dS(tx̄) + ∥x′ − t̄x̄∥ ≤ µf+(tx̄) + ∥x′ − t̄x̄∥ ≤ µf+(tx̄) + diam(S) =

(µ+
diam(S)

f+(tx̄)
)f+(tx̄) = (µ+

diam(S)

(fx̄)+(t)
)(fx̄)+(t) ≤ (µ+

diam(S)

M
)(fx̄)+(t). Thus, dAx̄

(tx̄) ≤ (µ+
diam(S)

M
)(fx̄)+(t),

where diam(S) is the diameter of the set S. Since dAx̄
(tx̄) = ∥x̄∥dSx̄

(t), it follows that dSx̄
(t) ≤ (

µ+
diam(S)

M
∥x̄∥

)(fx̄)+(t)

for all t ∈ R+ \ Sx̄. Setting µx̄ =
µ+

diam(S)

M
∥x̄∥

> 0 we obtain dSx̄
(t) ≤ µx̄(fx̄)+(t) for all t ∈ R+ \ Sx̄. Since this

inequality holds for all t ∈ Sx̄, we conclude that fx̄ has a global error bound with constant µx̄. □

Using Theorem 3.5 we obtain the following corollary. It shows that if x̄ ̸= 0 and fx̄ does not have a global error
bound, then the l.s.c. CAR function f does not have a global error bound.

Corollary 3.2. Let 0 ̸= x̄ ∈ Q with Sx̄ ̸= ∅ and fx̄(t) ≥ M , for all t ∈ R+ \ Sx̄ and some M > 0. Let S be bounded,
and assume that fx̄ does not have a global error bound. Then, f does not have a global error bound.

4 Error bounds from the perspective of abstract convexity

In this section, we focus on the error bounds of an l.s.c. (and in particular, an l.s.c. CAR) function from the
perspective of abstract convexity. The following notions and theorems can be found in the literature. We refer the
reader to [10] and [25]. Consider Hk = {h : h(x) = min

i=1...,j
(⟨l(i), x⟩ − ci), j ≤ k, ci ∈ R ∀ i = 1, 2, ..., j}, where

⟨., .⟩ refers to the inner product. Consider the vector ℓ = (l(1), ..., l(j)), j ≤ k, where each l(i) belongs to Rn and
k = 1, 2, .... Define Lk as the collection of all vectors ℓ = (l(1), ..., l(j)), j ≤ k, such that each ℓ makes (at least) one
elementary function h ∈ Hk.

A function f is called abstract convex with respect to Hk (Hk-convex), if there exists a subset U ⊆ Hk such that
f(x) = sup

h∈U
h(x) for all x ∈ Rn. A particular case of Hk is when all the values ci are the same, that is, ci = c for some

c ∈ R and each i = 1, 2, ..., j. Consider ℓ : x −→ ⟨ℓ, x⟩∗ = min
i=1...,j

⟨l(i), x⟩, j ≤ k, ℓ = (l(1), ..., l(j)) and the vectors

l(i) ∈ Rn, i = 1, 2, ..., j. Each function ℓ : x −→ ⟨ℓ, x⟩∗ = min
i=1...,j

⟨l(i), x⟩ is called a min-type function. We focus on the

cases k = n+ 1 and k = n+ 2 (on Rn) in this section.

We consider Hn+1 = {h : h(x) = min
i=1...,j

(⟨l(i), x⟩− ci), j ≤ n+1, ci ∈ R ∀ i = 1, 2, ..., j} } and Hn+2 = {h : h(x) =

min
i=1...,j

(⟨l(i), x⟩ − ci), j ≤ n+ 2, ci ∈ R ∀ i = 1, 2, ..., j}. The following two theorems hold for these cases.

Theorem 4.1. ([25, Theorem 5.16]). If f : Rn −→ R+∞ is an l.s.c. CAR function with f(0) < +∞, then f is
Hn+1-convex.

