Int. J. Nonlinear Anal. Appl. 14 (2023) 10, 283-292 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.29948.4299

Projective modules relative to a semiradical property

Entisar Al-Dhahari*, Bahar Al-Bahrani

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

(Communicated by Ehsan Kozegar)

Abstract

In this paper, we introduce a generalization of the projective modules. We show that for a module $M = M_1 \bigoplus M_2$. If M_2 is s.p- M_1 -projective, then for every s.p-closed submodule A of M with $M = M_1 + A$, there exists a submodule K of A such that $M = M_1 \bigoplus K$.

Keywords: s.p-closed submodules, projective module, s.p-projective module 2020 MSC: 16E40

1 Introduction

Throughout article all rings are associative with identity and all modules are unitary left *R*-modules. Let *N* be a submodule of a module *M*. *N* is called an essential submodule of *M* (indicate by $N \leq_e M$) if $N \cap K \neq 0$, $\forall 0 \neq K \leq M$. A submodule *B* of *M* is called a closed submodule of *M* if *B* has no proper essential extension in M, see [6].

Let M be a module, recall that the socle of M (denoted by Soc(M)) is the sum of all simple submodules of M. A module M is said to be a semisimple module if Soc(M) = M, see [6, 8].

Let M be a module. Recall that the Jacobson radical of M (denoted by J(M)) is the intersection of all maximal submodules of M. If M has no maximal submodule, we write J(M)=M, see [13].

Let $m \in M$. Recall that $ann \ (m) = \{r \in R : rm = 0\}$. For a module M, the singular submodule is defined as follows $Z(M) = \{m \in M | ann(m) \leq_e R\}$ or equivalently, Im = 0 for some essential left ideal I of R. If Z(M) = M, then M is called a singular module. If Z(M) = 0, then M is called a nonsingular module. The second singular (or Goldie torsion) submodule of a module M (denoted by $Z_2(M)$) is defined as follows $Z(M/Z(M)) = Z_2(M)/Z(M)$, see [6].

Let R be a ring. An element $x \in R$ is said to be regular if there exists an element $r \in R$ such that x = xrx. R is called regular if every element in R is regular. A module B is called F-regular if for all $0 \neq x \in B, R/ann(x)$ is regular, equivalently an R-module M is F-regular if and only if for all $x \in B$ and $y \in R$, there exists $r \in R$ such that ryrx = rx, see [4].

Let N be a module and $M(N) = \sum_{K \text{ is regular}} K \leq N$. Then N is F-regular if and only if M(N) = N, see [7]. Let A be a module, a module M is called A-projective if for every submodule B of A, any homomorphism g from M to A/B can be lifted to a homomorphism h from M to A. It is known that a module M is projective if M is A-projective, for every module A, see [5, 8, 9].

^{*}Corresponding author

Email addresses: eahmed.math@gmail.com (Entisar Al-Dhahari), bahar.ahmed@sc.uobaghdad.edu.iq (Bahar Al-Bahrani)

Let S be a semiradical property. A submodule N of a module is said to be s.p-closed submodule of M (denoted by $N \leq_{s.p-c} M$) if $N \leq K \leq M$ and K/N has S implies that N = K. Equivalent A is s.p-closed submodule of M if and only if S(M/A) = 0, see [1].

In this paper we introduce the concept of projective modules relative to a semiradical property. Let S be a semiradical property. A property S is said to be a radical property if:

- 1. for each module M, there exists a submodule (denoted by S(M)) such that
 - (a) S(M) has S.
 - (b) $B \leq S(M)$, for any submodule B of M such that B has S.
- 2. If $f: M \longrightarrow L$ is an epimorphism and M has S, then L has S.
- 3. S(M/S(M)) = 0 for each module M, see [7].

A property S is said to be a semiradical property if it satisfies the following conditions 1 and 2, see [7]. It's known that each of the following two properties is a radical property, see [7].

- 1. $S = Z_2$. For a module M, $S(M) = Z_2(M)$, the second singular of M.
- 2. S = Snr. For a module M, Snr(M) is a submodule of M s.t.
 - (a) J(Snr(M)) = Snr(M) {i.e. Snr(M) has no maximal submodule}.
 - (b) $A \leq Snr(M)$, for every submodule A of M such that J(A) = A, see [7].

While each the following two properties is a semiradical property (but not radical property), see [7].

