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Abstract

In the present paper, we discuss some differential subordinations and superordinations results for a subclass of analytic
univalent functions in the open unit disk U using El-Deeb –Lupa’s operator Hn

λ,τ . Also, we study some sandwich
theorems.
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1 Introduction

Let S = S(U) be the class of all functions that are analytic in U where U = {z ∈ C : |z| < 1} is the open unit
disk. Let S[a, n] be a subclass of the functions f ∈ S, which is given by

f(z) = a+ anz
n + an+1z

n+1 + ... n ∈ N, a ∈ C. (1.1)

We also assume Ś ⊂ S where Ś is said to be the subclass of analytic and univalent functions in U , of the form:

f(z) = z +

∞∑
n=2

anz
n. (1.2)

Now, we assume that f, g ∈ S, so that the function f is subordinate to function g, or the function g is superordinate
to the function f , if there exists the Schwarz function W such that f(z) = g(W(z)), where W(z) is analytic function
in U with |W(z)| < 1 and W(0) = 0, z ∈ U ,then one can say that f ≺ g or f(z) ≺ g(z) for z ∈ U [13].

In addition, if g is univalent in U , then f ≺ g if and only if f(0) = g(0) and (U) ⊂ g(U) [13, 17, 18].

Definition 1.1. [17] Let φ : C3 ×U → C and let ℏ(z) is univalent in U . If P̄ (z) is analytic function in U and fulfills
the second-order differential subordination:

φ(P̄ (z), zP̄ ′(z), z2P̄ ′′(z); z) ≺ ℏ(z), (1.3)
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then P̄ (z) is said to be a solution of the differential subordination (1.3), and the univalent function U(z) say it a
dominant of the solution of differential subordination (1.3), or more simply a dominant, if P̄ (z) ≺ U(z) for each P̄ (z)

satisfying (1.3). A dominant function Ũ(z) that satisfies Ũ(z) ≺ U(z) for each dominant U(z) of (1.3) is called the best
dominant of (1.3).

Definition 1.2. [17] Let P̄, ℏ ∈ Ś and φ(r, s, t; z) : C3 × U → C. If p and φ(P̄ (z), zP̄ ′(z), z2P̄ ′′(z); z) are univalent
functions in U and if p satisfies the second-orde differential superordination:

ℏ ≺ (z)φ(P̄ (z), zP̄ ′(z), z2P̄ ′′(z); z), (1.4)

then p is said to be a differential superordination solution (1.4). An analytic function U(z) which is known as a
subordinant of the solutions of differential superordination (1.4), or more simply a subordinant if P̄ ≺ U for each the

functions P̄ satisfying (1.4). If Ũ is univalent subordinant and that satisfy U ≺ Ũ for each the subordinats U of (1.4),
then is the best subordinat.

Many authors [1, 2, 3, 10, 17, 20] obtained the necessary and sufficient conditions on the functions ℏ, P̄ and φ
where by the following implication is true

ℏ ≺ (z)φ(P̄ (z), zP̄ ′(z), z2P̄ ′′(z); z),

then
U(z) ≺ P̄ (z) (1.5)

Utilizing the outcomes Look [4, 5, 6, 7, 11, 12, 15, 16, 18, 19, 21] to obtain sufficient conditions for normalized analytic
functions to satisfy:

U1(z) ≺
zf ′(z)

f(z)
≺ U2(z)

where U1 and U2 are given univalent functions in U with U1(0) = U2(0) = 1. Also a number of authors Look
[2, 4, 6, 7, 8, 9] they found some differential subordination and superordination results and sandwich theorems.

Let f ∈ Ś, El-Deeb and Lupas [14] defined the following generalized integral operator:

Hn
λ,τf(z) =

1 + λ

zλ

∫ z

0

tλ−1Hn−1
λ,τ f(t)dt, (1.6)

where (τ > 0, λ ≥ 0, n ∈ N0 = N0 ∪ {0}).
For f(z) ∈ Ś given by (1.2), we have

Hn
λ,τf(z) = z +

∞∑
n=2

(
1 + λ

k + λ

)n
τk−1

(k − 1)!
e−τanz

n. (1.7)

From (1.7), we note that
z(Hn

λ,τf(z))
′ = (λ+ 1)Hn−1

λ,τ f(z)− λHn
λ,τf(z) (1.8)

The specific goal of this research to find sufficient conditions for certain normalized analytic function f to satisfy:

U1(z) ≺
[Hn

λ,τf(z)

z

]γ
∂ ≺ U2(z),

and

U1(z) ≺

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
≺ U2(z),

wherever U1 and U2 are provided univalent functions in U with U1(0) = U2(0) = 1.