Theorem 4.2. ([25, Theorem 5.21]). A function f : Rn −→ R+∞ is Hn+2-convex if and only if f is proper and l.s.c.
Let f : Rn −→ R+∞ be a proper l.s.c. (in particular, a proper l.s.c. CAR) function. We consider Uf as the collection
of all h ∈ Hk, k = n+ 1 or k = n+ 2, such that f(x) = sup

h∈Uf

h(x) for all x ∈ Rn, and Lf is the collection of all ℓ ∈ Lk

such that each ℓ makes (at least) one elementary function h ∈ Uf .
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Theorem 4.3. ([10]). Let A,B be matrices in Rm×n, and a, b be vectors in Rm. Assume that S = {x ∈ Rn : Ax ≤
a,Bx = b} is non-empty. Then, there exists c > 0 such that dS(x) ≤ c(∥[Ax − a]+∥ + ∥Bx − b∥) for all x ∈ Rn. If
S = {x ∈ Rn : Ax ≤ a}, the following characterization of c in Theorem 4.3 is often used in the optimization literature.
We refer the reader to [9], [13], [20] and [23].

c = max
J⊆{1,2,...m}

AJ : full row rank

1

min
v∈RJ

+
∥v∥∗=1

∥AT
J v∥∗

. (4.1)

Here, AT refers to the transpose of A and ∥.∥∗ refers to the dual norm.

Note that the Euclidean norm and its dual are the same. Thus, we use ∥.∥ instead of ∥.∥∗. Assumption Λ: There
exists M > 0 such that ∥l(i)∥ ≥ M for all l(i) ∈ ℓ and all ℓ ∈ Lf .

Under some conditions, the following theorem presents an error bound for a proper l.s.c. (in particular, a proper
l.s.c. CAR) function using abstract convexity.

Theorem 4.4. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. (in particular, a proper l.s.c. CAR) function. Suppose
that Assumption Λ holds, and l(i) ∈ Rn

+ for all l(i) in Assumption Λ. Then, f has a global error bound.

Proof . Since f is a proper l.s.c. function, by Theorem 4.2, f is Hn+2-convex, that is, f(x) = sup
h∈Uf

h(x) for all

x ∈ Q, where Uf is as above. Consider h ∈ Uf fixed (and arbitrary). Then h(x) = min
i=1,...,j

(⟨l(i), x⟩ − ci), where

l(i) ∈ Rn
+ for i = 1, . . . , j, j ≤ n + 2. Set hi(x) = ⟨l(i), x⟩ − ci for all i = 1, . . . , j, Shi = {x ∈ Q : hi(x) ≤ 0}

and Sh = {x ∈ Q : h(x) ≤ 0}. Then Sh = ∪
i=1,...,j

Shi
, and Shi

is downward for each i = 1, ..., j. Indeed, for a

fixed i ∈ {1, ..., j}, let x ∈ Shi and x̄ ∈ Q with x̄ ≤ x. Since l(i) ∈ Rn
+,

∑
r=1,...,n

lr(i)x̄r ≤
∑

r=1,...,n
lr(i)xr. Then,

hi(x̄) = ⟨l(i), x̄⟩ − ci ≤ ⟨l(i), x⟩ − ci = hi(x) ≤ 0. Thus, x̄ ∈ Shi . Then for each i ∈ {1, . . . , j}, Shi is downward and
since Sh = ∪

i=1,...,j
Shi , it is clear that Sh is downward for each h ∈ Uf . Now, suppose that x′ ∈ Q \ S is fixed (and

arbitrary), where S = {x ∈ Q : f(x) ≤ 0} is non-empty by the hypothesis. Since h(x′) = min
i=1,...,j

hi(x
′), there exists an

index i′ ∈ {1, ..., j} such that h(x′) = hi′(x
′). Then, by the characterization of Theorem 4.3 with A = l(i′) in (4.1),

since Sh = ∪
i=1,...,j

Shi , and using Assumption Λ one has,

dSh
(x′) ≤ dSh

i′
(x′) ≤ 1

∥l(i′)∥
(hi′(x

′))+ =
1

∥l(i′)∥
h+(x

′) ≤ 1

M
h+(x

′) ≤ 1

M
f+(x

′). (4.2)

