Int. J. Nonlinear Anal. Appl. 14 (2023) 3, 189–199 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.28231.4081

New subclasses of Ozaka's convex functions

Mohammad Ali Abolfathi

Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran

(Communicated by Ali Jabbari)

Abstract

Let $S_L^*(\lambda)$ and $CV_L(\lambda)$ be the classes of functions f, analytic in the unit disc $\Delta = \{z : |z| < 1\}$, with the normalization f(0) = f'(0) - 1 = 0, which satisfies the conditions

$$\frac{zf'(z)}{f(z)} \prec (1+z)^{\lambda} \quad \text{and} \quad \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec (1+z)^{\lambda} \qquad (0 < \lambda \le 1) \,,$$

where \prec is the subordination relation, respectively. The classes $S_L^*(\lambda)$ and $C\mathcal{V}_L(\lambda)$ are subfamilies of the known classes of strongly starlike and convex functions of order λ . We consider the relations between $S_L^*(\lambda)$, $C\mathcal{V}_L(\lambda)$ and other classes geometrically defined. Also, we obtain the sharp radius of convexity for functions belonging to $S_L^*(\lambda)$ class. Furthermore, the norm of pre-Schwarzian derivatives and univalency of functions f which satisfy the condition

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} < 1+\frac{\lambda}{2} \qquad (z\in\Delta)\,,$$

are considered.

Keywords: Univalent functions, Subordination, Strongly starlike functions, Domain bounded by Sinusoidal spiral 2020 MSC: Primary 30C45; Secondary 30C80

1 Introduction and preliminary

Let \mathcal{H} denote the class of holomorphic functions in the open unit disc $\Delta = \{z : |z| < 1\}$ on the complex plane \mathbb{C} , and let \mathcal{A} denote the subclass of functions $f \in \mathcal{H}$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \qquad (z \in \Delta).$$

$$(1.1)$$

The subclass of \mathcal{A} consisting of all *univalent* functions f in Δ , is denoted by \mathcal{S} . Robertson [14], Brannan and Kirwan [5], introduced the classes $\mathcal{ST}(\beta)$, $\mathcal{CV}(\beta)$, of *starlike and convex functions of order* $0 \leq \beta < 1$, and $\mathcal{SS}^*(\alpha)$ and $\mathcal{CV}^*(\alpha)$ strongly starlike and convex functions of order $0 < \alpha \leq 1$, respectively, which are defined by

$$\begin{aligned} \mathcal{ST}(\beta) &:= \left\{ f \in \mathcal{A} \colon \Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta, \quad z \in \Delta \right\}, \\ \mathcal{CV}(\beta) &:= \left\{ f \in \mathcal{A} \colon \Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \beta, \quad z \in \Delta \right\} \end{aligned}$$

Email address: m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi)

Received: July 2022 Accepted: October 2022

and

$$\begin{split} \mathcal{SS}^*(\alpha) &:= \left\{ f \in \mathcal{A} \colon \left| \operatorname{Arg} \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi \alpha}{2}, \quad z \in \Delta \right\}, \\ \mathcal{CV}^*(\alpha) &:= \left\{ f \in \mathcal{A} \colon \left| \operatorname{Arg} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| < \frac{\pi \alpha}{2}, \quad z \in \Delta \right\}. \end{split}$$

We also note that $SS^*(1) = ST(0) =: ST$ and $CV^*(1) = CV(0) =: CV$ are the well-known classes of all normalized starlike and convex functions in Δ , respectively. Let S(a, b) denote the class of functions $f \in A$ which satisfy the inequality

$$a < \Re \left\{ \frac{zf'(z)}{f(z)} \right\} < b \qquad (z \in \Delta) \,,$$

for some real number a; $(0 \le a < 1)$ and some real number b; (b > 1) (See [7]). We define the norm of pre-Schwarzian derivatives $||T_f||$, as follows:

$$||T_f|| = \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{f''(z)}{f'(z)} \right|,$$

for function $f \in \mathcal{S}$.

Definition 1.1 ([6]). Let f and g be analytic in Δ . Then the function f is said to be *subordinate* to g in Δ , written by $f(z) \prec g(z)$, if there exists a function $\omega(z) \in \mathcal{B}$ such that $f(z) = g(\omega(z)), z \in \Delta$, where \mathcal{B} is the family of all self-maps functions

$$\omega(z) = \sum_{n=1}^{\infty} w_n z^n \qquad (|\omega(z)| < 1, \ z \in \Delta).$$
(1.2)

From the definition of subordination, it is easy to show that the subordination $f(z) \prec g(z)$ implies that f(0) = g(0)and $f(\Delta) \subset g(\Delta)$. In particular, if g(z) is univalent in Δ , then the subordination $f(z) \prec g(z)$ is equivalent to the condition f(0) = g(0) and $f(\Delta) \subset g(\Delta)$.

Let ϕ be an analytic function with positive real part in Δ , $\phi(0) = 1$, $\phi'(0) > 0$ and map Δ onto a region starlike with respect to $\phi(0) = 1$ and symmetric with respect to real axis. Ma and Minda [8] introduced the class $S^*(\phi)$ defined by

$$\mathcal{S}^*(\phi) = \left\{ f \in \mathcal{A} \quad : \quad \frac{zf'(z)}{f(z)} \prec \phi(z), \quad z \in \Delta \right\},\tag{1.3}$$

$$\mathcal{C}(\phi) = \left\{ f \in \mathcal{A} \quad : \quad \left(1 + \frac{z f''(z)}{f'(z)} \right) \prec \phi(z), \quad z \in \Delta \right\}.$$
(1.4)

Associated to classes $\mathcal{S}^*(\phi)$ and $\mathcal{C}(\phi)$, a family $\mathcal{P}(\phi)$ to be introduced which consists of analytic functions p such that p(0) = 1 and $p(\mathbb{D}) \subset \phi(\mathbb{D})$, or equivalently $p \prec \phi$. The Carathéodory class

$$\mathcal{P} = \{ p(z) = 1 + p_1 z + p_2 z^2 + \cdots, \Re p(z) > 0, z \in \mathbb{D} \}$$

is a simply the class $\mathcal{P}((1+z)/(1-z))$.

