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Abstract

In this paper, we introduce a generalization of the projective modules. We show that for a module M = M1

⊕
M2. If

M2 is s.p-M1-projective, then for every s.p-closed submodule A of M with M = M1 +A, there exists a submodule K
of A such that M = M1

⊕
K.
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1 Introduction

Throughout article all rings are associative with identity and all modules are unitary left R-modules. Let N be a
submodule of a moduleM . N is called an essential submodule ofM (indicate byN ≤e M) ifN

⋂
K ̸= 0, ∀0 ̸= K ≤ M .

A submodule B of M is called a closed submodule of M if B has no proper essential extension in M, see [6].

Let M be a module, recall that the socle of M (denoted by Soc(M)) is the sum of all simple submodules of M . A
module M is said to be a semisimple module if Soc(M) = M , see [6, 8].

Let M be a module. Recall that the Jacobson radical of M (denoted by J(M)) is the intersection of all maximal
submodules of M. If M has no maximal submodule, we write J(M)=M, see [13].

Let m ∈ M . Recall that ann (m) = {r ∈ R : rm = 0}. For a module M, the singular submodule is defined as
follows Z(M) = {m ∈ M |ann(m) ≤e R} or equivalently, Im = 0 for some essential left ideal I of R. If Z(M) = M ,
then M is called a singular module. If Z(M) = 0, then M is called a nonsingular module. The second singular (or
Goldie torsion) submodule of a module M (denoted by Z2(M)) is defined as follows Z(M/Z(M)) = Z2(M)/Z(M), see
[6].

Let R be a ring. An element x ∈ R is said to be regular if there exists an element r ∈ R such that x = xrx. R
is called regular if every element in R is regular. A module B is called F-regular if for all 0 ̸= x ∈ B,R/ann(x) is
regular, equivalently an R-module M is F-regular if and only if for all x ∈ B and y ∈ R, there exists r ∈ R such that
ryrx = rx, see [4].

Let N be a module and M(N) =
∑

K ≤ N
K is regular

N . Then N is F-regular if and only if M(N) = N , see [7]. Let A

be a module, a module M is called A-projective if for every submodule B of A, any homomorphism g from M to A/B
can be lifted to a homomorphism h from M to A. It is known that a module M is projective if M is A-projective, for
every module A, see [5, 8, 9].
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Let S be a semiradical property. A submodule N of a module is said to be s.p-closed submodule of M (denoted
by N ≤s.p−c M) if N ≤ K ≤ M and K/N has S implies that N = K. Equivalent A is s.p-closed submodule of M if
and only if S(M/A) = 0, see [1].

In this paper we introduce the concept of projective modules relative to a semiradical property. Let S be a
semiradical property. A property S is said to be a radical property if:

1. for each module M, there exists a submodule (denoted by S(M)) such that

(a) S(M) has S.
(b) B ≤ S(M), for any submodule B of M such that B has S.

2. If f : M −→ L is an epimorphism and M has S, then L has S.

3. S(M/S(M)) = 0 for each module M , see [7].

A property S is said to be a semiradical property if it satisfies the following conditions 1 and 2, see [7]. It’s known
that each of the following two properties is a radical property, see [7].

1. S = Z2. For a module M , S(M) = Z2(M), the second singular of M .

2. S = Snr. For a module M , Snr(M) is a submodule of M s.t.

(a) J(Snr(M)) = Snr(M) {i.e. Snr(M) has no maximal submodule}.
(b) A ≤ Snr(M), for every submodule A of M such that J(A) = A, see [7].

While each the following two properties is a semiradical property (but not radical property), see [7].

1. S = Z. For a module M , S(M) = Z(M), the singular submodule of M .

2. S = Soc. For a module M , S(M) = Soc(M) =
∑

A ≤ M
A is simple

A.

3. S = M . For a module M , S(B) = M(B) =
∑

A ≤ M
A is regular

A, the unique maximal regular submodule of B{M(B)

is called semi Broun-McCoy radical}.

Let S be a semiradical property. It’s known that

1. M has S ⇐⇒ S(M) = M .

2. S(S(M)) = S(M).

3. If M =
⊕

i∈I Ni, then S(M) =
⊕

i∈I S(Ni), where i is any index set.