Since h ∈ Uf is arbitrary, sup
h∈Uf

dSh
(x′) ≤ 1

M
f+(x

′) for all x′ ∈ Q \ S. On the other hand, since S = ∩
h∈Uf

Sh and

each Sh is downward, the collection {Sh : h ∈ Uf} is linearly regular (see [25]). Thus, there exists σ > 0 such that

dS(x
′) ≤ σ sup

h∈Uf

dSh
(x′) ≤ σ

M
f+(x

′). Since x′ ∈ Q \ S is arbitrary and dS(x
′) = 0 for each x′ ∈ S, dS(x

′) ≤ σ

M
f+(x

′)

for each x′ ∈ Q. □

Example 4.1. Consider Q = R3 and f(x) =

{
0.5x1 + 0.125x2 + 0.1x3 x3 ≤ 0,
0.5x1 + 0.125x2 x3 > 0.

Then, f is an l.s.c. CAR func-

tion. Consider ℓ = ((0.5, 0.125, 0.1), (0.5, 0.125, 0)) and h(x) = min{h1(x), h2(x)}, where h1(x) = 0.5x1 + 0.125x2 +

0.1x3, h2(x) = 0.5x1 + 0.125x2. Then, min{∥l(1)∥, ∥l(2)∥} =

√
17

8
= M and by checking that f(x) = h(x) for all

x ∈ Q,we obtain S = Sh. Since 03 ̸= l(i) ∈ R3
+ for i = 1, 2, by Theorem 4.4, dS(x) = dSh

(x) ≤ 1

M
f+(x) and f has a

global error bound with constant µ =
1

M
=

8√
17

.

Note that if {Sh : h ∈ Uf} is a linearly regular collection, then using Assumption Λ, and in the absence of the
condition ”l(i) ∈ Rn

+”, Theorem 4.4 holds.

Corollary 4.1. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. (in particular, a proper l.s.c. CAR) function. Suppose
that Assumption Λ holds and the collection {Sh : h ∈ Uf} is linearly regular. Then, f has a global error bound.

In the following two examples, Assumption Λ holds, but the assumption “l(i) ∈ Rn
+” is not satisfied; instead,

”linear regularity” holds.
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Example 4.2. Consider Q = R3 and f(x) = −0.2|x1| − 0.4|x2|+ 0.5x3 − 5,

ℓ = ((−0.2, 0.4, 0.5), (−0.2,−0.4, 0.5), (0.2,−0.4, 0.5), (0.2, 0.4, 0.5))

and h(x) = min
i∈{1,...,4}

hi(x), where h1(x) = −0.2x1 + 0.4x2 + 0.5x3 − 5, h2(x) = −0.2x1 − 0.4x2 + 0.5x3 − 5, h3(x) =

0.2x1−0.4x2+0.5x3−5, h4(x) = 0.2x1+0.4x2+0.5x3−5. Then, M = min{∥l(i)∥ : i = 1, 2, 3, 4} =

√
45

10
, f(x) = h(x)

for all x ∈ Q, and by Theorem 4.4 and Corollary 4.1, dS(x) = dSh
(x) ≤ 1

M
f+(x). The function f has a global error

bound with constant µ =
10√
45

.

Example 4.3. Consider Q = R3 and

f(x) =

{
x1 − 0.3x2 − x3, x3 ≥ 0
x1 − 0.3x2 x3 < 0.

Then, f is an l.s.c. CAR function. Now, consider ℓ = (l(1), l(2)), where l(1) = (1,−0.3,−1), l(2) = (1,−0.3, 0), and
h(x) = min{h1(x), h2(x)}, where h1(x) = x1−0.3x2−x3, h2(x) = x1−0.3x2. Then, M = min{∥l(1)∥, ∥l(2)∥} =

√
1.09.