Definition 1.2. A locally univalent function $f \in \mathcal{A}$ is said to belong to $\mathcal{G}(s)$ for some s > 0, if it satisfies the condition

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} < 1+\frac{s}{2} \qquad (z \in \Delta).$$

In [11], Ozaki introduced the class $\mathcal{G}(1)$ and proved that functions in the class $\mathcal{G}(1)$ are univalent. In [20], Umezawa generalized Ozaki's result for a version of the class $\mathcal{G}(1)$ (convex functions in one direction). A function $f \in \mathcal{A}$ is said to belong to $\mathcal{N}(s)$ for some s > 0, if it satisfies the condition

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} < 1 + \frac{s}{2} \qquad (z \in \Delta)$$

It is easy to see that $f \in \mathcal{G}(s)$ if and only if $zf' \in \mathcal{N}(s)$.

Let us denote by \mathcal{Q} the class of functions f that are analytic and injective on $\overline{\Delta} \setminus \mathbf{E}(f)$, where $\mathbf{E}(f) = \{\zeta \colon \zeta \in \partial \Delta \text{ and } \lim_{z \to \partial} d_z \}$ and are such that

$$f'(\zeta) \neq 0$$
 for $\zeta \in \partial \Delta \setminus \mathbf{E}(f)$.

Lemma 1.3. [9, p.24] Let $q \in \mathcal{Q}$ with q(0) = 1 and let $p(z) = 1 + p_1 z + \cdots$ be analytic in Δ with $p(z) \neq 1$. If $p \neq q$ in Δ , then there exits points $z_0 \in \Delta$ and $\zeta \in \partial \Delta \setminus \mathbf{E}(q)$ and there exits a real number $m \geq 1$ for which

$$p(|z| < |z_0|) \subset q(\Delta), \qquad p(z_0) = q(\zeta), \qquad z_0 p'(z_0) = m\zeta q'(\zeta).$$

The purpose of this work is to define a new subfamily of \mathcal{P} related to a domain bounded by *sinusoidal spiral*

$$\mathbb{LB}(\lambda) = \left\{ \rho e^{i\varphi} \colon \rho = \left(2\cos\frac{\varphi}{\lambda} \right)^{\lambda}, \quad -\frac{\lambda\pi}{2} < \varphi \le \frac{\lambda\pi}{2} \right\}$$
$$= \left\{ w \in \mathbb{C} \colon \Re\{w\} > 0, \qquad \Re\left\{ w^{-1/\lambda} \right\} = \frac{1}{2} \right\} \cup \{0\}.$$

Since $\rho = \left(2\cos\frac{\varphi}{\lambda}\right)^{\lambda}$, we have

$$\rho^{1/\lambda} = \left(2\cos\frac{\varphi}{\lambda}\right) \quad \text{or} \quad \rho^{-1/\lambda}\cos\frac{\varphi}{\lambda} = \frac{1}{2} \quad \text{or} \quad \Re\left\{w^{-1/\lambda}\right\} = \frac{1}{2} \quad \text{when} \quad w = \rho e^{i\varphi}.$$

 $\mathcal{P}((1+z)^{\lambda})$, we present a new resolution to get the norm of pre-Schwarzian derivatives and univalence from class functions $\mathcal{G}(\lambda)$.

The remainder of the paper proceeds as follows. In sections 2, in order to express our original theorem, we introduce a family of functions and properties. The classes $S_L^*(\lambda)$ and $CV_L(\lambda)$ are introduced and its properties and its relevance to other classes presented. In the sequel, we get the extremal functions of classes $S_L^*(\lambda)$ and $CV_L(\lambda)$. Furthermore, we obtain norm of pre-Schwarzian derivatives and univalency of functions f in class $\mathcal{G}(\lambda)$. Also, some examples are presented.

2 The classes $\mathcal{S}_L^*(\lambda)$ and $\mathcal{CV}_L(\lambda)$ and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto a domain bounded by a *sinusoidal spiral* and contained in a right half-plane. In fact, taking into account:

$$\mathfrak{q}_{\lambda}(z) := (1+z)^{\lambda} \equiv \mathrm{e}^{\lambda \log(1+z)} \qquad (0 < \lambda \le 1) \,,$$

where the branch of the power is chosen to be $q_{\lambda}(0) = 1$, more explicitly,

$$\mathfrak{q}_{\lambda}(z) = 1 + \sum_{k=1}^{\infty} \frac{\lambda(\lambda-1)\cdots(\lambda-k+1)}{k!} z^{k} = 1 + \sum_{k=1}^{\infty} B_{k} z^{k}$$

$$= 1 + \lambda z + \frac{\lambda(\lambda-1)}{2} z^{2} + \frac{\lambda(\lambda-1)(\lambda-2)}{6} z^{3} + \cdots \quad (z \in \Delta).$$

$$(2.1)$$

The set $\mathfrak{q}_{\lambda}(\Delta)$ lies in the region bounded by the right loop of the *sinusoidal spiral* given by

$$\mathbb{LB}(\lambda) = \left\{ \rho e^{i\phi} \colon \rho = \left(2\cos\frac{\phi}{\lambda} \right)^{\lambda}, \quad -\frac{\lambda\pi}{2} < \phi \leq \frac{\lambda\pi}{2} \right\}.$$

To see this, note that writing $z = e^{i\theta}$, where $\theta \in (-\pi, \pi)$, we have

$$\mathfrak{q}_{\lambda}(\mathrm{e}^{\mathrm{i}\theta}) = \left(1 + \mathrm{e}^{\mathrm{i}\theta}\right)^{\lambda} = \left(2\cos\frac{\theta}{2}\right)^{\lambda} \mathrm{e}^{\mathrm{i}\frac{\lambda\theta}{2}} = \left(2\cos\frac{\theta}{2}\right)^{\lambda} \left(\cos\frac{\lambda\theta}{2} + \mathrm{i}\sin\frac{\lambda\theta}{2}\right). \tag{2.2}$$