4. If S(M) = 0, then S(A) = 0, ∀A ≤ M .

5. For any s.e.s.0 −→ M −→ N −→ K −→ 0, if S(M) = 0 and S(K) = 0, then S(N) = 0, see [7].

Recall that a semiradical property S is called hereditary if S is closed under submodules, see [7]. In this paper, S
is a semiradical algebraic property, unless otherwise stated.

Definition 1.1. Let M and A be R-modules. We say that M is s.p-A-projective, if for any epimorphism f : A −→ B,
where B is any R-modules such that S(B) = 0 and for any homomorphism g : M −→ B, there exists a homomorphism
h : M −→ A such that f ◦ h = g.

M

A B 0
h

g

f

We say that a module M is s.p-projective if M is s.p-A-projective, for any module A. Clearly that every projective
module is s.p-projective.

Remark 1.2. Every module has S is s.p-projective.

Proof . Suppose that f : A −→ C be an epimorphism with S(C) = 0 and α : M → C be a homomorphism. Since
S(M) = M , α = 0, by [7]. Hence α can be lifted to a homomorphism 0 = β : M → A s.t. f ◦ β = α. □

Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) = 0 is closed under
homomorphic images of M for every module M , see [7].
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Remark 1.3. Let S be a cohereditary property and let M and K be modules such that S(K) = 0. Then M is
K-projective ⇔ M is s.p-K-projective.

Proof . ⇒) clear.

⇐) Assume that f : K → K1 be an epimorphism and g : M → K1 be a homomorphism. Since S(K) = 0 and S is
cohereditary property, then S(K1) = 0. But M is s.p-K-projective, so there exists a homomorphism h : M → K s.t.
f ◦ h = g. Thus M is K-projective. □

Remark 1.4. Let M and A be modules and f : M → B be any epimorphism s.t. S(B) = 0. Then M is A-projective
⇔ M is s.p-A-projective.

Proof . ⇒) clear.

⇐) Assume that f : A → B be an epimorphism such that S(B) = 0 and let g : M → B be a homomorphism. But
M is s.p-A-projective, therefore there exists a homomorphism h : M → A s.t. f ◦ h = g. Thus M is A-projective. □

Proposition 1.5. Let M and A be modules. If S(A) = 0 and A is s.p- projective, then every short exact sequence:

0 → V
f→ M

g→ A → 0 is split.

Proof . Look the following graph:

A

M A 0
h

IA

g

Since A is s.p- projective and S(A) = 0, there exists a homomorphism h : A → M such that g ◦ h = IA. Hence g
has a right inverse. Thus by [8], the sequence is split. □

Theorem 1.6. Let M and C be modules. Then M is s.p-C-projective ⇔ for any epimorphism f : C → D, where Kerf
is s.p-closed submodule of C and β : M → C be any homomorphism, there exists g : M → D be a homomorphism s.t.
f ◦ g = β.

Proof . ⇐) clear.

⇒) Let M be s.p-C-projective and f : C → D be an epimorphism such that Kerf is s.p-closed submodule of C.
By the first isomorphism theorem, C/Kerf ∼= D, then there exists an isomorphism θ : D → C/Kerf define as follows
θ(d) = c+Kerf , where d ∈ D such that f(c) = d. Now look the following graph:

M

C D

C/ ker f

0

β
g

π
f

θ

where π is the natural epimorphism. Since ker f is s.p-closed submodule of C, S(C/ ker f) = 0, so S(D) = 0. But M
is s.p-C-projective, therefore there exists a homomorphism β : M → C such that π ◦β = θ ◦g. Claim that f ◦β = θ ◦g.
To show that, let x ∈ M , then π ◦ β(x) = β(x) + ker f = θ ◦ g(x) = c + ker f , where c ∈ C such that f(c) = g(x).
Implies that β(x)− c ∈ ker f , so f(β(x)− c) = 0. Hence f(β(x)) = f(c) = g(x). Thus f ◦ h = g. □