Since f(x) = h(x) for all x ∈ Q, by Theorem 4.4 and Corollary 4.1, f has a global error bound with constant

µ =
1

M
=

1√
1.09

.

The above two examples show that in some cases, Uf is a finite collection of elementary functions h. The argument
of the rest of this section guarantees that when the collection {Sh : h ∈ Uf} is finite, this collection is linearly regular.
The following notions and definitions can be found in the literature. We refer the reader to [5] and [14].

The radial cone and the closed radial cone of a set C at a point x ∈ C are defined as RC(x) = ∪
t>0

C − x

t
and

R̄C(x) = ∪
t>0

C − x

t
, respectively. The contingent cone of the set C at the point x ∈ C is defined by KC(x) = {u ∈

Rn : ∃tk −→ 0+, uk −→ u such that x+ tkuk ∈ C ∀ k ≥ 0}. It is easy to check that KC(x) ⊆ R̄C(x) for all x ∈ C. If
the last inclusion is an equality then C is said to be pseudo-convex at x. One finds that C is pseudo-convex at x ∈ C
if and only if C − x ⊆ KC(x) (see [1]).

When g is locally Lipschitz around x, the Clarke directional derivative of the function g at the point x in the

direction v is defined by g◦(x, v) = lim sup
y−→x
t−→0+

g(y + tv)− g(y)

t
, and the Clarke tangent cone of the set C at the point

x ∈ C is defined by T c
C(x) = {v ∈ Rn : d◦C(x, v) = 0} or T c

C(x) = {v ∈ Rn : ∀t −→ 0+, xk
C−→ x ∃ vk −→

v such that xk + tkvk ∈ C ∀ k ≥ 1}. Here, xk
C−→ x, that is, xk −→ x and xk ∈ C for all k ≥ 0. Also, d refers to the

distance function. (Note that the distance function d is Lipschitz continuous. See [5].)

The Hadamard directional derivative of the function g at the point x in the direction v is defined by g↓H(x, v) =

lim inf
v′−→v
t−→0+

g(x+ tv′)− g(x)

t
. If g is locally Lipschitz around x, then one has g↓H(x, v) = d+g(x, v).Where d+g(x, v) is Dini

lower directional derivative. See [Definition2.6]. The Dini normal cone of the set C at the point x ∈ C is defined by
N−

C (x) = ∂−δC(x) = {y ∈ X : ⟨y, v⟩ ≤ d+δC(x, v) ∀ v ∈ X}, where X is the whole space (here, Rn) and ∂−δC(x) is
the Dini subdifferential of the indicator function of the set C at x.

The Frechet normal cone of the set C at the point x ∈ C is defined by NF
C (x) = ∂F δC(x). Here ∂F δC(x) is the

Frechet subdifferential of the indicator function of the set C at x. One has

NF
C (x) = {y ∈ Rn : lim sup

x′ C−→x

⟨y, x′ − x⟩
∥x′ − x∥

≤ 0}. (4.3)

Remark 4.1. The following argument can be found in [14]. When C is closed, by [14, Lemma 2.1], (in a finite-
dimensional space, in particular, in Rn) NF

C (x) = N−
C (x), and whenever C is closed and convex, NF

C (x) = N c
C(x) =

N−
C (x) = NC(x), where NF

C (x), N c
C(x), N

−
C (x) and NC(x) are the Frechet, Clarke, Dini and classical normal cones,
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respectively. Also, one has TC(x) = KC(x) = T c
C(x) = R̄C(x), where TC(x) is the classical tangent cone of the set C

at x. By (4.3), NF
C (x) is convex and since (in our argument) NF

C (x) = N−
C (x), N−

C (x) is convex. When Uf is a finite
collection, since S = ∩

h∈Uf

Sh and N−
S (x) is convex, it is easy to check that

∑
h∈Uf

N−
Sh

(x) ⊆ N−
S (x). (4.4)

By the definitions of the sets S, Sh, Shi
, for each h ∈ Uf , define Ah = {x ∈ ∂S : x ∈ ∂Sh, x /∈ Shi

for some i ∈
{1, 2, ..., j}}. Define A = ∪

h∈Uf

Ah. Then, A ⊆ ∂S ⊆ S.