By (2.2), we have

$$\begin{aligned} \Re \{ \mathfrak{q}_{\lambda} (\mathrm{e}^{\mathrm{i}\theta}) \} &= \left(2\cos\frac{\theta}{2} \right)^{\lambda} \cos\frac{\lambda\theta}{2} =: u(\theta) = u \qquad (-\pi < \theta < \pi) \,, \\ \Im \{ \mathfrak{q}_{\lambda} (\mathrm{e}^{\mathrm{i}\theta}) \} &= \left(2\cos\frac{\theta}{2} \right)^{\lambda} \sin\frac{\lambda\theta}{2} =: v(\theta) = v \qquad (-\pi < \theta < \pi) \,. \end{aligned}$$

So we can see that $u(\theta)$ and $v(\theta)$ are well defined also for $\theta = \pi$. The function $u(\theta)$ with $-\pi < \theta \leq \pi$ attains its minimal value when $\theta = \pi$, and maximum value when $\theta = 0$ and The function $v(\theta)$ with $-\pi < \theta \le \pi$ attains its minimal value when $\theta = -\pi/(1+\lambda)$, and maximum value when $\theta = \pi/(1+\lambda)$. On the other hand for $-\pi < \theta \leq \pi$

$$0 \leq \Re \{ \mathfrak{q}_{\lambda}(e^{i\theta}) \} \leq 2^{\lambda},$$
$$-\left(2\cos\frac{\pi}{2\lambda+2}\right)^{\lambda} \sin\frac{\pi\lambda}{2\lambda+2} \leq \Im \{ \mathfrak{q}_{\lambda}(e^{i\theta}) \} \leq \left(2\cos\frac{\pi}{2\lambda+2}\right)^{\lambda} \sin\frac{\pi\lambda}{2\lambda+2}.$$

,

If we take $q_{\lambda}(e^{i\theta}) = \rho e^{i\phi}$, simple calculations show that $\phi = \lambda \theta/2$ and $\rho = \left(2\cos\frac{\theta}{2}\right)^{\lambda}$. Therefore $q_{\lambda}(e^{i\theta})$ in the polar coordinates will be as follows

$$\mathfrak{q}_{\lambda}(\mathrm{e}^{\mathrm{i}\theta}) = \left\{ w = \rho \mathrm{e}^{\mathrm{i}\varphi} : \quad \rho = \left(2\cos\frac{\varphi}{\lambda} \right)^{\lambda}, \quad -\frac{\lambda\pi}{2} < \varphi \le \frac{\lambda\pi}{2} \right\}.$$
(2.3)

Thus from (2.3) we have $\left|\operatorname{Arg}\left\{\mathfrak{q}_{\lambda}\left(e^{i\theta}\right)\right\}\right| < \lambda \pi/2$. Additionally, the right loop of the *sinusoidal spiral* $\mathbb{LB}(\lambda)$ is a boundary of the domain $q_{\lambda}(\Delta)$. Also note that

$$\begin{split} \mathfrak{q}_{\lambda}(\Delta) &= \left\{ w = \rho \mathrm{e}^{\mathrm{i}\varphi} \colon \quad \rho < \left(2\cos\frac{\varphi}{\lambda} \right)^{\lambda}, \quad -\frac{\lambda\pi}{2} < \varphi < \frac{\lambda\pi}{2} \right\} \\ &= \left\{ w \in \mathbb{C} \colon \quad \Re\{w\} > 0, \qquad \Re\left\{ w^{-1/\lambda} \right\} > \frac{1}{2} \right\}. \end{split}$$

is a domain which is symmetric about the real axis, starlike with respect to the point $q_{\lambda}(0) = 1$, and satisfies $\mathfrak{q}'_{\lambda}(0) = \lambda > 0$. Also, $\mathbb{LB}(\lambda)$ has tangential radial vector $\varphi = \pm \lambda \pi/2$.

Lemma 2.1. The functions $q_{\lambda}(z)$ are convex univalent in Δ for each $0 < \lambda \leq 1$. Moreover $g_{\lambda}(z) = (q_{\lambda}(z) - 1)/\lambda \in$ $\mathcal{CV}((1+\lambda)/2)$ and $g_1(z) = \mathfrak{q}_1(z) - 1 = z \in \mathcal{CV}$. Also, if |z| = r < 1, then

$$\min_{|z|=r} |\mathfrak{q}_{\lambda}(z)| = \mathfrak{q}_{\lambda}(-r) \qquad \text{and} \qquad \max_{|z|=r} |\mathfrak{q}_{\lambda}(z)| = \mathfrak{q}_{\lambda}(r)$$

Proof. Let us consider

$$g_{\lambda}(z) = (\mathfrak{q}_{\lambda}(z) - 1)/\lambda \qquad (z \in \Delta).$$

Then, we have

$$\Re\left\{1+\frac{zg_{\lambda}''(z)}{g_{\lambda}'(z)}\right\} = \Re\left\{\frac{1+\lambda z}{1+z}\right\} > \frac{\lambda+1}{2}$$

so $g_{\lambda} \in \mathcal{CV}((\lambda + 1)/2) \subset \mathcal{ST}$. In order to prove the second part of lemma, if $\theta \in [0, 2\pi)$, then the function

$$Q(\theta) = \left| \mathfrak{q}_{\lambda}(r e^{i\theta}) \right| = \left| 1 + r e^{i\theta} \right|^{\lambda} = \left(1 + r^2 + 2r \cos \theta \right)^{\frac{\lambda}{2}} \quad (0 < r < 1)$$

attains its minimum at $\theta = \pi$ and maximum at $\theta = 0$. This ends the proof.