- 1. S = Z. For a module M, S(M) = Z(M), the singular submodule of M.
- 2. S = Soc. For a module $M, S(M) = Soc(M) = \sum_{A \text{ is simple}} A \leq M_A$.
- 3. S = M. For a module M, $S(B) = M(B) = \sum_{A \text{ is regular}} A \leq M$, the unique maximal regular submodule of $B\{M(B) \text{ is called semi Broun-McCoy radical}\}$.

Let S be a semiradical property. It's known that

- 1. *M* has $S \iff S(M) = M$.
- 2. S(S(M)) = S(M).
- 3. If $M = \bigoplus_{i \in I} N_i$, then $S(M) = \bigoplus_{i \in I} S(N_i)$, where *i* is any index set.
- 4. If S(M) = 0, then S(A) = 0, $\forall A \leq M$.

5. For any s.e.s. $0 \longrightarrow M \longrightarrow N \longrightarrow K \longrightarrow 0$, if S(M) = 0 and S(K) = 0, then S(N) = 0, see [7].

Recall that a semiradical property S is called hereditary if S is closed under submodules, see [7]. In this paper, S is a semiradical algebraic property, unless otherwise stated.

Definition 1.1. Let M and A be R-modules. We say that M is s.p-A-projective, if for any epimorphism $f : A \longrightarrow B$, where B is any R-modules such that S(B) = 0 and for any homomorphism $g : M \longrightarrow B$, there exists a homomorphism $h : M \longrightarrow A$ such that $f \circ h = g$.

We say that a module M is s.p-projective if M is s.p-A-projective, for any module A. Clearly that every projective module is s.p-projective.

Remark 1.2. Every module has S is s.p-projective.

Proof. Suppose that $f : A \longrightarrow C$ be an epimorphism with S(C) = 0 and $\alpha : M \rightarrow C$ be a homomorphism. Since S(M) = M, $\alpha = 0$, by [7]. Hence α can be lifted to a homomorphism $0 = \beta : M \rightarrow A$ s.t. $f \circ \beta = \alpha$. \Box

Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) = 0 is closed under homomorphic images of M for every module M, see [7]. **Remark 1.3.** Let S be a cohereditary property and let M and K be modules such that S(K) = 0. Then M is K-projective $\Leftrightarrow M$ is s.p-K-projective.

Proof $. \Rightarrow$) clear.

 \Leftarrow) Assume that $f: K \to K_1$ be an epimorphism and $g: M \to K_1$ be a homomorphism. Since S(K) = 0 and S is cohereditary property, then $S(K_1) = 0$. But M is s.p-K-projective, so there exists a homomorphism $h: M \to K$ s.t. $f \circ h = g$. Thus M is K-projective. \Box

Remark 1.4. Let *M* and *A* be modules and $f: M \to B$ be any epimorphism s.t. S(B) = 0. Then *M* is *A*-projective $\Leftrightarrow M$ is s.p-A-projective.

Proof $. \Rightarrow$) clear.

 \Leftarrow) Assume that $f: A \to B$ be an epimorphism such that S(B) = 0 and let $g: M \to B$ be a homomorphism. But M is s.p-A-projective, therefore there exists a homomorphism $h: M \to A$ s.t. $f \circ h = g$. Thus M is A-projective. \Box

Proposition 1.5. Let *M* and *A* be modules. If S(A) = 0 and *A* is s.p- projective, then every short exact sequence: $0 \to V \xrightarrow{f} M \xrightarrow{g} A \to 0$ is split.

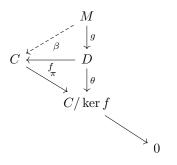
Proof. Look the following graph:

Since A is s.p- projective and S(A) = 0, there exists a homomorphism $h: A \to M$ such that $g \circ h = I_A$. Hence g has a right inverse. Thus by [8], the sequence is split. \Box

Theorem 1.6. Let M and C be modules. Then M is s.p-C-projective \Leftrightarrow for any epimorphism $f : C \to D$, where Kerf is s.p-closed submodule of C and $\beta : M \to C$ be any homomorphism, there exists $g : M \to D$ be a homomorphism s.t. $f \circ g = \beta$.

Proof $\cdot \leftarrow$) clear.