The following theorem presents a property of the set Sh for each h ∈ Uf .

Theorem 4.5. For each h ∈ Uf , Sh is pseudo-convex at each point of S \A.

Proof . Let h ∈ Uf be fixed. For each x ∈ S \A we must show that

Sh − x ⊆ KSh
(x). (4.5)

Since S = ∩
h∈Uf

Sh, it follows that T c
S(x) ⊆ T c

Sh
(x) for each x ∈ S, and since Sh = ∪

i=1,...j
Shi

, we obtain

T c
Shi

(x) ⊆ T c
Sh

(x) for each x ∈ Sh. (Note that if x /∈ Shi , then T c
Shi

(x) = ∅.) Also, T c
Sh

(x) ⊆ KSh
(x) (see [5]).

On the other hand, since Shi
is closed and convex for each i ∈ {1, .., j}, then TShi

(x) = T c
Shi

(x), where TShi
(x) is the

classical tangent cone of the set Shi
at the point x. Thus,

TShi
(x) = T c

Shi
(x) ⊆ T c

Sh
(x) ⊆ KSh

(x) ∀x ∈ S, ∀i ∈ {1, ..., j}. (4.6)

T c
S(x) ⊆ T c

Sh
(x) ⊆ KSh

(x) ∀ x ∈ S. (4.7)

Let x ∈ S \ A be fixed (S is closed). Then, if x ∈ int(S), one has T c
S(x) = Rn. Thus, by (4.7), KSh

(x) = Rn and
inequality (4.5) holds. If x ∈ ∂S, since x ∈ S = ∩

h′∈Uf

Sh′ , x ∈ Sh. Now, if x ∈ int(Sh), then T c
Sh

(x) = Rn and by

(4.7), inequality (4.5) holds. If x ∈ ∂(Sh), since ∂(Sh) ⊆ ∪
i=1,...,j

∂Shi , we consider two cases.

Case 1: There exists an index i ∈ {1, ..., j} such that x /∈ ∂Shi . Then, if x ∈ int(Shi) we obtain TShi
(x) = Rn.

Thus, using (4.6), inequality (4.5) holds; otherwise x /∈ Shi , that implies x ∈ A, a contradiction.

Case 2: x ∈ ∩
i=1,...,j

∂Shi
. Then, it suffices to show that (4.5) holds for each x ∈ ∩

i=1,...,j
∂Shi

. Let x ∈ ∩
i=1,...,j

∂Shi

and consider y ∈ Sh − x. Then there exists u ∈ Sh such that y = u− x. Since u ∈ Sh, there exists ī ∈ {1, ..., j} such
that ⟨l(̄i), u⟩ − cī = min

i∈{1,...,j}
(⟨l(i), u⟩ − ci) = h(u) ≤ 0. Thus,

⟨l(̄i), u⟩ ≤ cī. (4.8)

Since x ∈ ∩
i=1,...,j

∂Shi
, x ∈ ∂Shī

and Shī
is closed. Therefore, ⟨l(̄i), x⟩ = cī. Consequently, by (4.8) one has

⟨l(̄i), y⟩ = ⟨l(̄i), u− x⟩ ≤ 0. (4.9)

On the other hand, since x ∈ ∂Shī
and Shī

is closed and convex, ∅ ̸= TShī
(x) = cl(FShī

(x)). Here, “cl” refers to

the closure, and FShī
(x) refers to the collection of all feasible directions of Shī

at the point x. Since x ∈ ∂Shī
, it is

easy to check that cl(FShī
(x)) = {v ∈ Rn : ⟨l(̄i), v⟩ ≤ 0}. Hence, (4.9) implies y ∈ TShī

(x). Consequently, by (4.6), we

obtain (4.5). Since x ∈ S \A and h ∈ Uf are arbitrary, the assertion is true. □

Let Uf be a finite collection of elementary functions h ∈ Hn+2 (h ∈ Hn+1). Then, the following theorem guarantees
the existence of an error bound for a proper l.s.c. (proper l.s.c. CAR) function f .

