New subclasses of Ozaka's convex functions

Mohammad Ali Abolfathi

Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran
(Communicated by Ali Jabbari)

Abstract

Let $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ be the classes of functions f, analytic in the unit disc $\Delta=\{z:|z|<1\}$, with the normalization $f(0)=f^{\prime}(0)-1=0$, which satisfies the conditions $$
\frac{z f^{\prime}(z)}{f(z)} \prec(1+z)^{\lambda} \quad \text { and } \quad\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec(1+z)^{\lambda} \quad(0<\lambda \leq 1)
$$

where \prec is the subordination relation, respectively. The classes $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ are subfamilies of the known classes of strongly starlike and convex functions of order λ. We consider the relations between $\mathcal{S}_{L}^{*}(\lambda), \mathcal{C} \mathcal{V}_{L}(\lambda)$ and other classes geometrically defined. Also, we obtain the sharp radius of convexity for functions belonging to $\mathcal{S}_{L}^{*}(\lambda)$ class. Furthermore, the norm of pre-Schwarzian derivatives and univalency of functions f which satisfy the condition

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<1+\frac{\lambda}{2} \quad(z \in \Delta)
$$

are considered.
Keywords: Univalent functions, Subordination, Strongly starlike functions, Domain bounded by Sinusoidal spiral 2020 MSC: Primary 30C45; Secondary 30C80

1 Introduction and preliminary

Let \mathcal{H} denote the class of holomorphic functions in the open unit disc $\Delta=\{z:|z|<1\}$ on the complex plane \mathbb{C}, and let \mathcal{A} denote the subclass of functions $f \in \mathcal{H}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

The subclass of \mathcal{A} consisting of all univalent functions f in Δ, is denoted by \mathcal{S}. Robertson [14], Brannan and Kirwan [5], introduced the classes $\mathcal{S T}(\beta), \mathcal{C} \mathcal{V}(\beta)$, of starlike and convex functions of order $0 \leq \beta<1$, and $\mathcal{S S}^{*}(\alpha)$ and $\mathcal{C} \mathcal{V}^{*}(\alpha)$ strongly starlike and convex functions of order $0<\alpha \leq 1$, respectively, which are defined by

$$
\begin{aligned}
\mathcal{S T}(\beta) & :=\left\{f \in \mathcal{A}: \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, \quad z \in \Delta\right\} \\
\mathcal{C} \mathcal{V}(\beta) & :=\left\{f \in \mathcal{A}: \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta, \quad z \in \Delta\right\},
\end{aligned}
$$

[^0]and
\[

$$
\begin{aligned}
\mathcal{S} \mathcal{S}^{*}(\alpha) & :=\left\{f \in \mathcal{A}:\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi \alpha}{2}, \quad z \in \Delta\right\} \\
\mathcal{C} \mathcal{V}^{*}(\alpha) & :=\left\{f \in \mathcal{A}:\left|\operatorname{Arg}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\pi \alpha}{2}, \quad z \in \Delta\right\} .
\end{aligned}
$$
\]

We also note that $\mathcal{S S}^{*}(1)=\mathcal{S T}(0)=: \mathcal{S T}$ and $\mathcal{C} \mathcal{V}^{*}(1)=\mathcal{C} \mathcal{V}(0)=: \mathcal{C V}$ are the well-known classes of all normalized starlike and convex functions in Δ, respectively. Let $\mathcal{S}(a, b)$ denote the class of functions $f \in \mathcal{A}$ which satisfy the inequality

$$
a<\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<b \quad(z \in \Delta)
$$

for some real number a; $(0 \leq a<1)$ and some real number $b ;(b>1)$ (See [7). We define the norm of pre-Schwarzian derivatives $\left\|T_{f}\right\|$, as follows:

$$
\left\|T_{f}\right\|=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|,
$$

for function $f \in \mathcal{S}$.
Definition 1.1 ([6]). Let f and g be analytic in Δ. Then the function f is said to be subordinate to g in Δ, written by $f(z) \prec g(z)$, if there exists a function $\omega(z) \in \mathcal{B}$ such that $f(z)=g(\boldsymbol{\omega}(z)), z \in \Delta$, where \mathcal{B} is the family of all self-maps functions

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} w_{n} z^{n} \quad(|\omega(z)|<1, z \in \Delta) \tag{1.2}
\end{equation*}
$$

From the definition of subordination, it is easy to show that the subordination $f(z) \prec g(z)$ implies that $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$. In particular, if $g(z)$ is univalent in Δ, then the subordination $f(z) \prec g(z)$ is equivalent to the condition $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$.

Let ϕ be an analytic function with positive real part in $\Delta, \phi(0)=1, \phi^{\prime}(0)>0$ and map Δ onto a region starlike with respect to $\phi(0)=1$ and symmetric with respect to real axis. Ma and Minda [8 introduced the class $\mathcal{S}^{*}(\phi)$ defined by

$$
\begin{align*}
\mathcal{S}^{*}(\phi) & =\left\{f \in \mathcal{A} \quad: \quad \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad z \in \Delta\right\}, \tag{1.3}\\
\mathcal{C}(\phi) & =\left\{f \in \mathcal{A} \quad: \quad\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \phi(z), \quad z \in \Delta\right\} . \tag{1.4}
\end{align*}
$$

Associated to classes $\mathcal{S}^{*}(\phi)$ and $\mathcal{C}(\phi)$, a family $\mathcal{P}(\phi)$ to be introduced which consists of analytic functions p such that $p(0)=1$ and $p(\mathbb{D}) \subset \phi(\mathbb{D})$, or equivalently $p \prec \phi$. The Carathéodory class

$$
\mathcal{P}=\left\{p(z)=1+p_{1} z+p_{2} z^{2}+\cdots, \Re p(z)>0, z \in \mathbb{D}\right\}
$$

is a simply the class $\mathcal{P}((1+z) /(1-z))$.
Definition 1.2. A locally univalent function $f \in \mathcal{A}$ is said to belong to $\mathcal{G}(s)$ for some $s>0$, if it satisfies the condition

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<1+\frac{s}{2} \quad(z \in \Delta)
$$

In [11], Ozaki introduced the class $\mathcal{G}(1)$ and proved that functions in the class $\mathcal{G}(1)$ are univalent. In 20], Umezawa generalized Ozaki's result for a version of the class $\mathcal{G}(1)$ (convex functions in one direction). A function $f \in \mathcal{A}$ is said to belong to $\mathcal{N}(s)$ for some $s>0$, if it satisfies the condition

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{s}{2} \quad(z \in \Delta)
$$

It is easy to see that $f \in \mathcal{G}(s)$ if and only if $z f^{\prime} \in \mathcal{N}(s)$.