In this paper, we will derive Some sandwich theorems with the operator Hn
λ,τf(z).
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2 Preliminaries

We need the following lemmas and definitions, to prove our results.

Definition 2.1. [17] Denote by Q the class of all functions q that are analytic and injective on U |E(U), where
U = U ∪ {z ∈ ∂U}, and

E(U) = {ε ∈ ∂U : U(z) = ∞}

and are such that U′(ε) ̸= 0 for ε ∈ ∂U\E(U). Further, let the subclass of Q as to which U(0) = a be denoted by Q(a),
and Q(0) = Q0, Q(1) = Q1 = {U ∈ Q : U(0) = 1}.

Lemma 2.2. [18] Suppose that the function U is a convex univalent in U , let λ ∈ C, B̄ ∈ C|{0} and Suppose that

Re

{
1 +

zU′′(z)

U′(z)

}
>

{
0,−Re

(
λ

B̄

)}
. (2.1)

If P̄ is analytic in U and
λP̄ (z) + B̄zP̄ ′(z) ≺ λU(z) + B̄zU′(z) (2.2)

then P̄ ≺ U and U is the best dominant of (2.2).

Lemma 2.3. [5] Let U be univalent in U . and let φ and θ be analytic in the domain D containing U(U) with
φ(W) ̸= 0, when W ∈ U(U). Set Q(z) = zU′(z)φ(U(z)) and ℏ(z) = θ(U(z)) +Q(z). Suppose that

a. Q(z) is starlike univalent in U .

b. Re
{

ℏ′(z)
Q(z)

}
> 0, z ∈ U .

If P̄ is analytic in U , with P̄ (0) = U(0), P̄ (U) ⊆ D and

θ(P̄ (z)) + zP̄ ′(z)φ(P̄ (z)) ≺ θ(U(z)) + zU′(z)φ(U(z)), (2.3)

then P̄ ≺ U and U is the best dominant of (2.3).

Lemma 2.4. [18] Suppose that U is convex univalent in U and let B̄ ∈ C, that Re(B̄) > 0. If P̄ ∈ H[U(0), 1]∩Q and
P̄ (z) + B̄zP̄ ′(z) is univalent in U , then

U(z) + B̄zU′(z) ≺ P̄ (z) + B̄zP̄ ′(z), (2.4)

then U ≺ P̄ and mathfrakU is the best subordinant of (2.4).

Lemma 2.5. [18] Let U(z) be a convex univalent function in the unit disk U and let φ andθ be analytic in the domain
D containing U(U). Suppose that:

a. Re
{

θ′(U(z))
φ(U(z))

}
> 0, z ∈ U .

b. Q(z) = zU′(z)φ(U(z)) is starlike univalent in U .

If P̄ ∈ S[U(0), 1] ∩Q, with P̄ (U) ⊂ D, θ(P̄ (z)) + zP̄ ′(z)φ(P̄ (z)) is univalent in U and

θ(U(z)) + zU′(z)φ(U(z)) ≺ θ(P̄ (z)) + zP̄ ′(z)φ(P̄ (z)), (2.5)

then U ≺ P̄ and q is the best subordinant of (2.5).
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3 Differential Subordination Results

We present a few differential subordination results by using the El-Deeb-Lupas operator.

Theorem 3.1. Suppose that U be a convex univalent function in U with U(0) = 1, γ > 0, 0 ̸= ε ∈ C, and suppose
that U satisfies:

Re

{
1 +

zU′′(z)

U′(z)

}
>
{
0,−Re

(γ
ε

)}
. (3.1)

If f ∈ Ś satisfies the subordination condition:

(λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
≺ U(z) +

ε

γ
zU′(z), (3.2)

then [Hn
λ,τf(z)

z

]γ
≺ U(z), (3.3)

and U is the best dominant of (3.2).