Theorem 4.6. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. (in particular, a proper l.s.c. CAR) function, and Uf

be the finite collection defined as above. Also, suppose that Assumption Λ and the following conditions are satisfied.
Then, f has a global error bound.
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(i) At each point x ∈ S = ∩
h∈Uf

Sh, N
−
S (x) ⊆

∑
h∈Uf

N−
Sh

(x).

(ii) At each point x ∈ A = ∪
h∈Uf

Ah, each Sh is pseudo-convex.

(iii) There exists r > 0 such that for each x̄ ∈ S and each z ∈
∑

h∈Uf

N−
Sh

(x̄),

min{max
h∈Uf

∥zh∥ : zh ∈ N−
Sh

(x̄),
∑
h∈Uf

zh = z} ≤ r∥z∥.

Proof . Since by Theorem 4.5, each Sh is pseudo-convex at each point x ∈ S \A, and by (4.4),
∑

h∈Uf

N−
Sh

(x) ⊆ N−
S (x),

and on Rn the Dini normal cone coincides with the Frechet normal cone, by [14, Theorem 3.3] the collection {Sh : h ∈
Uf} is linearly regular. Since Assumption Λ holds, Corollary 4.1 completes the proof. □

The following theorem provides a relationship between NF
Sh

(x) and NF
Shi

(x) for each x ∈ Sh.

Theorem 4.7. Let f : Q ⊆ Rn −→ R+∞ be a proper l.s.c. (in particular, a proper l.s.c. CAR) function. Then for
each h ∈ Uf , N

F
Sh

(x) = ∩
i∈I(x)

NF
Shi

(x) for each x ∈ Sh, where I(x) = {i ∈ {1, ..., j} : x ∈ Shi
}.

Proof . First, we recall that Sh is the union of the collection of closed lower half spaces Shi
, i = 1, ..., j. Then, each

Shi
is closed and convex, implying NF

Shi
(x) = NShi

(x), where NShi
(x) is the classical normal cone of Shi

at the point

x. Fix h ∈ Uf and x̂ ∈ Sh. Since Shi ⊆ Sh, N
F
Sh

(x̂) ⊆ NF
Shi

(x̂) for each i ∈ I(x̂). Hence, NF
Sh

(x̂) ⊆ ∩
i∈I(x̂)

NF
Shi

(x̂).

Conversely, let u ∈ ∩
i∈I(x̂)

NF
Shi

(x̂) = ∩
i∈I(x̂)

NShi
(x̂). Then u ∈ NShi

(x̂) for each i ∈ I(x̂). Since x̂ ∈ Shi
for each

i ∈ I(x̂), if there is ī ∈ I(x̂) such that x̂ ∈ int(Shī
), then one has NShī

(x̂) = {0}. Since x̂ ∈ Shi
for each i ∈ I(x̂),

NShi
(x̂) ̸= ∅ and 0 ∈ NShi

(x̂) that imply ∩
i∈I(x̂)

NShi
(x̂) = {0}. Thus, u = 0 ∈ NSh

(x̂). (Note that since x̂ ∈ Sh,

NF
Sh

(x̂) ̸= ∅ and it contains 0.) Otherwise, x̂ ∈ ∂Shi
for each i ∈ I(x̂). Now, we consider the following cases.