 \Rightarrow) Let *M* be s.p-C-projective and $f: C \to D$ be an epimorphism such that Kerf is s.p-closed submodule of *C*. By the first isomorphism theorem, $C/Kerf \cong D$, then there exists an isomorphism $\theta: D \to C/Kerf$ define as follows $\theta(d) = c + Kerf$, where $d \in D$ such that f(c) = d. Now look the following graph:



where π is the natural epimorphism. Since ker f is s.p-closed submodule of C, $S(C/\ker f) = 0$, so S(D) = 0. But M is s.p-C-projective, therefore there exists a homomorphism $\beta : M \to C$ such that $\pi \circ \beta = \theta \circ g$. Claim that $f \circ \beta = \theta \circ g$. To show that, let $x \in M$, then $\pi \circ \beta(x) = \beta(x) + \ker f = \theta \circ g(x) = c + \ker f$, where $c \in C$ such that f(c) = g(x). Implies that $\beta(x) - c \in \ker f$, so $f(\beta(x) - c) = 0$. Hence $f(\beta(x)) = f(c) = g(x)$. Thus $f \circ h = g$. \Box

Example 1.7. 1. Let S = Snr, consider the module Q as Z-module. Since S(Q) = Q, by rem 1.2, Q is s.p-projective. But Z is a PID and Q is not a free Z-module, then Q is not projective.

2. Let S = Snr, consider Z/nZ as Z-module. Now consider the short exact sequence:

$$0 \longrightarrow nZ \xrightarrow{i} Z \xrightarrow{\pi} Z/nZ \longrightarrow 0$$

where *i* is the inclusion map and π is the natural epimorphism. Since *Z* is indecomposable module, $nZ \notin \bigoplus Z, \forall n \geq 2$. So the sequence is not split. Hence by [8], Z/nZ is not *Z*-projective. But $S(Z/nZ) \cong S(Z_n)$ and Z_n is finitely generated, so $J(Z_n) \neq Z_n$. Then $S(Z/nZ) \cong S(Zn) = 0$. Thus by rem. 1.4, Z/nZ is not s.p-Z-projective.

3. Let S = M, consider $Z_{P^{\infty}}$ as Z- module. Let $f: Z_{P^{\infty}} \to Z_{P^{\infty}}$ be a map defined by $f(\frac{n}{Pm} + Z) = \frac{n}{Pm-1} + Z = p(\frac{n}{pm} + Z)$. Claim that f is an epimorphism. Since for every $y = p(\frac{n}{pm} + Z) \in Z_{P^{\infty}}$, there exists $x = \frac{n}{pm} + Z \in Z_{P^{\infty}}$ such that f(x) = y.

Now let $Z_{P^{\infty}} = \bigcup_m Zpm$ and let $x \in Zpm$, since when $m \neq 1$, then pm is not devoid of square, so x is not regular, by [12]. Now if m = 1, then x is regular, by [12]. Hence $S(Z_{P^{\infty}}) = Z_p$, so $S(Z_{P^{\infty}}/\ker f) \cong S(Z_{P^{\infty}}) = Z_p$. Then ker f is not s.p-closed submodule of $Z_{P^{\infty}}$. Thus by Theorem 1.6, $Z_{P^{\infty}}$ is not s.p-Z-projective.

Proposition 1.8. Let M be a module. If A be a semisimple module, then M is s.p- A-projective.

Proof. Suppose that $f: A \to B$ be an epimorphism such that S(B) = 0 and $g: M \to B$ be a homomorphism. But A is semisimple, so ker $f \leq \bigoplus A$. Hence f is split and so by [8], there exists $f_1: B \to A$ such that $f \circ f_1 = I_B$. Let $h = f_1 \circ g: M \to A$. Cleary that $f \circ h = g$. Thus M is s.p-A-projective module. \Box

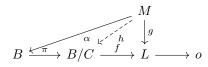
Corollary 1.9. Let S be a hereditary property and $M = A_1 \bigoplus A_2$ be a module such that A_1 has S and A_2 is semisimple. Then M is s.p-M-projective module.

Proof. Since $M = A_1 \bigoplus A_2$ be a module such that A_1 has S and A_2 is semisimple, then by [2], M is semisimple. Thus by prop. 1.8, M is s.p-M-projective module. \Box

Corollary 1.10. Let S be a hereditary property and M be a module. If $M = S(M) \bigoplus M_1$, where M_1 is semisimple, then M is s.p.M- projective module.

Proposition 1.11. Let M and B be modules and C be a submodule of a module B. If M is s.p-B-projective module, then M is s.p-B/C-projective.