Let us denote by \mathcal{Q} the class of functions f that are analytic and injective on $\bar{\Delta} \backslash \mathbf{E}(f)$, where $\mathbf{E}(f)=\left\{\zeta: \zeta \in \partial \Delta \quad\right.$ and $\quad \lim _{z \rightarrow}$ and are such that

$$
f^{\prime}(\zeta) \neq 0 \quad \text { for } \quad \zeta \in \partial \Delta \backslash \mathbf{E}(f)
$$

Lemma 1.3. [9, p.24] Let $q \in \mathcal{Q}$ with $q(0)=1$ and let $p(z)=1+p_{1} z+\cdots$ be analytic in Δ with $p(z) \neq 1$. If $p \nprec q$ in Δ, then there exits points $z_{0} \in \Delta$ and $\zeta \in \partial \Delta \backslash \mathbf{E}(q)$ and there exits a real number $m \geq 1$ for which

$$
p\left(|z|<\left|z_{0}\right|\right) \subset q(\Delta), \quad p\left(z_{0}\right)=q(\zeta), \quad z_{0} p^{\prime}\left(z_{0}\right)=m \zeta q^{\prime}(\zeta)
$$

The purpose of this work is to define a new subfamily of \mathcal{P} related to a domain bounded by sinusoidal spiral

$$
\begin{aligned}
\mathbb{L} \mathbb{B}(\lambda) & =\left\{\rho \mathrm{e}^{\mathrm{i} \varphi}: \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda},\right. \\
& =\left\{w \in \mathbb{C}: \quad \Re\{w\}>0, \quad \Re\left\{w^{-1 / \lambda}\right\}=\frac{\lambda \pi}{2}\right\} \cup\{0\} .
\end{aligned}
$$

Since $\rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}$, we have

$$
\rho^{1 / \lambda}=\left(2 \cos \frac{\varphi}{\lambda}\right) \quad \text { or } \quad \rho^{-1 / \lambda} \cos \frac{\varphi}{\lambda}=\frac{1}{2} \quad \text { or } \quad \Re\left\{w^{-1 / \lambda}\right\}=\frac{1}{2} \quad \text { when } \quad w=\rho e^{i \varphi} .
$$

$\mathcal{P}\left((1+z)^{\lambda}\right)$, we present a new resolution to get the norm of pre-Schwarzian derivatives and univalence from class functions $\mathcal{G}(\lambda)$.

The remainder of the paper proceeds as follows. In sections 2 , in order to express our original theorem, we introduce a family of functions and properties. The classes $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ are introduced and its properties and its relevance to other classes presented. In the sequel, we get the extremal functions of classes $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$. Furthermore, we obtain norm of pre-Schwarzian derivatives and univalency of functions f in class $\mathcal{G}(\lambda)$. Also, some examples are presented.

2 The classes $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto a domain bounded by a sinusoidal spiral and contained in a right half-plane. In fact, taking into account:

$$
\mathfrak{q}_{\lambda}(z):=(1+z)^{\lambda} \equiv \mathrm{e}^{\lambda \log (1+z)} \quad(0<\lambda \leq 1)
$$

where the branch of the power is chosen to be $\mathfrak{q}_{\lambda}(0)=1$, more explicitly,

$$
\begin{align*}
\mathfrak{q}_{\lambda}(z) & =1+\sum_{k=1}^{\infty} \frac{\lambda(\lambda-1) \cdots(\lambda-k+1)}{k!} z^{k}=1+\sum_{k=1}^{\infty} B_{k} z^{k} \tag{2.1}\\
& =1+\lambda z+\frac{\lambda(\lambda-1)}{2} z^{2}+\frac{\lambda(\lambda-1)(\lambda-2)}{6} z^{3}+\cdots \quad(z \in \Delta) .
\end{align*}
$$

The set $\mathfrak{q}_{\lambda}(\Delta)$ lies in the region bounded by the right loop of the sinusoidal spiral given by

$$
\mathbb{L} \mathbb{B}(\lambda)=\left\{\rho \mathrm{e}^{\mathrm{i} \varphi}: \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2}<\varphi \leq \frac{\lambda \pi}{2}\right\}
$$

To see this, note that writing $z=\mathrm{e}^{\mathrm{i} \theta}$, where $\theta \in(-\pi, \pi)$, we have

$$
\begin{equation*}
\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\left(1+\mathrm{e}^{\mathrm{i} \theta}\right)^{\lambda}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda} \mathrm{e}^{\mathrm{i} \frac{\lambda \theta}{2}}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda}\left(\cos \frac{\lambda \theta}{2}+\mathrm{i} \sin \frac{\lambda \theta}{2}\right) \tag{2.2}
\end{equation*}
$$

By (2.2), we have

$$
\begin{array}{ll}
\Re\left\{\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda} \cos \frac{\lambda \theta}{2}=: u(\theta)=u & (-\pi<\theta<\pi) \\
\Im\left\{\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}=\left(2 \cos \frac{\theta}{2}\right)^{\lambda} \sin \frac{\lambda \theta}{2}=: v(\theta)=v & (-\pi<\theta<\pi)
\end{array}
$$