The following theorem describes some properties of the functions that are in class

$$\mathcal{P}(\mathfrak{q}_{\lambda}) = \{ p \in \mathcal{H} : p \prec \mathfrak{q}_{\lambda} \}.$$

Theorem 2.2. Let $\mathfrak{p} \in \mathcal{P}(\mathfrak{q}_{\lambda})$. Then

$$|\operatorname{Arg} \{\mathfrak{p}(z)\}| < \frac{\lambda \pi}{2}, \quad 0 < \Re\{\mathfrak{p}(z)\} < 2^{\lambda}, \quad |\Im\{\mathfrak{p}(z)\}| < \left(2\cos\frac{\pi}{2\lambda+2}\right)^{\lambda}\sin\frac{\pi\lambda}{2\lambda+2}$$
(2.4a)

and

$$\left|\mathfrak{p}^{1/\lambda}(z) - 1\right| < 1, \tag{2.4b}$$

or

$$0 < \Re \left\{ \mathfrak{p}^{1/\lambda}(z) \right\} < 2.$$
(2.4c)

Conversely, if $\mathfrak{p} \in \mathcal{P}$ with $|\operatorname{Arg} \{\mathfrak{p}(z)\}| < \lambda \pi/2$ and \mathfrak{p} satisfies (2.4b), then $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ in Δ .

Proof. The subordination $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ with $\mathfrak{p}(0) = \mathfrak{q}_{\lambda}(0)$, and the geometric properties of $\mathfrak{q}_{\lambda}(\Delta)$ yield (2.4a). In order to prove the second part of theorem, since $\mathfrak{p} \in \mathcal{P}(\mathfrak{q}_{\lambda})$, then

$$\mathfrak{p}(z) = (1 + \omega(z))^{\lambda}$$
 or $\omega(z) = \mathfrak{p}^{1/\lambda}(z) - 1$, $|\omega(z)| < 1$,

where $\omega \in \mathcal{B}$ and finally assertion (2.4b) as follows. For the prove (2.4c) we rewrite (2.4b) as

$$-1 < -\left|p^{1/\lambda}(z) - 1\right| \le \Re\{p^{1/\lambda}(z) - 1\} \le \left|p^{1/\lambda}(z) - 1\right| < 1,$$

that reduces to (2.4c). Conversely, it is enough to show that $\mathfrak{p}(\Delta) \subset \mathfrak{q}_{\lambda}(\Delta)$. To do this, let $w = \rho e^{i\varphi} \in \mathfrak{p}(\Delta)$. Since w satisfy the condition (2.4b), we conclude

$$\rho^{1/\lambda} < 2\cos\frac{\varphi}{\lambda}.\tag{2.4d}$$

Making use of $|\operatorname{Arg} \{w\}| < (\lambda \pi)/2$, we have $\Re w^{1/\lambda} > 0$ or, equivalently $\cos(\varphi/\lambda) > 0$. From (2.4d), we obtain $w \in \mathfrak{q}_{\lambda}(\Delta)$ and completes the proof. \Box

Using the same notation and the same reasoning as in the proof of Theorem 2.2, we get the following Theorem.

Theorem 2.3. Let $\mathfrak{p} \in \mathcal{P}(\mathfrak{q}_{\lambda})$. Then

$$\Re\left\{\mathfrak{p}^{-1/\lambda}(z)\right\} > \frac{1}{2},\tag{2.5a}$$

or

$$0 < \Re \left\{ \mathfrak{p}^{1/\lambda}(z) \right\} < 2. \tag{2.5b}$$

Conversely, if $\mathfrak{p} \in \mathcal{P}$ and \mathfrak{p} satisfies (2.5a), then $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ in Δ .

Definition 2.4. Let $\mathcal{S}_L^*(\lambda)$ denote the class of analytic functions $f \in \mathcal{A}$ satisfying the condition

$$\frac{zf'(z)}{f(z)} \prec \mathfrak{q}_{\lambda}(z) \qquad (z \in \Delta).$$
(2.6a)

and $\mathcal{CV}_L(\lambda)$ denote the class of analytic functions $f \in \mathcal{A}$ satisfying the condition

$$\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \mathfrak{q}_{\lambda}(z) \qquad (z \in \Delta).$$
(2.6b)

Geometrically, the condition (2.6a) and (2.6b) means that the quantities zf'(z)/f(z) and 1 + zf''/f' lies in the region bounded by the right loop of the *sinusoidal spiral* $\mathbb{LB}(\lambda)$, respectively. Since a domain $\mathfrak{q}_{\lambda}(\Delta)$ is contained in a right half-plane, we deduce that $S_L^*(\lambda)$ and $\mathcal{CV}_L(\lambda)$ are proper subset of classes of a starlike functions \mathcal{ST} and convex functions \mathcal{CV} , respectively. Now we turn to the relationship between the classes $S_L^*(\lambda)$ and $\mathcal{CV}_L(\lambda)$ and the classes mentioned in the section 1. By Theorems 2.2 and 2.3 we get

$$\mathcal{S}_{L}^{*}(\lambda) = \left\{ f \in \mathcal{SS}^{*}(\lambda) : \left| \left[\frac{zf'(z)}{f(z)} \right]^{1/\lambda} - 1 \right| < 1, \ z \in \Delta \right\}$$
$$= \left\{ f \in \mathcal{ST} : \Re \left\{ \left[\frac{zf'(z)}{f(z)} \right]^{-1/\lambda} \right\} > \frac{1}{2}, \ z \in \Delta \right\},$$

$$\begin{split} \mathcal{CV}_L(\lambda) &= \left\{ f \in \mathcal{CV}^*(\lambda) \colon \quad \left| \left[1 + \frac{zf''(z)}{f'(z)} \right]^{1/\lambda} - 1 \right| < 1, \, z \in \Delta \right\} \\ &= \left\{ f \in \mathcal{CV} \colon \quad \Re \left\{ \left[1 + \frac{zf''(z)}{f'(z)} \right]^{-1/\lambda} \right\} > \frac{1}{2}, \, z \in \Delta \right\}, \\ \mathcal{S}_L^*(\lambda) \subset \mathcal{SS}^*(\alpha) \quad \text{and} \quad \mathcal{CV}_L(\lambda) \subset \mathcal{CV}^*(\alpha) \quad \text{for} \quad \lambda \leq \alpha \leq 1, \\ \mathcal{S}_L^*(\lambda) \subset \mathcal{S}(0, b) \quad \text{and} \quad \mathcal{CV}_L(\lambda) \subset \mathcal{S}(0, b) \quad \text{for} \quad b \geq 2^\lambda, \\ \mathcal{S}_L^*(\lambda_1) \subset \mathcal{S}_L^*(\lambda_2) \quad \text{and} \quad \mathcal{CV}_L(\lambda_1) \subset \mathcal{CV}_L(\lambda_2) \quad \text{for} \quad \lambda_1 \leq \lambda_2. \end{split}$$