Proof . We shall define the function P̄ by

P̄ (z) =

[Hn
λ,τf(z)

z

]γ
, (3.4)

then the function P̄ (z) is analytic and P̄ (0) = 1, therefore, differentiating (3.4) with respect to (z) and using the
identity (1.8), we obtain

zP̄ ′(z)

P̄ (z)
= γ

[
z(Hn

λ,τf(z))
′

Hn
λ,τf(z)

− 1

]
. (3.5)

Hence
zP̄ ′(z)

P̄ (z)
= γ

[
(λ+ 1)

(
Pµ,B̄,l
λ,λ−1,θ,Kf(z)

Pµ,B̄,l
λ,λ,θ,Kf(z)

− 1

)]
.

Therefore,

zP̄ ′(z)

γ
=

[Hn
λ,τf(z)

z

]γ [
(λ+ 1)

(
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

− 1

)]
.

The subordination (3.2) from the hypothesis becomes

P̄ (z) +
ε

γ
zP̄ ′(z) ≺ U(z) +

ε

γ
zU′(z).

An application of lemma 2.2 with B̄ = ε
γ and ε = 1, we obtain (3.3). □

Putting U(z) =
(

1+z
1−z

)
in Theorem 3.1, we obtain the following corollary:

Corollary 3.2. Let γ > 0, 0 ̸= ε ∈ C\{0} and

Re

{
1 +

2z

1− z

}
>
{
0,−Re

(γ
ε

)}
.

If f ∈ Ś satisfies the subordination condition:

(λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
≺

(
1− z2 + 2 ε

γ z

(1− z)2

)
,

then [Hn
λ,τf(z)

z

]γ
≺
(
1 + z

1− z

)
and U(z) =

(
1+z
1−z

)
is the best dominant.
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Theorem 3.3. Let U be a convex univalent function in U with U(0) = 1,U′(z) ̸= 0(z ∈ U) and assume that U satisfies:

Re

{
1 +

k

ε
(U(z))k +

k − 1

ε
(U(z))k−1 − z

U′(z)

U(z)
+ z

U′′(z)

U′(z)

}
> 0, (3.6)

where k ∈ C, ε ∈ C\{0} and z ∈ U . Suppose that z U′(z))
U(z) is starlike univalent in U . If f ∈ Ś satisfies

Ψ(n, λ, τ, k, ε; z) ≺ (1 + U(z))U(z)k−1 + εz
U′(z))

U(z)
, (3.7)

where

Ψ(n, λ, τ, k, ε; z) =

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γk
+

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ(k−1)

+ εγ(λ+ 1)

(
Hn−2

λ,τ f(z)

Hn−1
λ,τ f(z)

−
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

)
, (3.8)

then [
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
≺ U(z), (3.9)

and U is the best dominant of (3.7).

Proof . Consider a function P̄ by

P̄ (z) =

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
. (3.10)

Then the function P̄ (z) is analytic in U and P̄ (0) = 1, differenitating (3.10), with respect to (z) and using the
identity (1.8), we obtain

zP̄ ′(z)

P̄ (z)
= γ

[
(λ+ 1)

(
Hn−2

λ,τ f(z)

Hn−1
λ,τ f(z)

−
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

)]
.

By setting

φ(W) =
ε

W
,W ̸= 0, and θ(W) = (1 +W)Wk−1.

we see that θ(W) is analytic in C and φ(W) is analytic in C\{0} and that φ(W) ̸= 0,W ∈ C|{0}. Also, we obtain

Q(z) = zU′(z)φ(U(z)) = εz
U′(z)

U(z)
,

and

ℏ(z) = θ(U(z)) +Q(z) = (1 + U(z))U(z)k−1 + εz
U′(z)

U(z)
.

It is obvious that Q(z) is starlike univalent in U , we have

Re

{
zℏ′(z)
Q(z)

}
= Re

{
1 +

k

ε
(U(z))k +

k − 1

ε
(U(z))k−1 − z

U′(z)

U(z)
+ z

U′′(z)

U′(z)

}
> 0.