Example 1.7. 1. Let S = Snr, consider the module Q as Z-module. Since S(Q) = Q, by rem 1.2, Q is s.p-
projective. But Z is a PID and Q is not a free Z-module, then Q is not projective.
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2. Let S = Snr, consider Z/nZ as Z-module. Now consider the short exact sequence:

0 −→ nZ
i→ Z

π→ Z/nZ −→ 0

where i is the inclusion map and π is the natural epimorphism. Since Z is indecomposable module, nZ ≰⊕
Z,∀n ≥ 2. So the sequence is not split. Hence by [8], Z/nZ is not Z-projective. But S(Z/nZ) ∼= S(Zn)

and Zn is finitely generated, so J(Zn) ̸= Zn. Then S(Z/nZ) ∼= S(Zn) = 0. Thus by rem. 1.4, Z/nZ is not
s.p-Z-projective.

3. Let S = M , consider ZP∞ as Z- module. Let f : ZP∞ → ZP∞ be a map defined by f( n
Pm + Z) = n

Pm−1 + Z =
p( n

pm+Z). Claim that f is an epimorphism. Since for every y = p( n
pm+Z) ∈ ZP∞ , there exists x = n

pm+Z ∈ ZP∞

such that f(x) = y.

Now let ZP∞ =
⋃

m Zpm and let x ∈ Zpm, since when m ̸= 1, then pm is not devoid of square, so x is not regular,
by [12]. Now if m = 1, then x is regular, by [12]. Hence S(ZP∞) = Zp, so S(ZP∞/ ker f) ∼= S(ZP∞) = Zp. Then ker f
is not s.p-closed submodule of ZP∞ . Thus by Theorem 1.6, ZP∞ is not s.p-Z-projective.

Proposition 1.8. Let M be a module. If A be a semisimple module, then M is s.p- A-projective.

Proof . Suppose that f : A → B be an epimorphism such that S(B) = 0 and g : M → B be a homomorphism. But
A is semisimple, so ker f ≤

⊕
A. Hence f is split and so by [8], there exists f1 : B → A such that f ◦ f1 = IB . Let

h = f1 ◦ g : M → A. Cleary that f ◦ h = g. Thus M is s.p-A-projective module. □

Corollary 1.9. Let S be a hereditary property and M = A1

⊕
A2 be a module such that A1 has S and A2 is

semisimple. Then M is s.p-M-projective module.

Proof . Since M = A1

⊕
A2 be a module such that A1 has S and A2 is semisimple, then by [2], M is semisimple.

Thus by prop. 1.8, M is s.p-M-projective module. □

Corollary 1.10. Let S be a hereditary property and M be a module. If M = S(M)
⊕

M1, where M1 is semisimple,
then M is s.p-M- projective module.

Proposition 1.11. Let M and B be modules and C be a submodule of a module B. If M is s.p-B-projective module,
then M is s.p-B/C-projective.

Proof . Let f : B/C → L be epimorphism such that S(L) = 0 and g : M → L be a homomorphism. Look the
following graph:

M

B B/C L o

α h
g

π f

where π is the natural epimorphism. Since M be s.p-B-projective, f ◦ π is an epiomorphism, then there exists a
homomorphism α : M → B s.t. f ◦ π ◦ α = g. Let h = π ◦ α : M → B/C. f ◦ h = f ◦ π ◦ α = g. Thus M is
s.p-B/C-projective. □

Proposition 1.12. Let A be s.p-B-projective module and let f : B → M be an epimorphism such that ker f is
s.p-closed submodule in B, then there exists a homomorphism h ∈ End(B) s. t. h(ker(f)) ≤ ker(f).

Proof . Suppose that f : B → M be an epimorphism such that ker f is s.p-closed submodule of B then by the first
isomorphism theorem, B/ ker f ∼= M . Consider the following diagram:
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B

B B/ ker f 0

M

0

h
π

f

π

g

where π is the natural epimorphism and g is the isomorphism defined by g(x+ ker(f)) = f(x) for all x ∈ B. Since A
is s.p-B-projective module, S(B/ ker f) = 0. Hence there exists a homomorphism h : B → B such that f ◦ h = g ◦ π.
To show that h(ker(f)) ≤ ker(f). Since f ◦ h(ker f) = g ◦ π(ker f) = g(π(ker f)) = g(0) = 0, we have f ◦ h(ker f) = 0.
Thus h(ker(f)) ≤ ker(f). □

Proposition 1.13. Let S be a cohereditary property and let M and B be modules such that S(B) = 0. If M is
s.p-B-projective then for every submodule A of B, M is A-projective.