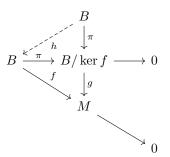
Proof. Let $f: B/C \to L$ be epimorphism such that S(L) = 0 and $g: M \to L$ be a homomorphism. Look the following graph:



where π is the natural epimorphism. Since M be s.p-B-projective, $f \circ \pi$ is an epimorphism, then there exists a homomorphism $\alpha : M \to B$ s.t. $f \circ \pi \circ \alpha = g$. Let $h = \pi \circ \alpha : M \to B/C$. $f \circ h = f \circ \pi \circ \alpha = g$. Thus M is s.p-B/C-projective. \Box

Proposition 1.12. Let A be s.p-B-projective module and let $f : B \to M$ be an epimorphism such that ker f is s.p-closed submodule in B, then there exists a homomorphism $h \in End(B)$ s. t. $h(\ker(f)) \leq \ker(f)$.

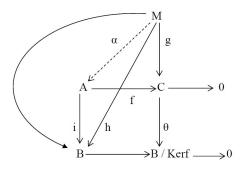
Proof. Suppose that $f: B \to M$ be an epimorphism such that ker f is s.p-closed submodule of B then by the first isomorphism theorem, $B/\ker f \cong M$. Consider the following diagram:



where π is the natural epimorphism and g is the isomorphism defined by $g(x + \ker(f)) = f(x)$ for all $x \in B$. Since A is s.p-B-projective module, $S(B/\ker f) = 0$. Hence there exists a homomorphism $h: B \to B$ such that $f \circ h = g \circ \pi$. To show that $h(\ker(f)) \leq \ker(f)$. Since $f \circ h(\ker f) = g \circ \pi(\ker f) = g(\pi(\ker f)) = g(0) = 0$, we have $f \circ h(\ker f) = 0$. Thus $h(\ker(f)) \leq \ker(f)$. \Box

Proposition 1.13. Let S be a cohereditary property and let M and B be modules such that S(B) = 0. If M is s.p-B-projective then for every submodule A of B, M is A-projective.

Proof. Let $f: A \to C$ be an epimorphism and $g: M \to C$ be a homomorphism. Look the following graph:



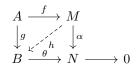
where *i* is the inclusion map and π is the natural epimorphism. Define $\theta: C \to B/\ker f$ as follows $\theta(c) = b + \ker f$ for each $c \in C$, f(a) = c. Now we want to show θ is well define, let c_1 and $c_2 \in C$ such that $c_1 = c_2$, then $f(a_1) = f(a_2) \Rightarrow f(a_1) - f(a_2) = 0 \Rightarrow f(a_1 - a_2) = 0 \Rightarrow a_1 - a_2 \in \ker f$, so $a_1 + \ker f = a_2 + \ker f$. Then $\theta(c_1) = \theta(c_2)$. Thus θ is well define. \Box

Now we want to show θ is homomorphism. Let $c_1, c_2 \in C$, then $\theta(c_1+c_2) = a_1+a_2+\ker f = a_1+\ker f + a_2+\ker f = \theta(c_1) + \theta(c_2)$ and $\theta(rc) = ra + \ker f = r\theta(c)$. Since S(B) = 0 and S is cohereditary property, then $S(B/\ker f) = 0$. But M is s.p-B-projective, therefore there exists a homomorphism $h: M \to B$ s.t. $\pi \circ h = \theta \circ g$.

Claim that $h(M) \leq A$. Let $x \in h(M)$, then there exists $y \in M$ such x = h(y). Since $\pi \circ h(y) = \theta \circ g(y) = \theta \circ f(a)$, for some $a \in A$. So $\pi \circ h(y) = a + \ker f \Rightarrow \pi(h(y)) = a + \ker f$. Hence, $\pi(x) = a + \ker f$. This means that $a + \ker f = x + \ker f$ and so, $a - x = a - h(y) \in \ker f$. This implies that $h(M) \leq A$. Define $\alpha : M \to A$ by $\alpha(m) = h(m)$, for each $m \in M$. Then $i \circ \alpha(m) = i(\alpha(m)) = \alpha(m) = h(m)$. Now we want to show $f \circ \alpha = g$. Since $\theta \circ f \circ \alpha(m) = \pi \circ i \circ \alpha(m) = \pi \circ \alpha(m) = \pi \circ h(m) = \theta \circ g(m)$. But θ is monomorphism, therefore $f \circ \alpha = g$. Thus Mis A-projective.

Proposition 1.14. Let M, A and B be modules such that A is projective. Let $f : A \to M$ be an epimorphism. If for any homomorphism $g : A \to B$, there exists a homomorphism $h : M \to B$ such that $h \circ f = g$, then M is s.p-B-projective.