Case 1: |I(x̂)| = 1, where |I(x̂)| refers to the number of elements of the set I(x̂). Then, for a single index
i′ ∈ {1, 2, ..., j}, I(x̂) = {i′} and x̂ ∈ ∂Shi′ . Since x̂ ∈ Sh and |I(x̂)| = 1, we obtain x̂ ∈ ∂Sh. Indeed, if x̂ ∈ int(Sh),

since Sh = ∪
i=1,...,j

Shi
and x̂ ∈ ∂Shi′ , there exists an index î ∈ {1, ..., j}, î ̸= i′, such that x̂ ∈ int(Shî

). Then |I(x̂)| > 1,

which is a contradiction. Hence x̂ ∈ ∂Sh, which implies x̂ ∈ ∂Sh ∩ ∂Shi′ . Then, there exists ε > 0 such that for the
neighborhood B(x̂, ε) of x̂ one has B(x̂, ε)∩ ∂Sh = B(x̂, ε)∩ ∂Shi′ . On the other hand, since Shi′ is a lower half space
and a subset of Sh, by the definition of the Frechet normal cone (4.3) we obtain NF

Sh
(x̂) = NF

Sh
i′
(x̂). (Note that by

the above argument, in (4.3), x′ Sh−−→ x̂ as x′ Shi′−−−→ x̂.) Then, u ∈ ∩
i∈I(x̂)

NF
Shi

(x̂) = NF
Sh

i′
(x̂) = NF

Sh
(x̂).

Case 2: |I(x̂)| ≥ 2. Since x̂ ∈ ∂Shi
for each i ∈ I(x̂), NF

Shi
(x̂) = NShi

(x̂) = R+(l(i)), where l(i) ∈ Rn is the vector

for which hi(x̂) = ⟨l(i), x̂⟩ − ci holds for each i ∈ I(x̂). Now, we consider two sub-cases for Case 2.

Case 2.1: There exists an index ī ∈ I(x̂) such that l(̄i) /∈ R+(l(i)) for all i ∈ I(x̂). Since NShi
(x̂) = R+(l(i)) and

NShī
(x̂) = R+(l(̄i)), one has NShī

(x̂) ∩ ( ∩
i∈I(x̂)\{ī}

NShi
(x̂)) = {0}. Then, u = 0 ∈ NSh

(x̂).

Case 2.2: l(i) ∈ R+(l(̂i)) for all i ∈ I(x̂) and for an index î ∈ I(x̂). Then, l(i) = αil(̂i) for each i ∈ I(x̂), where

αi > 0. Since x̂ ∈ ∂Shi
for each i ∈ I(x̂), ⟨l(i), x̂⟩ = ci which implies ⟨αil(̂i), x̂⟩ = ci, and therefore ⟨l(̂i), x̂⟩ =

ci
αi

.

Consequently, all values
ci
αi

are the same, meaning that all the sets Shi
are equal. Thus |I(x)| = 1, which is a

contradiction. Since the inclusion holds for all cases, the proof is complete. □

Since on Rn the Frechet normal cone coincides with the Dini normal cone and S ⊆ Sh for each h ∈ Uf , by Theorem
4.7 we obtain N−

Sh
(x) = ∩

i∈I(x)
N−

Shi
(x) for each x ∈ S. We may replace (i) of Theorem 4.6 with the following statement.

At each point x ∈ S = ∩
h∈Uf

Sh, N
−
S (x) ⊆

∑
h∈Uf

h(x)= min
i=1...,j

⟨l(i),x⟩

∩
i∈I(x)={i∈{1,...,j}:x∈Shi

}
N−

Shi
(x).

The above argument guarantees the linear regularity of the finite collection Uf . If one guarantees the linear
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regularity whenever the collection Uf is infinite, then Theorem 4.4 guarantees the existence of a global error bound for
a proper l.s.c. (in particular, proper l.s.c. CAR) function f in the absence of the condition ”l(i) ∈ Rn

+ and l(i) ̸= 0n”.
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