So we can see that $u(\theta)$ and $v(\theta)$ are well defined also for $\theta=\pi$. The function $u(\theta)$ with $-\pi<\theta \leq \pi$ attains its minimal value when $\theta=\pi$, and maximum value when $\theta=0$ and The function $v(\theta)$ with $-\pi<\theta \leq \pi$ attains its minimal value when $\theta=-\pi /(1+\lambda)$, and maximum value when $\theta=\pi /(1+\lambda)$. On the other hand for $-\pi<\theta \leq \pi$

$$
\left.\begin{array}{rl}
0 & \leq \Re\left\{\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}
\end{array}\right) \leq 2^{\lambda}, ~=\left(2 \cos \frac{\pi}{2 \lambda+2}\right)^{\lambda} \sin \frac{\pi \lambda}{2 \lambda+2} \leq \Im\left\{\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\} \leq\left(2 \cos \frac{\pi}{2 \lambda+2}\right)^{\lambda} \sin \frac{\pi \lambda}{2 \lambda+2} .
$$

If we take $\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\rho \mathrm{e}^{\mathrm{i} \varphi}$, simple calculations show that $\varphi=\lambda \theta / 2$ and $\rho=\left(2 \cos \frac{\theta}{2}\right)^{\lambda}$. Therefore $\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ in the polar coordinates will be as follows

$$
\begin{equation*}
\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\left\{w=\rho \mathrm{e}^{\mathrm{i} \varphi}: \quad \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2}<\varphi \leq \frac{\lambda \pi}{2}\right\} . \tag{2.3}
\end{equation*}
$$

Thus from 2.3) we have $\left|\operatorname{Arg}\left\{\mathfrak{q}_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|<\lambda \pi / 2$. Additionally, the right loop of the sinusoidal spiral $\mathbb{L} \mathbb{B}(\lambda)$ is a boundary of the domain $\mathfrak{q}_{\lambda}(\Delta)$. Also note that

$$
\begin{aligned}
\mathfrak{q}_{\lambda}(\Delta) & =\left\{w=\rho^{\mathrm{i} \varphi}: \quad \rho<\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}, \quad-\frac{\lambda \pi}{2}<\varphi<\frac{\lambda \pi}{2}\right\} \\
& =\left\{w \in \mathbb{C}: \quad \Re\{w\}>0, \quad \Re\left\{w^{-1 / \lambda}\right\}>\frac{1}{2}\right\} .
\end{aligned}
$$

is a domain which is symmetric about the real axis, starlike with respect to the point $\mathfrak{q}_{\lambda}(0)=1$, and satisfies $\mathfrak{q}_{\lambda}^{\prime}(0)=\lambda>0$. Also, $\mathbb{L} \mathbb{B}(\lambda)$ has tangential radial vector $\varphi= \pm \lambda \pi / 2$.

Lemma 2.1. The functions $\mathfrak{q}_{\lambda}(z)$ are convex univalent in Δ for each $0<\lambda \leq 1$. Moreover $g_{\lambda}(z)=\left(\mathfrak{q}_{\lambda}(z)-1\right) / \lambda \in$ $\mathcal{C} \mathcal{V}((1+\lambda) / 2)$ and $g_{1}(z)=\mathfrak{q}_{1}(z)-1=z \in \mathcal{C} \mathcal{V}$. Also, if $|z|=r<1$, then

$$
\min _{|z|=r}\left|\mathfrak{q}_{\lambda}(z)\right|=\mathfrak{q}_{\lambda}(-r) \quad \text { and } \quad \max _{|z|=r}\left|\mathfrak{q}_{\lambda}(z)\right|=\mathfrak{q}_{\lambda}(r)
$$

Proof . Let us consider

$$
g_{\lambda}(z)=\left(\mathfrak{q}_{\lambda}(z)-1\right) / \lambda \quad(z \in \Delta) .
$$

Then, we have

$$
\Re\left\{1+\frac{z g_{\lambda}^{\prime \prime}(z)}{g_{\lambda}^{\prime}(z)}\right\}=\Re\left\{\frac{1+\lambda z}{1+z}\right\}>\frac{\lambda+1}{2}
$$

so $g_{\lambda} \in \mathcal{C} \mathcal{V}((\lambda+1) / 2) \subset \mathcal{S T}$. In order to prove the second part of lemma, if $\theta \in[0,2 \pi)$, then the function

$$
Q(\theta)=\left|\mathfrak{q}_{\lambda}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|1+r \mathrm{e}^{\mathrm{i} \theta}\right|^{\lambda}=\left(1+r^{2}+2 r \cos \theta\right)^{\frac{\lambda}{2}} \quad(0<r<1)
$$

attains its minimum at $\theta=\pi$ and maximum at $\theta=0$. This ends the proof.
The following theorem describes some properties of the functions that are in class

$$
\mathcal{P}\left(\mathfrak{q}_{\lambda}\right)=\left\{p \in \mathcal{H}: p \prec \mathfrak{q}_{\lambda}\right\} .
$$

Theorem 2.2. Let $\mathfrak{p} \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$. Then

$$
\begin{equation*}
|\operatorname{Arg}\{\mathfrak{p}(z)\}|<\frac{\lambda \pi}{2}, \quad 0<\Re\{\mathfrak{p}(z)\}<2^{\lambda}, \quad|\Im\{\mathfrak{p}(z)\}|<\left(2 \cos \frac{\pi}{2 \lambda+2}\right)^{\lambda} \sin \frac{\pi \lambda}{2 \lambda+2} \tag{2.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathfrak{p}^{1 / \lambda}(z)-1\right|<1 \tag{2.4b}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\Re\left\{\mathfrak{p}^{1 / \lambda}(z)\right\}<2 \tag{2.4c}
\end{equation*}
$$