Proof. Let $\theta : B \in N$ be an epimorphism such that S(N) = 0 and $\alpha : M \to N$ be a homomorphism. Now look the following graph:

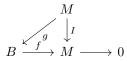


Since A is projective, there exists a homomorphism $g: A \to B$, such that $\theta \circ g = \alpha \circ f$. By assumption, there exists a homomorphism $h: M \to B$, such that $h \circ f = g$, implies that $\theta \circ h \circ f = \theta \circ g = \alpha \circ f$. \Box

Now, let $x \in M$, then $(\theta \circ h)(x) = \theta(h(x)) = \theta(h(f(y)))$, where x = f(y), for some $y \in A$. Hence $(\theta \circ h)(x) = (\theta \circ h \circ f)(y) = (\theta \circ h)(f(y)) = (\theta \circ g)(y) = \alpha(f(y)) = \alpha(x) \Rightarrow \theta \circ h = \alpha$. Thus M is s.p-B-projective module.

Proposition 1.15. Let M and B be modules. if M is s.p-B-projective, then any epimorphism $f : B \to M$ with ker f is s.p-closed of B is split.

Proof. Suppose that *M* is a s.p-*B*-projective module and $f: B \to M$ be an epimorphism such that ker *f* is s.p-closed submodule of *B*. Look the following graph:



where I is the identity map. Then by th. 1.6, there exists a homomorphism $g: M \to B$ s.t. $f \circ g = I$. Hence f has a right inverse. Thus f is split by [8]. Then \leq_{\bigoplus} of B. \Box

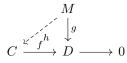
Proposition 1.16. Let M be a module. Then the following statements are equivalent:

- 1. M is s.p- projective module.
- 2. For any epimorphism $\theta : A \to B$ such that S(B) = 0, the homomorphism $Hom(I, \theta) : Hom(M, A) \to Hom(M, B)$ is an epimorphism.
- 3. For every epimorphism $\alpha: L \to K$ such that S(K) = 0, $\alpha \circ Hom(M, L) = Hom(M, K)$.

Proof. $1 \Rightarrow 2$) Let $\theta : A \to B$ be an epimorphism such that S(B) = 0 and $g \in Hom(M, B)$. Since M is s.p- projective, then there exists a homomorphism $\beta : M \to A$ such that $f \circ \beta = g$. So $Hom(I, \theta) \circ h = g$, hence $\beta \in Hom(M, A)$. Thus $Hom(I, \theta)$ is an epimorphism.

 $2 \Rightarrow 3$) Let $\alpha : L \to K$ be an epimorphism such that S(K) = 0. By (2) $Hom(I, \theta) : Hom(M, L) \to Hom(M, K)$ is an epimorphism. Now we want to show that $\alpha \circ Hom(M, L) = Hom(M, K)$. Let $\zeta \in Hom(M, K)$, then there exists $\beta \in Hom(M, L)$ s.t. $Hom(I, \alpha) \circ \beta = \zeta$. Implies that $\alpha \circ \beta = \zeta$. Thus $\zeta \in \alpha \circ Hom(M, L)$, so $Hom(M, L) \leq \alpha \circ Hom(M, K)$. Clearly $\alpha \circ Hom(M, K) \leq Hom(M, L)$. Thus $\alpha \circ Hom(M, L) = Hom(M, K)$.

 $3 \Rightarrow 1$) Let $f: C \to D$ be an epimorphism such that S(D) = 0 and $g: M \to D$ be a homomorphism. Look the following graph:



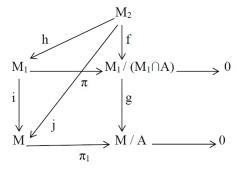
By (3), $f \circ Hom(M, C) = Hom(M, D)$ and $g \in Hom(M, D)$ there exists $h \in Hom(M, N)$ s. t. $f \circ h = g$ and hence $f \circ h = g$. Thus M is s.p- projective module. \Box

2 Characterization and the direct summand of s.p-projective modules

Theorem 2.1. Let $M = M_1 \bigoplus M_2$ be a module. If M_2 is s.p- M_1 - projective. Then for every s.p- closed submodule A of M with $M = M_1 + A$, there exists a submodule K of A such that $M = M_1 \bigoplus K$.

Proof. Let $f: M_2 \to M_1/(M_1 \cap A)$ be a map defined as follows. Let $m_2 \in M_2, f(m_2) = x + (M_1 \cap A)$, where $m_2 = x + y, x \in M_1$ and $y \in A$.