Using a simple calculation, we get

Ψ(n, λ, τ, k, ε; z) = (1 + P̄ (z))(P̄ (z))k−1 + εz
P̄ ′(z)

P̄ (z)
, (3.11)

where Ψ(n, λ, τ, k, ε; z) is given by (3.8).

From (3.7) and (3.11), we have

(1 + P̄ (z))(P̄ (z))k−1 + εz
P̄ ′(z)

P̄ (z)
≺ (1 + U(z))(U(z))k−1 + εz

U′(z)

U(z)
. (3.12)

Therefore, by Lemma 2.3, we get P̄ (z) ≺ U(z). By using (3.10), we get the result. □

make up U(z) =
(

1+Az
1+Bz

)
, −1 ≤ B < A ≤ 1 in Theorem 3.3, we obtain the following:
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Corollary 3.4. Let −1 ≤ B < A ≤ 1 and

Re

{
k

ε

(
1 +Az

1 +Bz

)k

+
k − 1

ε

(
1 +Az

1 +Bz

)k−1

+
1 +Bz(4 + 3Az)

(1 +Bz)(1 +Az)

}
> 0,

where ε ∈ C\{0} and z ∈ U , if f ∈ Ś satisfies:

Ψ(n, λ, τ, k, ε; z) ≺

[[
1 +

(
1 +Az

1 +Bz

)](
1 +Az

1 +Bz

)k−1

+ εz
A−B

(1 +Az)(z +Bz)

]
,

and Ψ(n, λ, τ, k, ε; z) is given by (3.8),

then [
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
≺
(
1 +Az

1 +Bz

)
and U(z) =

(
1+Az
1+Bz

)
is the best dominant.

4 Differential Superordination Results

Theorem 4.1. Let U be a convex univalent function in U with U(0) = 1, γ > 0 and Re{ε} > 0. Let f ∈ Ś satisfies:[Hn
λ,τf(z)

z

]γ
∈ S[U(0), 1] ∩Q (4.1)

and

(λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
, (4.2)

Be univalent in U . If

U(z) +
ε

γ
zU′(z) ≺ (λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
, (4.3)

then

U(z) ≺
[Hn

λ,τf(z)

z

]γ
, (4.4)

and U is the best subordinant of (4.3).

Proof . Define the function P̄ by

P̄ (z) =

[Hn
λ,τf(z)

z

]γ
. (4.5)

Differentiating (4.5) with respect to z, we get

zP̄ ′(z)

P̄ (z)
= γ

[
z(Hn

λ,τf(z))
′

Hn
λ,τf(z)

− 1

]
. (4.6)

We using (1.8) with some simplification from (4.6), we get

(λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
= P̄ (z) +

ε

γ
zP̄ ′(z).

by using Lemma 2.4, we get the desired result. □

Putting U(z) =
(

1+z
1−z

)
in Theorem 4.1, we obtain the subsequent corollary:
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Corollary 4.2. Let γ > 0 and Re{ε} > 0. If f ∈ Ś satisfies[Hn
λ,τf(z)

z

]γ
∈ S[U(0), 1] ∩Q

and (λ+ 1)
[
Hn

λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+
[
Hn

λ,τf(z)

z

]γ
be univalent in U . If

(
1− z2 + 2 ε

γ z

(1− z)2

)
≺ (λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
,

then (
1 + z

1− z

)
≺
[Hn

λ,τf(z)

z

]γ
,

and U(z) =
(

1+z
1−z

)
is the best subordinant.

Theorem 4.3. Let U be a convex univalent function in U with U(0) = 1,U′(0) ̸= 0 and Suppose that U satisfies:

Re

{
k

ε
(U(z))kU′(z) +

k − 1

ε
(U(z))k−1U′(z)

}
> 0 (4.7)

where k ∈ C, ε ∈ C\{0} and z ∈ U .