Conversely, if $\mathfrak{p} \in \mathcal{P}$ with $|\operatorname{Arg}\{\mathfrak{p}(z)\}|<\lambda \pi / 2$ and \mathfrak{p} satisfies 2.4b, then $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ in Δ.
Proof . The subordination $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ with $\mathfrak{p}(0)=\mathfrak{q}_{\lambda}(0)$, and the geometric properties of $\mathfrak{q}_{\lambda}(\Delta)$ yield 2.4a). In order to prove the second part of theorem, since $\mathfrak{p} \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$, then

$$
\mathfrak{p}(z)=(1+\omega(z))^{\lambda} \quad \text { or } \quad \omega(z)=\mathfrak{p}^{1 / \lambda}(z)-1, \quad|\omega(z)|<1,
$$

where $\omega \in \mathcal{B}$ and finally assertion $(2.4 \mathrm{~b})$ as follows. For the prove 2.4 c we rewrite 2.4 b as

$$
-1<-\left|p^{1 / \lambda}(z)-1\right| \leq \Re\left\{p^{1 / \lambda}(z)-1\right\} \leq\left|p^{1 / \lambda}(z)-1\right|<1
$$

that reduces to 2.4 c . Conversely, it is enough to show that $\mathfrak{p}(\Delta) \subset \mathfrak{q}_{\lambda}(\Delta)$. To do this, let $w=\rho \mathrm{e}^{\mathrm{i} \varphi} \in \mathfrak{p}(\Delta)$. Since w satisfy the condition 2.4b), we conclude

$$
\begin{equation*}
\rho^{1 / \lambda}<2 \cos \frac{\varphi}{\lambda} \tag{2.4d}
\end{equation*}
$$

Making use of $|\operatorname{Arg}\{w\}|<(\lambda \pi) / 2$, we have $\Re w^{1 / \lambda}>0$ or, equivalently $\cos (\varphi / \lambda)>0$. From (2.4d), we obtain $w \in \mathfrak{q}_{\lambda}(\Delta)$ and completes the proof.

Using the same notation and the same reasoning as in the proof of Theorem 2.2, we get the following Theorem.
Theorem 2.3. Let $\mathfrak{p} \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$. Then

$$
\begin{equation*}
\Re\left\{\mathfrak{p}^{-1 / \lambda}(z)\right\}>\frac{1}{2} \tag{2.5a}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\Re\left\{\mathfrak{p}^{1 / \lambda}(z)\right\}<2 \tag{2.5b}
\end{equation*}
$$

Conversely, if $\mathfrak{p} \in \mathcal{P}$ and \mathfrak{p} satisfies 2.5a, then $\mathfrak{p} \prec \mathfrak{q}_{\lambda}$ in Δ.
Definition 2.4. Let $\mathcal{S}_{L}^{*}(\lambda)$ denote the class of analytic functions $f \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \mathfrak{q}_{\lambda}(z) \quad(z \in \Delta) \tag{2.6a}
\end{equation*}
$$

and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ denote the class of analytic functions $f \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \mathfrak{q}_{\lambda}(z) \quad(z \in \Delta) \tag{2.6b}
\end{equation*}
$$

Geometrically, the condition 2.6a and 2.6b means that the quantities $z f^{\prime}(z) / f(z)$ and $1+z f^{\prime \prime} / f^{\prime}$ lies in the region bounded by the right loop of the sinusoidal spiral $\mathbb{L} \mathbb{B}(\lambda)$, respectively. Since a domain $\mathfrak{q}_{\lambda}(\Delta)$ is contained in a right half-plane, we deduce that $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ are proper subset of classes of a starlike functions $\mathcal{S T}$ and convex functions $\mathcal{C} \mathcal{V}$, respectively. Now we turn to the relationship between the classes $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$ and the classes mentioned in the section 1. By Theorems 2.2 and 2.3 we get

$$
\begin{aligned}
\mathcal{S}_{L}^{*}(\lambda) & =\left\{f \in \mathcal{S S}^{*}(\lambda): \quad\left|\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{1 / \lambda}-1\right|<1, z \in \Delta\right\} \\
& =\left\{f \in \mathcal{S T}: \quad \Re\left\{\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{-1 / \lambda}\right\}>\frac{1}{2}, z \in \Delta\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C} \mathcal{V}_{L}(\lambda)=\left\{f \in \mathcal{C} \mathcal{V}^{*}(\lambda): \quad\left|\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{1 / \lambda}-1\right|<1, z \in \Delta\right\} \\
&=\left\{f \in \mathcal{C} \mathcal{V}: \quad \Re\left\{\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{-1 / \lambda}\right\}>\frac{1}{2}, z \in \Delta\right\}, \\
& \mathcal{S}_{L}^{*}(\lambda) \subset \mathcal{S} \mathcal{S}^{*}(\alpha) \quad \text { and } \quad \mathcal{C} \mathcal{V}_{L}(\lambda) \subset \mathcal{C} \mathcal{V}^{*}(\alpha) \quad \text { for } \quad \lambda \leq \alpha \leq 1, \\
& \mathcal{S}_{L}^{*}(\lambda) \subset \mathcal{S}(0, b) \quad \text { and } \quad \mathcal{C} \mathcal{V}_{L}(\lambda) \subset \mathcal{S}(0, b) \quad \text { for } \quad b \geq 2^{\lambda} \\
& \mathcal{S}_{L}^{*}\left(\lambda_{1}\right) \subset \mathcal{S}_{L}^{*}\left(\lambda_{2}\right) \quad \text { and } \quad \mathcal{C} \mathcal{V}_{L}\left(\lambda_{1}\right) \subset \mathcal{C} \mathcal{V}_{L}\left(\lambda_{2}\right) \quad \text { for } \quad \lambda_{1} \leq \lambda_{2}
\end{aligned}
$$

Applying the Lemma 2.1 and Theorem 2.2 and the Briot-Bouquet differential subordination [9, Theorem 3.2a], we can easily see that $\mathcal{C} \mathcal{V}_{L}(\lambda) \subset \mathcal{S}_{L}^{*}(\lambda)$.