Claim that f is well defined, to show that. Let $m_2 = m'_2$, where $m_2 = x + y$ and $m'_2 = x_1 + y_1, x, x_1 \in M_1$ and $y, y_1 \in A$, then $x + y = x_1 + y_1$. So $x - x_1 = y_1 - y \in (M_1 \cap A)$.



Therefore $(x - x_1) \in (M_1 \cap A)$, then $(x - x_1) + (M_1 \cap A) = M_1 \cap A$. Hence $x + (M_1 \cap A) = x_1 + (M_1 \cap A)$. Then $f(m_2) = f(m'_2)$. Thus f is well defined. By the second isomorphism theorem, $M/A = (M_1 + A)/A \cong M_1/(M_1 \cap A)$.

Let $g: M_1/(M_1 \cap A) \to M/A$ be the isomorphism defined by $g(m_1 + (M_1 \cap A)) = m_1 + A$. Now look the following graph:

where π and π_1 are the natural epimorphisms and i and j are the inclusion maps. Since A is s.p-closed submodule of M, S(M/A) = 0. But $M/A \cong M_1/(M_1 \cap A)$, so $S(M_1/(M_1 \cap A)) = 0$. Since M_2 is s.p- M_1 -projective, there exists $h: M_2 \to M_1$ such that $\pi \circ h = f$. Since $(i \circ h + j)(M_2) = i \circ h(M_2) + j(M_2) = h(M_2) + M_2$. Now, we have $M = M_1 + M_2 = M_1 + h(M_2) + M_2 = M_1 + (i \circ h + j)(M_2)$. Let $x \in M_1 \cap (i \circ h + j)(M_2)$, $x = i \circ h(y) - j(y)$, for some $y \in M_2$. So, x = h(y) - y. Thus $h(y) - x = y \in M_1 \cap M_2 = 0$ and h(y) - x = y = 0. Hence, x = 0. Thus $M = M_1 \bigoplus (i \circ h - j)(M_2)$.

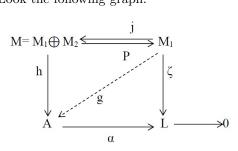
We claim that $(i \circ h-j)(M_2) \leq A$, to show that let $z \in M_2$, then z = x + y, where $x \in M_1$ and $y \in A$. So

$$\begin{aligned} (h(z)-z) + A &= \pi_1((i \circ h-j)(z)) \\ &= \pi_1 \circ i \circ h(z) - \pi_1 \circ j(z) \\ &= g \circ \pi \circ h(z) - \pi_1 \circ j(z) \\ &= g \circ f(z) - \pi_1 \circ j(z) \\ &= g(x + (M_1 \cap A)) - \pi_1 \circ j(z) \\ &= (x + A) - (z + A) \\ &= x - z + A \\ &= -y + A \\ &= -y + A \\ &= A \end{aligned}$$

Hence, $h(z)-z \in A$, for every $z \in M_2$. Thus $(i \circ h - j)(M_2) \leq A$. \Box

Proposition 2.2. Every direct summand of s.p- projective module is s.p-projective.

Proof. Let $M = M_1 \bigoplus M_2$ is s.p- projective. Let $\alpha : A \to L$ be an epimorphism and let $\zeta : M_1 \to B$ be a homomorphism such that S(L) = 0. Look the following graph:

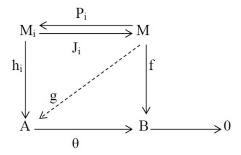


where j is the inclusion map and P is the projection map. Since M is s.p-projective, then there exists a homomorphism $h: M \to A$ s.t. $\alpha \circ h = \zeta \circ P$. Let $\zeta = h \circ j: M_1 \to A$.

Now $f \circ g = f \circ h \circ j = \theta \circ P \circ j = \theta \circ I = \theta$. Thus M_1 is s.p-projective. \Box

Proposition 2.3. Let $M = \bigoplus_{i \in I} M_i$ be a module. If M_i is s.p-projective for each $i \in I$, then M is s.p- projective module.

Proof. Let $\theta : C \to D$ be an epimorphism such that S(D) = 0 and $f : M \to D$ be a homomorphism. Look the following graph:



where J_i are the inclusions maps and P_i and the projections maps .Since M_i is s.p- projective, then $\forall i \in I$, there exists a homomorphism $h_i : M_i \to A$ such that $\theta \circ h_i = f \circ J_i$.