Applying the Lemma 2.1 and Theorem 2.2 and the Briot-Bouquet differential subordination [9, Theorem 3.2a], we can easily see that $\mathcal{CV}_L(\lambda) \subset \mathcal{S}_L^*(\lambda)$.

Lemma 2.5. Let $0 < \lambda \leq 1$. If $M \geq 2^{\lambda-1}$, then

$$(1+z)^{\lambda} \prec \frac{M+Mz}{M-(M-1)z} =: P_M(z) \qquad (z \in \Delta).$$

$$(2.7)$$

Proof. Since $q(0) = P_M(0) = 1$, from Definition 1.1 it is enough to prove $q_\lambda(\Delta) \subset P_M(\Delta)$. Since for $-\pi/2 < \varphi/\lambda < \pi/2$, we have

$$\left(2\cos\frac{\varphi}{\lambda}\right)^{\lambda} \le (2\cos\varphi)^{\lambda} \le 2^{\lambda}\cos\varphi.$$
(2.8)

Also, the function P_M is univalent in Δ , and maps the unit circle onto the circle

$$\left\{\rho = 2M\cos\varphi: -\frac{\pi}{2} < \varphi < \frac{\pi}{2}\right\}.$$

For the establishment of relation $q_{\lambda}(\Delta) \subset P_M(\Delta)$, taking into account relation (2.8), we deduce $2^{\lambda} \leq 2M$ and

$$\mathfrak{q}_{\lambda}(\Delta) \subset \left\{ \rho e^{i\varphi} \colon \rho \leq 2M \cos \varphi, \quad -\frac{\pi}{2} < \varphi < \frac{\pi}{2}, \quad M \geq 2^{\lambda-1} \right\} = P_M(\Delta).$$

Moreover

$$S_L^*(\lambda) \subset \left\{ f \in \mathcal{A} \colon \left| \frac{zf'(z)}{f(z)} - M \right| < M, \quad z \in \Delta, M \ge 2^{\lambda - 1} \right\}.$$

The Relation (2.8) show that the image of the unit circle |z| = 1 under the functions \mathfrak{q}_{λ} (The right-half of the lemniscate of Bernoulli $\gamma_1: \rho = \left(2\cos\frac{\varphi}{\lambda}\right)^{\lambda}$) and P_M (The circle $\gamma_2: \rho = 2^{\lambda}\cos\varphi$ with $-\pi/2 < \varphi < \pi/2$) for $\lambda = 1/5$ and $M = 1/\sqrt[5]{16}$, respectively.

By possessing a comprehensive form of functions p, i.e. $p \in \mathcal{P}(\mathfrak{q}_{\lambda})$, we obtain by integration, the exhibition formula for the functions in $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{CV}_{L}(\lambda)$. Namely, $f \in \mathcal{S}_{L}^{*}(\lambda)$ if and only there exists a function $p \in \mathcal{P}(\mathfrak{q}_{\lambda})$ such that

$$f(z) = z \exp\left(\int_0^z \frac{p(t) - 1}{t} \,\mathrm{d}t\right) \qquad (z \in \Delta),$$
(2.9a)

or, $f \in \mathcal{CV}_L(\lambda)$ if and only there exists a function $p \in \mathcal{P}(\mathfrak{q}_\lambda)$ such that

$$f(z) = \int_0^z \exp\left(\int_0^w \frac{p(t) - 1}{t} dt\right) dw \qquad (z \in \Delta).$$
(2.9b)

Let $g \in \mathcal{A}$ and let zg'(z)/g(z) = p(z) (1 + zg''(z)/g'(z) = p(z) resp.) with $p \in \mathcal{P}(\mathfrak{q}_{\lambda}), z \in \Delta$. Clearly, $g \in \mathcal{S}_{L}^{*}(\lambda)$ $(\mathcal{CV}_{L}(\lambda)$ resp.) and g is extremal function in the class $\mathcal{S}_{L}^{*}(\lambda)$ $(\mathcal{CV}_{L}(\lambda)$ resp.). This representation gives many examples of functions in class $\mathcal{S}_{L}^{*}(\lambda)$ $(\mathcal{CV}_{L}(\lambda)$ resp.). To do this, by taking $p(z) = \mathfrak{q}_{\lambda}(z^{n})$ with $n = 1, 2, 3, \ldots$, the function $F_{\lambda,n}$ with definition

$$F_{\lambda,n}(z) = z \exp\left(\int_0^z \frac{\mathfrak{q}_{\lambda}(t^n) - 1}{t} \, \mathrm{d}t\right) = z + \frac{\lambda}{n} z^{n+1} + \frac{\lambda^2(n+2) - n\lambda}{4n^2} z^{2n+1} + \frac{\lambda((2n^2 + 9n + 6)\lambda^2 - (6n^2 + 9n)\lambda + 4n^2)}{36n^3} z^{3n+1} + \dots \ (z \in \Delta), \quad (2.9c)$$

is extremal function for several problems in the class $\mathcal{S}_L^*(\lambda)$. Especially for n = 1 we have

$$F_{\lambda}(z) := F_{\lambda,1}(z) = z \exp\left(\int_0^z \frac{\mathfrak{q}_{\lambda}(t) - 1}{t} dt\right)$$
$$= z + \lambda z^2 + \left(\frac{3\lambda^2 - \lambda}{4}\right) z^3 + \left(\frac{17\lambda^3 - 15\lambda^2 + 4\lambda}{36}\right) z^4 + \cdots$$
(2.9d)