Proof . Let f : A → C be an epimorphism and g : M → C be a homomorphism. Look the following graph:

where i is the inclusion map and π is the natural epimorphism. Define θ : C → B/ ker f as follows θ(c) = b + ker f
for each c ∈ C, f(a) = c. Now we want to show θ is well define, let c1 and c2 ∈ C such that c1 = c2, then
f(a1) = f(a2) ⇒ f(a1)− f(a2) = 0 ⇒ f(a1 − a2) = 0 ⇒ a1–a2 ∈ ker f , so a1 +ker f = a2 +ker f . Then θ(c1) = θ(c2).
Thus θ is well define. □

Now we want to show θ is homomorphism. Let c1, c2 ∈ C, then θ(c1+c2) = a1+a2+ker f = a1+ker f+a2+ker f =
θ(c1) + θ(c2) and θ(rc) = ra + ker f = rθ(c). Since S(B) = 0 and S is cohereditary property, then S(B/ ker f) = 0.
But M is s.p-B-projective, therefore there exists a homomorphism h : M → B s.t. π ◦ h = θ ◦ g.

Claim that h(M) ≤ A. Let x ∈ h(M), then there exists y ∈ M such x = h(y). Since π ◦ h(y) = θ ◦ g(y) = θ ◦ f(a),
for some a ∈ A. So π ◦ h(y) = a + ker f ⇒ π(h(y)) = a + ker f . Hence, π(x) = a + ker f . This means that
a + ker f = x + ker f and so, a − x = a − h(y) ∈ ker f . This implies that h(M) ≤ A. Define α : M → A by
α(m) = h(m), for each m ∈ M . Then i ◦ α(m) = i(α(m)) = α(m) = h(m). Now we want to show f ◦ α = g. Since
θ ◦ f ◦ α(m) = π ◦ i ◦ α(m) = π ◦ α(m) = π ◦ h(m) = θ ◦ g(m). But θ is monomorphism, therefore f ◦ α = g. Thus M
is A-projective.

Proposition 1.14. Let M , A and B be modules such that A is projective. Let f : A → M be an epimorphism.
If for any homomorphism g : A → B, there exists a homomorphism h : M → B such that h ◦ f = g, then M is
s.p-B-projective.

Proof . Let θ : B ∈ N be an epimorphism such that S(N) = 0 and α : M → N be a homomorphism. Now look the
following graph:

A M

B N 0

f

g
h

α

θ
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Since A is projective, there exists a homomorphism g : A → B, such that θ ◦ g = α ◦ f . By assumption, there
exists a homomorphism h : M → B, such that h ◦ f = g, implies that θ ◦ h ◦ f = θ ◦ g = α ◦ f . □

Now, let x ∈ M , then (θ ◦ h)(x) = θ(h(x)) = θ(h(f(y))), where x = f(y), for some y ∈ A. Hence (θ ◦ h)(x) =
(θ ◦ h ◦ f)(y) = (θ ◦ h)(f(y)) = (θ ◦ g)(y) = α(f(y)) = α(x) ⇒ θ ◦ h = α. Thus M is s.p-B-projective module.

Proposition 1.15. Let M and B be modules. if M is s.p-B-projective, then any epimorphism f : B → M with ker f
is s.p-closed of B is split.