Lemma 2.5. Let $0<\lambda \leq 1$. If $M \geq 2^{\lambda-1}$, then

$$
\begin{equation*}
(1+z)^{\lambda} \prec \frac{M+M z}{M-(M-1) z}=: P_{M}(z) \quad(z \in \Delta) \tag{2.7}
\end{equation*}
$$

Proof. Since $q(0)=P_{M}(0)=1$, from Definition 1.1 it is enough to prove $\mathfrak{q}_{\lambda}(\Delta) \subset P_{M}(\Delta)$. Since for $-\pi / 2<\varphi / \lambda<$ $\pi / 2$, we have

$$
\begin{equation*}
\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda} \leq(2 \cos \varphi)^{\lambda} \leq 2^{\lambda} \cos \varphi \tag{2.8}
\end{equation*}
$$

Also, the function P_{M} is univalent in Δ, and maps the unit circle onto the circle

$$
\left\{\rho=2 M \cos \varphi:-\frac{\pi}{2}<\varphi<\frac{\pi}{2}\right\}
$$

For the establishment of relation $\mathfrak{q}_{\lambda}(\Delta) \subset P_{M}(\Delta)$, taking into account relation 2.8 , we deduce $2^{\lambda} \leq 2 M$ and

$$
\mathfrak{q}_{\lambda}(\Delta) \subset\left\{\rho \mathrm{e}^{\mathrm{i} \varphi}: \rho \leq 2 M \cos \varphi, \quad-\frac{\pi}{2}<\varphi<\frac{\pi}{2}, \quad M \geq 2^{\lambda-1}\right\}=P_{M}(\Delta)
$$

Moreover

$$
\mathcal{S}_{L}^{*}(\lambda) \subset\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-M\right|<M, \quad z \in \Delta, M \geq 2^{\lambda-1}\right\}
$$

The Relation 2.8 show that the image of the unit circle $|z|=1$ under the functions \mathfrak{q}_{λ} (The right-half of the lemniscate of Bernoulli $\gamma_{1}: \rho=\left(2 \cos \frac{\varphi}{\lambda}\right)^{\lambda}$) and $P_{M}\left(\right.$ The circle $\gamma_{2}: \rho=2^{\lambda} \cos \varphi$ with $\left.-\pi / 2<\varphi<\pi / 2\right)$ for $\lambda=1 / 5$ and $M=1 / \sqrt[5]{16}$, respectively.

By possessing a comprehensive form of functions p, i.e. $p \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$, we obtain by integration, the exhibition formula for the functions in $\mathcal{S}_{L}^{*}(\lambda)$ and $\mathcal{C} \mathcal{V}_{L}(\lambda)$. Namely, $f \in \mathcal{S}_{L}^{*}(\lambda)$ if and only there exists a function $p \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$ such that

$$
\begin{equation*}
f(z)=z \exp \left(\int_{0}^{z} \frac{p(t)-1}{t} \mathrm{~d} t\right) \quad(z \in \Delta) \tag{2.9a}
\end{equation*}
$$

or, $f \in \mathcal{C} \mathcal{V}_{L}(\lambda)$ if and only there exists a function $p \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$ such that

$$
\begin{equation*}
f(z)=\int_{0}^{z} \exp \left(\int_{0}^{w} \frac{p(t)-1}{t} \mathrm{~d} t\right) \mathrm{d} w \quad(z \in \Delta) \tag{2.9b}
\end{equation*}
$$

Let $g \in \mathcal{A}$ and let $z g^{\prime}(z) / g(z)=p(z)\left(1+z g^{\prime \prime}(z) / g^{\prime}(z)=p(z)\right.$ resp.) with $p \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right), z \in \Delta$. Clearly, $g \in \mathcal{S}_{L}^{*}(\lambda)$ $\left(\mathcal{C} \mathcal{V}_{L}(\lambda)\right.$ resp. $)$ and g is extremal function in the class $\mathcal{S}_{L}^{*}(\lambda)\left(\mathcal{C} \mathcal{V}_{L}(\lambda)\right.$ resp. $)$. This representation gives many examples of functions in class $\mathcal{S}_{L}^{*}(\lambda)\left(\mathcal{C} \mathcal{V}_{L}(\lambda)\right.$ resp. $)$. To do this, by taking $p(z)=\mathfrak{q}_{\lambda}\left(z^{n}\right)$ with $n=1,2,3, \ldots$, the function $F_{\lambda, n}$ with definition

$$
\begin{align*}
F_{\lambda, n}(z)=z \exp \left(\int_{0}^{z} \frac{\mathfrak{q}_{\lambda}\left(t^{n}\right)-1}{t} \mathrm{~d} t\right)=z & +\frac{\lambda}{n} z^{n+1}+\frac{\lambda^{2}(n+2)-n \lambda}{4 n^{2}} z^{2 n+1} \\
& +\frac{\lambda\left(\left(2 n^{2}+9 n+6\right) \lambda^{2}-\left(6 n^{2}+9 n\right) \lambda+4 n^{2}\right)}{36 n^{3}} z^{3 n+1}+\cdots(z \in \Delta), \tag{2.9c}
\end{align*}
$$

is extremal function for several problems in the class $\mathcal{S}_{L}^{*}(\lambda)$. Especially for $n=1$ we have

$$
\begin{align*}
& F_{\lambda}(z):=F_{\lambda, 1}(z)=z \exp \left(\int_{0}^{z} \frac{\mathfrak{q}_{\lambda}(t)-1}{t} \mathrm{~d} t\right) \\
&=z+\lambda z^{2}+\left(\frac{3 \lambda^{2}-\lambda}{4}\right) z^{3}+\left(\frac{17 \lambda^{3}-15 \lambda^{2}+4 \lambda}{36}\right) z^{4}+\cdots \tag{2.9d}
\end{align*}
$$