Also, by taking $p(z) = q_{\lambda}(z^n)$ with n = 1, 2, 3, ..., the function $K_{\lambda,n}$ with definition

$$K_{\lambda,n}(z) = \int_0^z \exp\left(\int_0^w \frac{\mathfrak{q}_{\lambda}(t^n) - 1}{t} \, \mathrm{d}t\right) \mathrm{d}w = z + \frac{\lambda}{n(n+1)} z^{n+1} + \frac{\lambda^2(n+2) - n\lambda}{4n^2(2n+1)} z^{2n+1} + \frac{\lambda((2n^2 + 9n + 6)\lambda^2 - (6n^2 + 9n)\lambda + 4n^2)}{36n^3(3n+1)} z^{3n+1} + \cdots (z \in \Delta),$$
(2.10a)

is extremal function for several problems in the class $\mathcal{CV}_L(\lambda)$. Especially for n = 1 we have

$$K_{\lambda}(z) := K_{\lambda,1}(z) = \int_0^z \exp\left(\int_0^w \frac{\mathfrak{q}_{\lambda}(t) - 1}{t} \, \mathrm{d}t\right) \mathrm{d}w$$
$$= z + \frac{\lambda}{2}z^2 + \left(\frac{3\lambda^2 - \lambda}{12}\right)z^3 + \left(\frac{17\lambda^3 - 15\lambda^2 + 4\lambda}{144}\right)z^4 + \cdots$$
(2.10b)

Theorem 2.6. Let p be an analytic function in the unit disk Δ , such that p(0) = 1. If

$$\Re\left\{\frac{zp'(z)}{p(z)}\right\} < \frac{\lambda}{2} \qquad (0 < \lambda \le 1, \ z \in \Delta),$$
(2.11)

then

$$p \in \mathcal{P}(\mathfrak{q}_{\lambda})$$

Proof. From (2.11) it follows that $p(z) \neq 0$ for all $z \in \Delta$. Otherwise, suppose that p has a point zero of order m, $m \geq 1$ at the point ζ that satisfies $|\zeta| < 1$. Then we have $p(z) = (z - \zeta)^m q(z), q(z) \neq 0$ on Δ and

$$\frac{zp'(z)}{p(z)} = \frac{mz}{z-\zeta} + \frac{zq'(z)}{q(z)}.$$

A simple calculation shows that for $z \in \Delta$

$$\lim_{z \to \zeta} (z - \zeta) \frac{zp'(z)}{p(z)} = \begin{cases} \lim_{z \to \zeta} mz + \lim_{z \to \zeta} (z - \zeta) \frac{zq'(z)}{q(z)} & \text{for } \zeta \neq 0 \\ \\ m + \lim_{z \to \zeta} \frac{z^2q'(z)}{q(z)} & \text{for } \zeta = 0 \end{cases}$$
$$= \begin{cases} m\zeta & \text{for } \zeta \neq 0, \\ \\ m & \text{for } \zeta = 0. \end{cases}$$

Then zp'/p has a simple pole at ζ , which contradicts (2.11). We conclude that $p(z) \neq 0$, as required. Let $p(z) \not\prec \mathfrak{q}_{\lambda}(z)$ on Δ . Then by Lemma 1.3 there exist $z_0 \in \Delta$ and $\zeta_0 \in \partial \Delta$ with $\zeta_0 \neq -1$ such that

$$p(z_0) = \mathfrak{q}_{\lambda}(\zeta_0), \qquad z_0 p'(z_0) = m\zeta_0 \mathfrak{q}'_{\lambda}(\zeta_0) \qquad m \ge 1.$$

Thus

$$\Re\left\{\frac{z_0p'(z_0)}{p(z_0)}\right\} = \Re\left\{\frac{m\zeta_0\mathfrak{q}'_{\lambda}(\zeta_0)}{\mathfrak{q}_{\lambda}(\zeta_0)}\right\} = m\lambda\Re\left\{\frac{\zeta_0}{1+\zeta_0}\right\} = \frac{m\lambda}{2} \ge \frac{\lambda}{2}.$$

But this contradicts our assumption (2.11) and therefore $p \prec \mathfrak{q}_{\lambda}$ on Δ . \Box

Taking into account p(z) = f'(z) in Theorem 2.6, the norm of pre-Schwarzian derivatives and univalency of functions on class $\mathcal{G}(\lambda)$ are investigated.

Lemma 2.7. If a function f belongs to the class $\mathcal{G}(\lambda)$, then $f' \in \mathcal{P}(\mathfrak{q}_{\lambda})$. Also, f is univalent function in Δ and

$$z \exp\left(\int_0^z \frac{f'(t) - 1}{t} \, \mathrm{d}t\right) \in \mathcal{S}_L^*(\lambda) \qquad \text{and} \qquad \int_0^z \exp\left(\int_0^w \frac{f'(t) - 1}{t} \, \mathrm{d}t\right) \, \mathrm{d}w \in \mathcal{CV}_L(\lambda)$$

Lemma 2.8. Let f be a function in $\mathcal{G}(\lambda)$. Then $||T_f|| \leq 2\lambda$. Moreover, equality holds for f given by $f(z) = \overline{\mu} \Phi(\mu z)$, where μ is an unimodular constant and

$$\Phi(z) = \frac{(1+z)^{1+\lambda} - 1}{1+\lambda} \qquad (z \in \Delta).$$
(2.12)

Proof. Suppose that $f \in \mathcal{G}(\lambda)$. Making use of Lemma 2.7 there exits $\omega \in \mathcal{B}$ such that $f'(z) = (1 + \omega(z))^{\lambda}$ and

$$\left|\frac{f''(z)}{f'(z)}\right| = \frac{\lambda |\omega'(z)|}{|1 + \omega(z)|} \qquad (z \in \Delta).$$