Proof . Suppose that M is a s.p-B-projective module and f : B → M be an epimorphism such that ker f is s.p-closed
submodule of B. Look the following graph:

M

B M 0

g
I

f

where I is the identity map. Then by th. 1.6, there exists a homomorphism g : M → B s.t. f ◦ g = I. Hence f has a
right inverse. Thus f is split by [8]. Then ≤⊕ of B. □

Proposition 1.16. Let M be a module. Then the following statements are equivalent:

1. M is s.p- projective module.

2. For any epimorphism θ : A → B such that S(B) = 0, the homomorphism Hom(I, θ) : Hom(M,A) →
Hom(M,B) is an epimorphism.

3. For every epimorphism α : L → K such that S(K) = 0, α ◦Hom(M,L) = Hom(M,K).

Proof . 1 ⇒ 2) Let θ : A → B be an epimorphism such that S(B) = 0 and g ∈ Hom(M,B). SinceM is s.p- projective,
then there exists a homomorphism β : M → A such that f ◦ β = g. So Hom(I, θ) ◦ h = g, hence β ∈ Hom(M,A).
Thus Hom(I, θ) is an epimorphism.

2 ⇒ 3) Let α : L → K be an epimorphism such that S(K) = 0. By (2) Hom(I, θ) : Hom(M,L) → Hom(M,K)
is an epimorphism. Now we want to show that α ◦ Hom(M,L) = Hom(M,K). Let ζ ∈ Hom(M,K), then there
exists β ∈ Hom(M,L) s.t. Hom(I, α) ◦ β = ζ. Implies that α ◦ β = ζ. Thus ζ ∈ α ◦Hom(M,L), so Hom(M,L) ≤
α ◦Hom(M,K). Clearly α ◦Hom(M,K) ≤ Hom(M,L). Thus α ◦Hom(M,L) = Hom(M,K).

3 ⇒ 1) Let f : C → D be an epimorphism such that S(D) = 0 and g : M → D be a homomorphism. Look the
following graph:

M

C D 0
h

g

f

By (3), f ◦ Hom(M,C) = Hom(M,D) and g ∈ Hom(M,D) there exists h ∈ Hom(M,N) s. t. f ◦ h = g and
hence f ◦ h = g. Thus M is s.p- projective module. □

2 Characterization and the direct summand of s.p-projective modules

Theorem 2.1. Let M = M1

⊕
M2 be a module. If M2 is s.p- M1- projective. Then for every s.p- closed submodule

A of M with M = M1 +A, there exists a submodule K of A such that M = M1

⊕
K.

Proof . Let f : M2 → M1/(M1 ∩ A) be a map defined as follows. Let m2 ∈ M2, f(m2) = x + (M1 ∩ A), where
m2 = x+ y, x ∈ M1 and y ∈ A.

Claim that f is well defined, to show that. Let m2 = m′
2, where m2 = x + y and m′

2 = x1 + y1, x, x1 ∈ M1 and
y, y1 ∈ A, then x+ y = x1 + y1. So x–x1 = y1–y ∈ (M1 ∩A).
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Therefore (x− x1) ∈ (M1 ∩A), then (x− x1) + (M1 ∩A) = M1 ∩A. Hence x+ (M1 ∩A) = x1 + (M1 ∩A). Then
f(m2) = f(m′

2). Thus f is well defined. By the second isomorphism theorem, M/A = (M1 +A)/A ∼= M1/(M1 ∩A).

Let g : M1/(M1 ∩A) → M/A be the isomorphism defined by g(m1 + (M1 ∩A)) = m1 +A. Now look the following
graph:

where π and π1 are the natural epimorphisms and i and j are the inclusion maps. Since A is s.p-closed submodule
of M , S(M/A) = 0. But M/A ∼= M1/(M1 ∩ A), so S(M1/(M1 ∩ A)) = 0. Since M2 is s.p-M1-projective, there
exists h : M2 → M1 such that π ◦ h = f . Since (i ◦ h + j)(M2) = i ◦ h(M2) + j(M2) = h(M2) +M2. Now, we have
M = M1 + M2 = M1 + h(M2) + M2 = M1 + (i ◦ h + j)(M2). Let x ∈ M1 ∩ (i ◦ h + j)(M2), x = i ◦ h(y)–j(y),
for some y ∈ M2. So, x = h(y)–y. Thus h(y)–x = y ∈ M1 ∩ M2 = 0 and h(y)–x = y = 0. Hence, x = 0. Thus
M = M1

⊕
(i ◦ h–j)(M2).