Define $g: M \to A$ by $g((m_i)i \in I) = \sum_{i \in I} h_i(m_i)$. Clearly that g is a homomorphism. Claim that $\theta \circ g = f$. To show that, let $(m_i)_{i \in I} \in M = \bigoplus_{i \in I} M_i$, then

 θ

$$\circ g((m_i)_{i \in I}) = \theta(\sum_{i \in I} h_i(m_i))$$
$$= \sum_{i \in I} \theta \circ h_i(m_i)$$
$$= \sum_{i \in I} f \circ J_i(m_i)$$
$$= f(\sum_{i \in I} J_i(m_i))$$
$$= f((m_i)_{i \in I}).$$

Thus $\theta \circ g = f$. \Box

Proposition 2.4. Let M be s.p- projective module and L be s.p- closed submodule of M. If M/L is isomorphic to a direct summand B of M, then L is a direct summand of M.

Proof. Let $\pi : M \to M/L$ be the natural epimorphism and $\beta : M/L \to B$ be an isomorphism. Let $\beta = \pi \circ f : M \to B$. Clearly that f is an epimorphism and ker h = L. Then by Proposition 2.2, B is s.p-projective and hence by prop. 1.15, h is split. Thus ker $h = L \leq_{\bigoplus} M$. \Box

Let L be a submodule of a module M. L is called a fully invariant submodule of M if $f(L) \leq L$, for every homomorphism $f: M \to M$, see [8].

Corollary 2.5. If $M = A \bigoplus B$ is s.p- projective module, then A is s.p-B-projective and B is s.p-A-projective.

A module M is called have the (SIP) if the intersection of every two direct summands of M is a direct summand of M, see [11]. A module M is called duo module if every submodule of M is fully invariant, see [10].

Proposition 2.6. If a module M is duo, s.p- projective and has the SIP. Then for any two direct summands C and D of M, C + D is s.p-projective module.

Proof. Let *C* and *D* be any direct summands of *M*, then $C \cap D$ is a direct summand of *M*. Let $M = (C \cap D) \bigoplus Z$, for some $Z \leq M$. Then $C = (C \cap D) \bigoplus (C \cap Z), D = (C \cap D) \bigoplus (D \cap Z)$, by modular law. Therefore $C + D = [(C \cap D) \bigoplus (C \cap Z)] + [(C \cap D) \bigoplus (D \cap Z)] = [(C \cap D) \bigoplus (C \cap Z)] + (D \cap Z)$. Since *M* is duo module, then $[(C \cap D) \bigoplus (C \cap Z)] \cap (D \cap Z) = ((C \cap D) \cap (D \cap Z)) \bigoplus ((C \cap Z) \cap (D \cap Z)) = 0$, by [3]. Hence $C + D = (C \cap D) \bigoplus (C \cap Z) \bigoplus (D \cap Z)$. Since *M* has SIP, $C \cap D, C \cap Z$ and $D \cap Z$ are direct summands of *M*. By prop. 2.2, $C \cap D, C \cap Z$ and $D \cap Z$ are s.p- projective. Thus C + D is s.p-projective module, by prop. 2.3. \Box

Proposition 2.7. Let X and X_1 be a submodules of a module M such that X_1 is a direct summand of M. If $X + X_1$ is s.p-projective, then $(X + X_1)/X_1$ is s.p-projective.

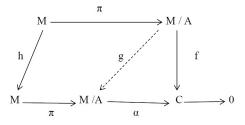
Proof. Let $M = X_1 \bigoplus Z$, for some submodule Z of M. Hence $X + X_1 = X_1 \bigoplus (X + X_1) \cap Z$, by modular law. Since $X + X_1$ is s.p-projective, $((X + X_1) \cap Z)$ is s.p-projective, by Proposition 2.2. But $(X + X_1)/X_1 \cong (X + X_1) \cap Z$, therefore $(X + X_1)/X_1$ is s.p- projective. \Box

Proposition 2.8. Let X and Y be submodules of a module M s.t. Y is a direct summand of M. If X + Y is s.p-projective module and $X \cap Y$ is s.p-closed of M, then $X \cap Y$ is a direct summand of X.