By the Schwarz-Pick Lemma,

$$\omega'(z)| \le \frac{1 - |\omega(z)|^2}{1 - |z|^2} \qquad (z \in \Delta),$$
(2.13)

we conclude

$$\frac{f''(z)}{f'(z)} \bigg| = \frac{\lambda |\omega'(z)|}{|1 + \omega(z)|} \le \frac{\lambda (1 - |\omega(z)|^2)}{(1 - |z|^2) (1 - |\omega(z)|)} \le \frac{\lambda (1 + |z|)}{1 - |z|^2}$$

and

$$||T_f|| \le \sup_{z \in \Delta} \lambda(1+|z|) \le 2\lambda$$

We have equality in the Schwarz-Pick lemma inequality (2.13), if and only if $\omega(z) = \mu z$ with $|\mu| = 1$ and μ is complex number. Thus for function

$$f'(z) = (1 + \omega(z))^{\lambda} = (1 + \mu z)^{\lambda}$$
 or $f(z) = \overline{\mu} \Phi(\mu z),$

where Φ given by (2.12), it follows that $||T_f|| = 2\lambda$. \Box

For p(z) = f(z)/z or p(z) = z/f(z) in Theorem 2.6 and taking into account relation 2.9a, we get the following results.

Corollary 2.9. 1. Let $f \in \mathcal{A}$. If $f \in \mathcal{N}(\lambda)$, then

$$\frac{f(z)}{z} \prec \mathfrak{q}_{\lambda}(z) \quad \text{and} \quad z \exp\left(\int_{0}^{z} \frac{f(t) - t}{t^{2}} \, \mathrm{d}t\right) \in \mathcal{S}_{L}^{*}(\lambda)$$

2. Let $f \in \mathcal{A}$. If $f \in f \in \mathcal{ST}(1 - \lambda/2)$, then

$$\frac{z}{f(z)} \prec \mathfrak{q}_{\lambda}(z) \quad \text{and} \quad z \exp\left(\int_{0}^{z} \frac{t - f(t)}{t f(t)} \, \mathrm{d}t\right) \in \mathcal{S}_{L}^{*}(\lambda)$$

Taking into account p(z) = zf'(z)/f(z) in Theorem 2.6, we have the following corollary is a starlikeness condition for analytic functions of the unit disk.

Corollary 2.10. If a function $f \in \mathcal{H}$ satisfy the condition

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}-\frac{zf'(z)}{f(z)}\right\}<\frac{\lambda}{2}\qquad (z\in\Delta)\,,$$

then $f \in \mathcal{S}_L^*(\lambda) \subset \mathcal{ST}$.

Example 2.11. The Corollary 2.9 provides many examples of functions in class $S_L^*(\lambda)$. Let

$$f_1(z) = z + A_1 z^n, (n \ge 2), \qquad f_2(z) = \frac{z}{1 - A_2 z}, \qquad f_3(z) = \frac{z}{(1 - A_3 z)^2}.$$

For

$$0 < |A_1| \le \frac{\lambda}{2n - 2 - \lambda}, \qquad 0 < |A_2| \le \frac{\lambda}{2 + \lambda}, \qquad 0 < |A_3| \le \frac{\lambda}{4 + \lambda},$$

the functions f_i , i = 1, 2, 3 belong in class $\mathcal{N}(\lambda)$. Then the appropriate functions

$$g_1(z) = z \exp\left(\frac{A_1 z^{n-1}}{n-1}\right), \quad g_2(z) = \frac{z}{1-A_2 z}, \quad g_3(z) = \frac{z}{1-A_3 z} \exp\left(\frac{A_3 z}{1-A_3 z}\right),$$

belong to the class $\mathcal{S}_L^*(\lambda)$.

Example 2.12. For $0 < |A| \le \lambda/(2 - \lambda)$

$$f(z) = \frac{1}{A} (e^{Az} - 1) \in \mathcal{CV}_L(\lambda)$$

and for $0 < |A| \le \lambda/(2 + \lambda)$

$$f(z) = -\frac{1}{A}\ln(1 - Az) \in \mathcal{CV}_L(\lambda).$$

From the results in [8], function (2.9d), and Lemma 2.1, we have the following sharp estimates for function $f \in \mathcal{S}_L^*(\lambda)$ $(f \in \mathcal{CV}_L(\lambda) \text{ resp.}).$

Theorem 2.13. If $f \in \mathcal{S}_L^*(\lambda)$ and |z| = r < 1, then

- 1. Growth Theorem: $-F_{\lambda}(-r) \leq |f(z)| \leq F_{\lambda}(r)$, 2. Distortion Theorem: $F'_{\lambda}(-r) \leq |f'(z)| \leq F'_{\lambda}(r)$,
- 3. Rotation Theorem: $|\operatorname{Arg} \{f(z)/z\}| \leq \max_{|z|=r} \operatorname{Arg} \{F_{\lambda}(z)/z\}$. Equality holds for some $z \neq 0$ if and only if f is a rotation of F_{λ} given by (2.9d).
- 4. Covering Theorem: If $f \in \mathcal{S}_L^*(\lambda)$, then either f is a rotation of F_{λ} or

$$\{w \in \mathbb{C}: |w| \leq -F_{\lambda}(-1)\} \subset f(\Delta).$$

Here
$$-F_{\lambda}(-1) = \lim_{r \to 1^-} -F_{\lambda}(-r).$$

Theorem 2.14. If $f \in CV_L(\lambda)$ and |z| = r < 1, then

- 1. Growth Theorem: $-K_{\lambda}(-r) \leq |f(z)| \leq K_{\lambda}(r)$,
- 2. Distortion Theorem: $K'_{\lambda}(-r) \leq |f'(z)| \leq K'_{\lambda}(r)$,
- 3. Rotation Theorem: $|\operatorname{Arg} \{f'(z)\}| \leq \max_{|z|=r} \operatorname{Arg} \{K'_{\lambda}(z)\}$. Equality holds for some $z \neq 0$ if and only if f is a rotation of K_{λ} given by (2.10b).
- 4. Covering Theorem: If $f \in \mathcal{S}_L^*(\lambda)$, then either f is a rotation of F_{λ} or