We claim that (i ◦ h–j)(M2) ≤ A, to show that let z ∈ M2, then z = x+ y, where x ∈ M1 and y ∈ A. So

(h(z)–z) +A = π1((i ◦ h–j)(z))
= π1 ◦ i ◦ h(z)–π1 ◦ j(z)
= g ◦ π ◦ h(z)–π1 ◦ j(z)
= g ◦ f(z)–π1 ◦ j(z)
= g(x+ (M1 ∩A))− π1 ◦ j(z)
= (x+A)− (z +A)

= x− z +A

= −y +A

= A

Hence, h(z)–z ∈ A, for every z ∈ M2. Thus (i ◦ h− j)(M2) ≤ A. □

Proposition 2.2. Every direct summand of s.p- projective module is s.p-projective.

Proof . Let M = M1

⊕
M2 is s.p- projective. Let α : A → L be an epimorphism and let ζ : M1 → B be a

homomorphism such that S(L) = 0. Look the following graph:

where j is the inclusion map and P is the projection map. Since M is s.p-projective, then there exists a homomorphism
h : M → A s.t. α ◦ h = ζ ◦ P . Let ζ = h ◦ j : M1 → A.
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Now f ◦ g = f ◦ h ◦ j = θ ◦ P ◦ j = θ ◦ I = θ. Thus M1 is s.p-projective. □

Proposition 2.3. Let M =
⊕

i∈I Mi be a module. If Mi is s.p-projective for each i ∈ I, then M is s.p- projective
module.

Proof . Let θ : C → D be an epimorphism such that S(D) = 0 and f : M → D be a homomorphism. Look the
following graph:

where Ji are the inclusions maps and Pi an the projections maps .Since Mi is s.p- projective, then ∀i ∈ I, there exists
a homomorphism hi : Mi → A such that θ ◦ hi = f ◦ Ji.

Define g : M → A by g((mi)i ∈ I) =
∑

i∈I hi(mi). Clearly that g is a homomorphism. Claim that θ ◦ g = f . To
show that, let (mi)i∈I ∈ M =

⊕
i∈I Mi, then

θ ◦ g((mi)i∈I) = θ(
∑
i∈I

hi(mi))

=
∑
i∈I

θ ◦ hi(mi)

=
∑
i∈I

f ◦ Ji(mi)

= f(
∑
i∈I

Ji(mi))

= f((mi)i∈I).

Thus θ ◦ g = f . □

Proposition 2.4. Let M be s.p- projective module and L be s.p- closed submodule of M . If M/L is isomorphic to
a direct summand B of M , then L is a direct summand of M .

Proof . Let π : M → M/L be the natural epimorphism and β : M/L → B be an isomorphism. Let β = π◦f : M → B.
Clearly that f is an epimorphism and ker h = L. Then by Proposition 2.2, B is s.p-projective and hence by prop.
1.15, h is split. Thus ker h = L ≤⊕ M . □

Let L be a submodule of a module M . L is called a fully invariant submodule of M if f(L) ≤ L, for every
homomorphism f : M → M , see [8].

Corollary 2.5. If M = A
⊕

B is s.p- projective module, then A is s.p-B-projective and B is s.p-A-projective.

A module M is called have the (SIP) if the intersection of every two direct summands of M is a direct summand
of M , see [11]. A module M is called duo module if every submodule of M is fully invariant, see [10].

Proposition 2.6. If a module M is duo, s.p- projective and has the SIP. Then for any two direct summands C and
D of M , C +D is s.p-projective module.
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Proof . Let C and D be any direct summands of M , then C ∩ D is a direct summand of M . Let M = (C ∩
D)

⊕
Z, for some Z ≤ M . Then C = (C ∩ D)

⊕
(C ∩ Z), D = (C ∩ D)

⊕
(D ∩ Z), by modular law. Therefore

C + D = [(C ∩ D)
⊕

(C ∩ Z)] + [(C ∩ D)
⊕

(D ∩ Z)] = [(C ∩ D)
⊕

(C ∩ Z)] + (D ∩ Z). Since M is duo module,
then [(C ∩ D)