Let z U′(z)
U(z) is starlike univalent function in U . Let f ∈ Ś satisfies:[

Hn−1
λ,τ f(z)

Hn
λ,τf(z)

]γ
∈ S[U(0), 1] ∩Q,

and Ψ(n, λ, τ, k, ε; z) is univalent function in U , where Ψ(n, λ, τ, k, ε; z) is given by (3.8). If

(1 + U(z))(U(z))k−1 + εz
U′(z)

U(z)
≺ Ψ(n, λ, τ, k, ε; z), (4.8)

then

U(z) ≺

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
, (4.9)

and U is the best subordinant of (4.8).

Proof . Consider a function P̄ by

P̄ (z) =

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
. (4.10)

Differentiating (4.10) with respect to z, we obtain

zP̄ ′(z)

P̄ (z)
= γ

[
(λ+ 1)

(
Hn−2

λ,τ f(z)

Hn−1
λ,τ f(z)

−
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

)]
.

By setting φ(W) = ε
W ,W ̸= 0, and θ(W) = (1 +W)Wk−1.

we see that θ(W) is analytic in C and φ(W) is analytic in C\{0} and that φ(W) ̸= 0,W ∈ C\{0}. Also, we get

Q(z) = zU′(z)φ(U(z)) = εz
U′(z)

U(z)
,



74 Abbas, Atshan

we see that Q(z) is starlike univalent function in U ,

Re

{
θ′(U(z))

φ(U(z))

}
= Re

{
k

ε
(U(z))kU′(z) +

k − 1

ε
(U(z))k−1U′(z)

}
> 0.

Using a simple calculation, we obtain

Ψ(n, λ, τ, k, ε; z) = (1 + P̄ (z))(P̄ (z))k−1 + εz
P̄ ′(z)

P̄ (z)
, (4.11)

where Ψ(n, λ, τ, k, ε; z) is given by (3.8).

We have from (4.8) and (4.11)

(1 + U(z))(U(z))k−1 + εz
U′(z)

U(z)
≺ (1 + P̄ (z))(P̄ (z))k−1 + εz

P̄ ′(z)

P̄ (z)
. (4.12)

Therefore, by Lemma 2.5, we get U(z) ≺ P̄ (z). □

5 Sandwich Results

Theorem 5.1. Let U1 be a convex univalent function in U with U1(0) = 1, γ > 0 and Re{ε} > 0 and let U2 be
univalent function in U , U2(0) = 1 and satisfies (3.1). Let f ∈ Ś satisfies:[Hn

λ,τf(z)

z

]γ
∈ S[1, 1] ∩Q

and (λ+ 1)
[
Hn

λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+
[
Hn

λ,τf(z)

z

]γ
be univalent in U . If

U1(z) +
ε

γ
zU′

1(z) ≺ (λ+ 1)

[Hn
λ,τf(z)

z

]γ (Hn−1
λ,τ f(z)

Hn
λ,τf(z)

− 1

)
+

[Hn
λ,τf(z)

z

]γ
≺ U2(z) +

ε

γ
zU′

2(z),

then

U1(z) ≺
[Hn

λ,τf(z)

z

]γ
≺ U2(z),

and U1 and U2 are respectively the best subordinant and the best dominant.

Theorem 5.2. Let U1 be a convex univalent function in U with U1(0) = 1 and satisfies (4.7). Let U2 be univalent
function in U with U2(0) = 1 and satisfies (3.6). Let f ∈ Ś satisfies:[

Hn−1
λ,τ f(z)

Hn
λ,τf(z)

]γ
∈ S[1, 1] ∩Q,

and Ψ(n, λ, τ, k, ε; z) is univalent in U , where Ψ(n, λ, τ, k, ε; z) is given by (3.8). If

(1 + U1(z))(U1(z))
k−1 + εz

U′
1(z)

U1(z)
≺ Ψ(γ, µ, B̄, l, λ, θ, k, τ, ε; z) ≺ (1 + U2(z))(U2(z))

k−1 + εz
U′
2(z)

U2(z)
,

then

U1(z) ≺

[
Hn−1

λ,τ f(z)

Hn
λ,τf(z)

]γ
≺ U2(z)

and U1 and U2 are respectively the best subordinant and the best dominant.
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