Also, by taking $p(z)=\mathfrak{q}_{\lambda}\left(z^{n}\right)$ with $n=1,2,3, \ldots$, the function $K_{\lambda, n}$ with definition

$$
\begin{align*}
K_{\lambda, n}(z) & =\int_{0}^{z} \exp \left(\int_{0}^{w} \frac{\mathfrak{q}_{\lambda}\left(t^{n}\right)-1}{t} \mathrm{~d} t\right) \mathrm{d} w=z+\frac{\lambda}{n(n+1)} z^{n+1}+\frac{\lambda^{2}(n+2)-n \lambda}{4 n^{2}(2 n+1)} z^{2 n+1} \\
& +\frac{\lambda\left(\left(2 n^{2}+9 n+6\right) \lambda^{2}-\left(6 n^{2}+9 n\right) \lambda+4 n^{2}\right)}{36 n^{3}(3 n+1)} z^{3 n+1}+\cdots(z \in \Delta), \tag{2.10a}
\end{align*}
$$

is extremal function for several problems in the class $\mathcal{C} \mathcal{V}_{L}(\lambda)$. Especially for $n=1$ we have

$$
\begin{align*}
K_{\lambda}(z):=K_{\lambda, 1}(z)=\int_{0}^{z} \exp \left(\int_{0}^{w} \frac{\mathfrak{q}_{\lambda}(t)-1}{t} \mathrm{~d} t\right) & \mathrm{d} w \\
& =z+\frac{\lambda}{2} z^{2}+\left(\frac{3 \lambda^{2}-\lambda}{12}\right) z^{3}+\left(\frac{17 \lambda^{3}-15 \lambda^{2}+4 \lambda}{144}\right) z^{4}+\cdots . \tag{2.10b}
\end{align*}
$$

Theorem 2.6. Let p be an analytic function in the unit disk Δ, such that $p(0)=1$. If

$$
\begin{equation*}
\Re\left\{\frac{z p^{\prime}(z)}{p(z)}\right\}<\frac{\lambda}{2} \quad(0<\lambda \leq 1, z \in \Delta) \tag{2.11}
\end{equation*}
$$

then

$$
p \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)
$$

Proof . From 2.11) it follows that $p(z) \neq 0$ for all $z \in \Delta$. Otherwise, suppose that p has a point zero of order m, $m \geq 1$ at the point ζ that satisfies $|\zeta|<1$. Then we have $p(z)=(z-\zeta)^{m} q(z), q(z) \neq 0$ on Δ and

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{m z}{z-\zeta}+\frac{z q^{\prime}(z)}{q(z)}
$$

A simple calculation shows that for $z \in \Delta$

$$
\begin{aligned}
\lim _{z \rightarrow \zeta}(z-\zeta) \frac{z p^{\prime}(z)}{p(z)} & = \begin{cases}\lim _{z \rightarrow \zeta} m z+\lim _{z \rightarrow \zeta}(z-\zeta) \frac{z q^{\prime}(z)}{q(z)} & \text { for } \zeta \neq 0 \\
m+\lim _{z \rightarrow \zeta} \frac{z^{2} q^{\prime}(z)}{q(z)} & \text { for } \zeta=0\end{cases} \\
& = \begin{cases}m \zeta & \text { for } \zeta \neq 0, \\
m & \text { for } \zeta=0 .\end{cases}
\end{aligned}
$$

Then $z p^{\prime} / p$ has a simple pole at ζ, which contradicts 2.11 . We conclude that $p(z) \neq 0$, as required. Let $p(z) \nprec \mathfrak{q}_{\lambda}(z)$ on Δ. Then by Lemma 1.3 there exist $z_{0} \in \Delta$ and $\zeta_{0} \in \partial \Delta$ with $\zeta_{0} \neq-1$ such that

$$
p\left(z_{0}\right)=\mathfrak{q}_{\lambda}\left(\zeta_{0}\right), \quad z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} \mathfrak{q}_{\lambda}^{\prime}\left(\zeta_{0}\right) \quad m \geq 1
$$

Thus

$$
\Re\left\{\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right\}=\Re\left\{\frac{m \zeta_{0} \mathfrak{q}_{\lambda}^{\prime}\left(\zeta_{0}\right)}{\mathfrak{q}_{\lambda}\left(\zeta_{0}\right)}\right\}=m \lambda \Re\left\{\frac{\zeta_{0}}{1+\zeta_{0}}\right\}=\frac{m \lambda}{2} \geq \frac{\lambda}{2} .
$$

But this contradicts our assumption (2.11) and therefore $p \prec \mathfrak{q}_{\lambda}$ on Δ.
Taking into account $p(z)=f^{\prime}(z)$ in Theorem 2.6, the norm of pre-Schwarzian derivatives and univalency of functions on class $\mathcal{G}(\lambda)$ are investigated.

Lemma 2.7. If a function f belongs to the class $\mathcal{G}(\lambda)$, then $f^{\prime} \in \mathcal{P}\left(\mathfrak{q}_{\lambda}\right)$. Also, f is univalent function in Δ and

$$
z \exp \left(\int_{0}^{z} \frac{f^{\prime}(t)-1}{t} \mathrm{~d} t\right) \in \mathcal{S}_{L}^{*}(\lambda) \quad \text { and } \quad \int_{0}^{z} \exp \left(\int_{0}^{w} \frac{f^{\prime}(t)-1}{t} \mathrm{~d} t\right) \mathrm{d} w \in \mathcal{C} \mathcal{V}_{L}(\lambda)
$$

Lemma 2.8. Let f be a function in $\mathcal{G}(\lambda)$. Then $\left\|T_{f}\right\| \leq 2 \lambda$. Moreover, equality holds for f given by $f(z)=\bar{\mu} \Phi(\mu z)$, where μ is an unimodular constant and

$$
\begin{equation*}
\Phi(z)=\frac{(1+z)^{1+\lambda}-1}{1+\lambda} \quad(z \in \Delta) \tag{2.12}
\end{equation*}
$$

Proof . Suppose that $f \in \mathcal{G}(\lambda)$. Making use of Lemma 2.7 there exits $\omega \in \mathcal{B}$ such that $f^{\prime}(z)=(1+\omega(z))^{\lambda}$ and

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\frac{\lambda\left|\omega^{\prime}(z)\right|}{|1+\omega(z)|} \quad(z \in \Delta)
$$

By the Schwarz-Pick Lemma,

$$
\begin{equation*}
\left|\omega^{\prime}(z)\right| \leq \frac{1-|\omega(z)|^{2}}{1-|z|^{2}} \quad(z \in \Delta) \tag{2.13}
\end{equation*}
$$

we conclude

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\frac{\lambda\left|\omega^{\prime}(z)\right|}{|1+\omega(z)|} \leq \frac{\lambda\left(1-|\omega(z)|^{2}\right)}{\left(1-|z|^{2}\right)(1-|\omega(z)|)} \leq \frac{\lambda(1+|z|)}{1-|z|^{2}}
$$

and

$$
\left\|T_{f}\right\| \leq \sup _{z \in \Delta} \lambda(1+|z|) \leq 2 \lambda
$$