$$\{w \in \mathbb{C}: |w| \leq -K_{\lambda}(-1)\} \subset f(\Delta)$$

Here
$$-K_{\lambda}(-1) = \lim_{r \to 1^-} -K_{\lambda}(-r).$$

For the special case $\lambda = 1/2$, results for functions belonging to the class

$$\mathcal{S}_{L}^{*} := \mathcal{S}_{L}^{*}(1/2) = \left\{ f \in \mathcal{SS}^{*}\left(\frac{1}{2}\right) : \quad \left| \left[\frac{zf'(z)}{f(z)}\right]^{2} - 1 \right| < 1, \ z \in \Delta \right\},$$
$$= \left\{ f \in \mathcal{ST} : \quad \Re\left\{ \left[\frac{zf'(z)}{f(z)}\right]^{-2} \right\} > \frac{1}{2}, \ z \in \Delta \right\}$$

and its generalizations can be found in [1, 2, 3, 13, 15, 16, 17, 18, 19]. The function $f \in \mathcal{S}_L^*$ if and only if quantity zf'(z)/f(z) lies in the region bounded by the right loop of the lemniscate of Bernoulli

$$\mathbb{LB}\left(\frac{1}{2}\right) = \left\{\rho e^{i\varphi} \colon \rho = (2\cos 2\varphi)^{1/2}, \quad -\frac{\pi}{4} < \varphi \le \frac{\pi}{4}\right\}$$
$$= \left\{w \in \mathbb{C} \colon \Re\{w\} > 0, \qquad \Re\left\{\frac{1}{w^2}\right\} = \frac{1}{2}\right\} \cup \{0\}.$$

Below, we get the sharp radius of convexity of the class $\mathcal{S}_L^*(\lambda)$.

.....

Theorem 2.15. Let r_0 denote the positive root of the equation

$$(1-r)^{1+\lambda} = \lambda r \qquad r \in [0,1)$$

If $f \in \mathcal{S}_L^*(\lambda)$, then f is convex in the disk $|z| < r_0$. This result is sharp.

Proof. Let $f \in \mathcal{S}_L^*(\lambda)$. Then from Definition 2.4 we obtain

$$\frac{zf'(z)}{f(z)} = [1 + w(z)]^{\lambda} \qquad (z \in \Delta),$$
(2.14)

where $\omega \in \mathcal{B}$ with $|\omega(z)| \leq |z|, z \in \Delta$. Logarithmic differentiation of (2.14) yields that

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} = \Re\left\{\left[1+\omega(z)\right]^{\lambda}-\frac{\lambda z\omega'(z)}{\left[1+\omega(z)\right]}\right\}.$$

From Lemma 2.1 and inequality (2.13), it follows that

$$\begin{aligned} \Re \bigg\{ 1 + \frac{zf''(z)}{f'(z)} \bigg\} &\geq \Re \bigg\{ [1 + \omega(z)]^{\lambda} \bigg\} - \lambda |z| \, \frac{1 - |\omega(z)|^2}{[1 - |\omega(z)|] \, [1 - |z|^2]} \\ &\geq (1 - |z|)^{\lambda} - \frac{\lambda |z|}{(1 - |z|)}. \end{aligned}$$

The function $g(x) = (1-r)^{\lambda} - \frac{\lambda r}{(1-r)}$ with $|z| = r \in [0,1)$ is decreasing in [0,1) and g(0) = 1. The equation g(r) = 0 is equivalent to

$$(1-r)^{1+\lambda} = \lambda r \qquad r \in [0,1).$$
 (2.15)

The only real positive root of (2.15) is equal to r_0 . For a function F_{λ} given by (2.9d), we have

$$\Re\left\{1+\frac{zF_{\lambda}''(z)}{F_{\lambda}'(z)}\right\} = \Re\left\{(1+z)^{\lambda}+\frac{\lambda z}{1+z}\right\} =: G(z)$$

and $G(-r_0) = 0$, this shows the sharpness of r_0 . \Box

References

- R.M. Ali, N.E. Cho, N.K. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat 26 (2012), no. 3, 553–561.
- [2] M.K. Aouf, J. Dziok and J. Sokół, On a subclass of strongly starlike functions, Appl. Math. Comput. 24 (2011), no., 27–32.
- [3] R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 1, 6557–6565.
- [4] R.M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), no. 1, 35–46.
- [5] D.A. Brannan and W.E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 2 (1969), no. 1, 431–443.
- [6] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Springer, New York (1983)
- [7] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J. 1 (2012), no. 1, 127–131.
- [8] W. Ma and D. Minda, A unied treatment of some special classes of univalent functions, in Proc. Conf. on Complex Analysis, Tianjin, 1992, Conference Proceedings and Lecture Notes in Analysis, Vol. 1 (International Press, Cambridge, MA, 1994, 157–169.

- [10] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337–346.
- [11] S. Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A. 4 (1941), 45–87.
- [12] M. Obradović, S. Ponnusamy and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, Sib. Math. J. 54 (2013), 679–696.
- [13] E. Paprocki and J. Sokół, The external problems in some subclasses of strongly functions, Folia Scient. Univ. Tech. Resov. 20 (1996), 89–94.
- [14] M.I. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), no. 2, 374–408.
- [15] J. Sokół, On application of certain sufficient condition for starlikeness, J. Math. Appl. 30 (2008), 131–135.
- [16] J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math. 31 (1998), no. 1, 81–86.
- [17] J. Sokół, Coefficient Estimates in a Class of Strongly Starlike Functions, Kyungpook Math. J. 49 (2009), no. 2, 349–353.
- [18] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resov. 19 (1996), 101–105.
- [19] J. Sokół and D. K. Thomas, Further Results on a Class of Starlike Functions Related to the Bernoulli Lemniscate, Houston J. Math. 44 (2018), 83–95.
- [20] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194–202.