Proof. Let $\pi : X \to X/(X \cap Y)$ is the natural epimorphisms. Since $(X + Y)/Y \cong X/(X \cap Y)$, by the second isomorphism theorem and Y is a summand of M, then $M = Y \bigoplus Z$ for a submodule Z of N. So $X + Y = Y \bigoplus ((X + Y) \cap Z)$, by modular law. Since X + Y is s.p-projective, $(X + Y) \cap Z$ is s.p-projective, by Proposition 2.2. Hence (X + Y)/Y is s.p-projective and so $X/(X \cap Y)$ is s.p-projective. Since $X \cap Y$ is s.p-closed of M, $S(M/(X \cap Y)) = 0$. Hence $S(X/(X \cap Y)) = 0$, by [7]. Thus $X \cap Y$ is s.p- closed of X. But $\pi : X \to X/(X \cap Y)$ is epimorphism and ker $\pi = X \cap Y$, therefore $X \cap Y \leq_{\bigoplus} X$, by prop. 1.15. \Box

Proposition 2.9. Let M be s.p-M- projective module and let A be a fully invariant submodule of M. Then M/A is a s.p-M/A-projective module.

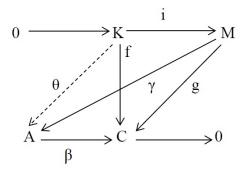
Proof. Let $\alpha : M/A \to C$ be an epimorphism such that S(C) = 0 and let $f : M/A \to C$ is a homomorphism. Look the following graph:



where π is the natural epimorphisms. Since M is s.p-projective, therefore there exists a homomorphism $h: M \to M$, such that $\alpha \circ \pi \circ h = f \circ \pi$. Let $g: M/A \to M/A$ define by g(x + A) = h(x) + A, for all $x \in M$. Claim that g is well defined. Let $x_1 + A = x_2 + A$, which implies that $x_1 - x_2 \in A$. Since A is a fully invariant submodule, thus $h(x_1 - x_2) \in h(A) \leq A$. Hence $h(x_1) + A = h(x_2) + A$. Clearly that g is a homomorphism. Now $\alpha \circ g(m_1 + A) =$ $\alpha \circ \pi \circ h(m_1) = f \circ \pi(m_1) = f(m_1 + A)$. Thus M/A is s.p-M/A-projective module. \Box

Proposition 2.10. Let M and A be modules. If M is s.p- A- projective and every quotient of A is M-injective, then any submodule K of M is s.p-A-projective.

Proof. Suppose that $\beta : A \to C$ be an epimorphism s.t. S(C) = 0. Let $f : K \to B$ be a homomorphism. Look the following graph. Since B is M-injective, there exists a homomorphism $g : M \to B$ s.t. $g \circ i = f$. But M is s.p-A-projective, so there exists a homomorphism $\gamma : M \to A$ s.t. $\beta \circ \gamma = g$. Define $\theta = \gamma \circ i : K \to A$, now let $x \in K, (\beta \circ \theta)(x) = (\beta \circ \gamma \circ i)(x) = (g \circ i)(x) = g(x)$. Thus K is s.p-A-projective. \Box



References

- E. Al-Dhaheri and B. Al-Bahrani, On essential (complement) submodules with respect to an arbitrary submodule, Iraqi J. Sci. 59 (2018), no. 2B, 904–908.
- [2] E.A.M. Al-Dhaheri and B.H. Al-Bahrani, Semisimple modules relative to a semiradical property, Iraqi J. Sci. 63 (2022), no. 11, 4901–4910.
- [3] G.F. Birkenmeier, B.J. Muller and S.T. Rizvi, Modules in which every fully invariant submodules is essential in a direct Summand, Comm. Algebra 30 (2002), 1395–1415.
- [4] T.J. Cheathem and J.R. Smith, Regular modules and Semisimple modules, Pacific J. Math. 65 (1976), 315–323.
- [5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules, supplements and projectivity in module theory*, Springer Science & Business Media, 2006.
- [6] K. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
- [7] N. Hamad and B. AL-Hashimi, Some results on the Jacobson radicals and the M-radicals basic, Sci. Eng. 1 (2002), no. 2A.
- [8] F. Kasch, Modules and rings, Academic Press, London, 1982.
- [9] S.H. Mohamed and B.J. Muller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990.
- [10] A.C. Ozcan, A. Harmanci and P.F. Smith, Duo modules, Glasgow Math. J. 48 (2006), 533–545.
- [11] G.V. Wilson, Modules with the direct summand intersection property, Comm. Algebra 14 (1986), no. 1, 21–38.
- [12] S.M. Yaseen, On F-regular modules, M.S. thesis, Univ. of Baghdad, Iraq, 1993.
- [13] Y. Zhou, Generalization of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7 (2000), no. 3, 305–318.