We have equality in the Schwarz-Pick lemma inequality 2.13 , if and only if $\omega(z)=\mu z$ with $|\mu|=1$ and μ is complex number. Thus for function

$$
f^{\prime}(z)=(1+\omega(z))^{\lambda}=(1+\mu z)^{\lambda} \quad \text { or } \quad f(z)=\bar{\mu} \Phi(\mu z)
$$

where Φ given by 2.12 , it follows that $\left\|T_{f}\right\|=2 \lambda$.
For $p(z)=f(z) / z$ or $p(z)=z / f(z)$ in Theorem 2.6 and taking into account relation 2.9a, we get the following results.

Corollary 2.9. 1. Let $f \in \mathcal{A}$. If $f \in \mathcal{N}(\lambda)$, then

$$
\frac{f(z)}{z} \prec \mathfrak{q}_{\lambda}(z) \quad \text { and } \quad z \exp \left(\int_{0}^{z} \frac{f(t)-t}{t^{2}} \mathrm{~d} t\right) \in \mathcal{S}_{L}^{*}(\lambda) .
$$

2. Let $f \in \mathcal{A}$. If $f \in f \in \mathcal{S T}(1-\lambda / 2)$, then

$$
\frac{z}{f(z)} \prec \mathfrak{q}_{\lambda}(z) \quad \text { and } \quad z \exp \left(\int_{0}^{z} \frac{t-f(t)}{t f(t)} \mathrm{d} t\right) \in \mathcal{S}_{L}^{*}(\lambda)
$$

Taking into account $p(z)=z f^{\prime}(z) / f(z)$ in Theorem 2.6. we have the following corollary is a starlikeness condition for analytic functions of the unit disk.

Corollary 2.10. If a function $f \in \mathcal{H}$ satisfy the condition

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right\}<\frac{\lambda}{2} \quad(z \in \Delta)
$$

then $f \in \mathcal{S}_{L}^{*}(\lambda) \subset \mathcal{S} \mathcal{T}$.
Example 2.11. The Corollary 2.9 provides many examples of functions in class $\mathcal{S}_{L}^{*}(\lambda)$. Let

$$
f_{1}(z)=z+A_{1} z^{n},(n \geq 2), \quad f_{2}(z)=\frac{z}{1-A_{2} z}, \quad f_{3}(z)=\frac{z}{\left(1-A_{3} z\right)^{2}}
$$

For

$$
0<\left|A_{1}\right| \leq \frac{\lambda}{2 n-2-\lambda}, \quad 0<\left|A_{2}\right| \leq \frac{\lambda}{2+\lambda}, \quad 0<\left|A_{3}\right| \leq \frac{\lambda}{4+\lambda}
$$

the functions $f_{i}, i=1,2,3$ belong in class $\mathcal{N}(\lambda)$. Then the appropriate functions

$$
g_{1}(z)=z \exp \left(\frac{A_{1} z^{n-1}}{n-1}\right), \quad g_{2}(z)=\frac{z}{1-A_{2} z}, \quad g_{3}(z)=\frac{z}{1-A_{3} z} \exp \left(\frac{A_{3} z}{1-A_{3} z}\right)
$$

belong to the class $\mathcal{S}_{L}^{*}(\lambda)$.
Example 2.12. For $0<|A| \leq \lambda /(2-\lambda)$

$$
f(z)=\frac{1}{A}\left(\mathrm{e}^{A z}-1\right) \in \mathcal{C} \mathcal{V}_{L}(\lambda)
$$

and for $0<|A| \leq \lambda /(2+\lambda)$

$$
f(z)=-\frac{1}{A} \ln (1-A z) \in \mathcal{C} \mathcal{V}_{L}(\lambda)
$$

From the results in [8] function 2.9 d , and Lemma 2.1. we have the following sharp estimates for function $f \in \mathcal{S}_{L}^{*}(\lambda)$ $\left(f \in \mathcal{C} \mathcal{V}_{L}(\lambda)\right.$ resp. $)$.

Theorem 2.13. If $f \in \mathcal{S}_{L}^{*}(\lambda)$ and $|z|=r<1$, then

1. Growth Theorem: $-F_{\lambda}(-r) \leq|f(z)| \leq F_{\lambda}(r)$,
2. Distortion Theorem: $F_{\lambda}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq F_{\lambda}^{\prime}(r)$,
3. Rotation Theorem: $|\operatorname{Arg}\{f(z) / z\}| \leq \max _{|z|=r} \operatorname{Arg}\left\{F_{\lambda}(z) / z\right\}$. Equality holds for some $z \neq 0$ if and only if f is a rotation of F_{λ} given by 2.9 d).
4. Covering Theorem: If $f \in \mathcal{S}_{L}^{*}(\lambda)$, then either f is a rotation of F_{λ} or

$$
\left\{w \in \mathbb{C}: \quad|w| \leq-F_{\lambda}(-1)\right\} \subset f(\Delta)
$$

Here $-F_{\lambda}(-1)=\lim _{r \rightarrow 1^{-}}-F_{\lambda}(-r)$.
Theorem 2.14. If $f \in \mathcal{C} \mathcal{V}_{L}(\lambda)$ and $|z|=r<1$, then

1. Growth Theorem: $-K_{\lambda}(-r) \leq|f(z)| \leq K_{\lambda}(r)$,
2. Distortion Theorem: $K_{\lambda}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq K_{\lambda}^{\prime}(r)$,
3. Rotation Theorem: $\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right| \leq \max _{|z|=r} \operatorname{Arg}\left\{K_{\lambda}^{\prime}(z)\right\}$. Equality holds for some $z \neq 0$ if and only if f is a rotation of K_{λ} given by 2.10 b$)$.
4. Covering Theorem: If $f \in \mathcal{S}_{L}^{*}(\lambda)$, then either f is a rotation of F_{λ} or

$$
\left\{w \in \mathbb{C}: \quad|w| \leq-K_{\lambda}(-1)\right\} \subset f(\Delta)
$$