⊕
(C ∩ Z)] ∩ (D ∩ Z) = ((C ∩ D) ∩ (D ∩ Z))

⊕
((C ∩ Z) ∩ (D ∩ Z)) = 0, by [3]. Hence C + D =

(C ∩D)
⊕

(C ∩ Z)
⊕

(D ∩ Z). Since M has SIP, C ∩D,C ∩ Z and D ∩ Z are direct summands of M . By prop. 2.2,
C ∩D,C ∩ Z and D ∩ Z are s.p- projective. Thus C +D is s.p-projective module, by prop. 2.3. □

Proposition 2.7. Let X and X1 be a submodules of a module M such that X1 is a direct summand of M . If X+X1

is s.p-projective, then (X +X1)/X1 is s.p-projective.

Proof . Let M = X1

⊕
Z, for some submodule Z of M . Hence X+X1 = X1

⊕
(X+X1)∩Z, by modular law. Since

X + X1 is s.p-projective, ((X + X1) ∩ Z) is s.p-projective, by Proposition 2.2. But (X + X1)/X1
∼= (X + X1) ∩ Z,

therefore (X +X1)/X1 is s.p- projective. □

Proposition 2.8. Let X and Y be submodules of a module M s.t. Y is a direct summand of M . If X + Y is
s.p-projective module and X ∩ Y is s.p-closed of M , then X ∩ Y is a direct summand of X.

Proof . Let π : X → X/(X ∩ Y ) is the natural epimorphisms. Since (X + Y )/Y ∼= X/(X ∩ Y ), by the second
isomorphism theorem and Y is a summand of M , then M = Y

⊕
Z for a submodule Z of N . So X + Y = Y

⊕
((X +

Y ) ∩ Z), by modular law. Since X + Y is s.p-projective, (X + Y ) ∩ Z is s.p-projective, by Proposition 2.2. Hence
(X + Y )/Y is s.p-projective and so X/(X ∩ Y ) is s.p-projective. Since X ∩ Y is s.p-closed of M , S(M/(X ∩ Y )) = 0.
Hence S(X/(X ∩ Y )) = 0, by [7]. Thus X ∩ Y is s.p- closed of X. But π : X → X/(X ∩ Y ) is epimorphism and
kerπ = X ∩ Y , therefore X ∩ Y ≤⊕ X, by prop. 1.15. □

Proposition 2.9. Let M be s.p-M- projective module and let A be a fully invariant submodule of M . Then M/A is
a s.p-M/A-projective module.

Proof . Let α : M/A → C be an epimorphism such that S(C) = 0 and let f : M/A → C is a homomorphism. Look
the following graph:

where π is the natural epimorphisms. Since M is s.p-projective, therefore there exists a homomorphism h : M → M ,
such that α ◦ π ◦ h = f ◦ π. Let g : M/A → M/A define by g(x + A) = h(x) + A, for all x ∈ M . Claim that g is
well defined. Let x1 + A = x2 + A, which implies that x1 − x2 ∈ A. Since A is a fully invariant submodule, thus
h(x1 − x2) ∈ h(A) ≤ A. Hence h(x1) + A = h(x2) + A. Clearly that g is a homomorphism. Now α ◦ g(m1 + A) =
α ◦ π ◦ h(m1) = f ◦ π(m1) = f(m1 +A). Thus M/A is s.p-M/A-projective module. □

Proposition 2.10. Let M and A be modules. If M is s.p- A- projective and every quotient of A is M-injective, then
any submodule K of M is s.p-A-projective.

Proof . Suppose that β : A → C be an epimorphism s.t. S(C) = 0. Let f : K → B be a homomorphism. Look
the following graph. Since B is M -injective, there exists a homomorphism g : M → B s.t. g ◦ i = f . But M is
s.p-A-projective, so there exists a homomorphism γ : M → A s.t. β ◦ γ = g. Define θ = γ ◦ i : K → A, now let
x ∈ K, (β ◦ θ)(x) = (β ◦ γ ◦ i)(x) = (g ◦ i)(x) = g(x). Thus K is s.p-A-projective. □
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