Here $-K_{\lambda}(-1)=\lim _{r \rightarrow 1^{-}}-K_{\lambda}(-r)$.
For the special case $\lambda=1 / 2$, results for functions belonging to the class

$$
\begin{aligned}
\mathcal{S}_{L}^{*}:=\mathcal{S}_{L}^{*}(1 / 2) & =\left\{f \in \mathcal{S S}^{*}\left(\frac{1}{2}\right): \quad\left|\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2}-1\right|<1, z \in \Delta\right\}, \\
& =\left\{f \in \mathcal{S T}: \quad \Re\left\{\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{-2}\right\}>\frac{1}{2}, z \in \Delta\right\}
\end{aligned}
$$

and its generalizations can be found in [1, 2, 3, 13, 15, 16, 17, 18, 19. The function $f \in \mathcal{S}_{L}^{*}$ if and only if quantity $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right loop of the lemniscate of Bernoulli

$$
\begin{aligned}
\mathbb{L} \mathbb{B}\left(\frac{1}{2}\right) & =\left\{\rho \mathrm{e}^{\mathrm{i} \varphi}: \rho=(2 \cos 2 \varphi)^{1 / 2}, \quad-\frac{\pi}{4}<\varphi \leq \frac{\pi}{4}\right\} \\
& =\left\{w \in \mathbb{C}: \quad \Re\{w\}>0, \quad \Re\left\{\frac{1}{w^{2}}\right\}=\frac{1}{2}\right\} \cup\{0\} .
\end{aligned}
$$

Below, we get the sharp radius of convexity of the class $\mathcal{S}_{L}^{*}(\lambda)$.

Theorem 2.15. Let r_{0} denote the positive root of the equation

$$
(1-r)^{1+\lambda}=\lambda r \quad r \in[0,1)
$$

If $f \in \mathcal{S}_{L}^{*}(\lambda)$, then f is convex in the disk $|z|<r_{0}$. This result is sharp.
Proof . Let $f \in \mathcal{S}_{L}^{*}(\lambda)$. Then from Definition 2.4 we obtain

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=[1+w(z)]^{\lambda} \quad(z \in \Delta) \tag{2.14}
\end{equation*}
$$

where $\omega \in \mathcal{B}$ with $|\omega(z)| \leq|z|, z \in \Delta$. Logarithmic differentiation of (2.14 yields that

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=\Re\left\{[1+\omega(z)]^{\lambda}-\frac{\lambda z \omega^{\prime}(z)}{[1+\omega(z)]}\right\} .
$$

From Lemma 2.1 and inequality 2.13 , it follows that

$$
\begin{aligned}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} & \geq \Re\left\{[1+\omega(z)]^{\lambda}\right\}-\lambda|z| \frac{1-|\omega(z)|^{2}}{[1-|\omega(z)|]\left[1-|z|^{2}\right]} \\
& \geq(1-|z|)^{\lambda}-\frac{\lambda|z|}{(1-|z|)}
\end{aligned}
$$

The function $g(x)=(1-r)^{\lambda}-\frac{\lambda r}{(1-r)}$ with $|z|=r \in[0,1)$ is decreasing in $[0,1)$ and $g(0)=1$. The equation $g(r)=0$ is equivalent to

$$
\begin{equation*}
(1-r)^{1+\lambda}=\lambda r \quad r \in[0,1) \tag{2.15}
\end{equation*}
$$

The only real positive root of 2.15 is equal to r_{0}. For a function F_{λ} given by 2.9 d , we have

$$
\Re\left\{1+\frac{z F_{\lambda}^{\prime \prime}(z)}{F_{\lambda}^{\prime}(z)}\right\}=\Re\left\{(1+z)^{\lambda}+\frac{\lambda z}{1+z}\right\}=: G(z)
$$

and $G\left(-r_{0}\right)=0$, this shows the sharpness of r_{0}.

References

[1] R.M. Ali, N.E. Cho, N.K. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat 26 (2012), no. 3, 553-561.
[2] M.K. Aouf, J. Dziok and J. Sokół, On a subclass of strongly starlike functions, Appl. Math. Comput. 24 (2011), no. , 27-32.
[3] R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 1, 6557-6565.
[4] R.M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), no. 1, 35-46.
[5] D.A. Brannan and W.E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 2 (1969), no. 1, 431-443.
[6] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Springer, New York (1983)
[7] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J. 1 (2012), no. 1, 127-131.
[8] W. Ma and D. Minda, A unied treatment of some special classes of univalent functions, in Proc. Conf. on Complex Analysis, Tianjin, 1992, Conference Proceedings and Lecture Notes in Analysis, Vol. 1 (International Press, Cambridge, MA, 1994, 157-169.
[9] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York, Basel, 2000.
[10] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
[11] S. Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A. 4 (1941), 45-87.
[12] M. Obradović, S. Ponnusamy and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, Sib. Math. J. 54 (2013), 679-696.
[13] E. Paprocki and J. Sokół, The extermal problems in some subclasses of strongly functions, Folia Scient. Univ. Tech. Resov. 20 (1996), 89-94.
[14] M.I. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), no. 2, 374-408.
[15] J. Sokól, On application of certain sufficient condition for starlikeness, J. Math. Appl. 30 (2008), 131-135.
[16] J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math. 31 (1998), no. 1, 81-86.
[17] J. Sokól, Coefficient Estimates in a Class of Strongly Starlike Functions, Kyungpook Math. J. 49 (2009), no. 2, 349-353.
[18] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resov. 19 (1996), 101-105.
[19] J. Sokół and D. K. Thomas, Further Results on a Class of Starlike Functions Related to the Bernoulli Lemniscate, Houston J. Math. 44 (2018), 83-95.
[20] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-202.

[^0]: Email address: m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi)
 Received: July 2022 Accepted: October 2022

