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Abstract

In this paper, we extend the multi-valued version of Darbo’s fixed point theorem using generalized Mizogochi-Takahashi
mappings of the Wardowski type. The technique of measure of noncompactness is the main tool in carrying out our
proofs. As an application, we investigate the existence of solutions for an integral inclusion on the space BC(R+, E).
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1 Introduction

The Measure of Non-Compactness (MNC) was first introduced by Kuratowski [24] in 1930. This concept is a very
useful tool in the proof of the existence of solutions for integral equations, systems of integral equations, and fractional
types of these equations. For more details, we refer the reader to [1, 8, 2, 7, 6, 9, 5, 10, 26, 11, 21, 27, 19, 22, 28, 29,
18, 3, 30].

Let R signifies the set of all real numbers and R+ = [0,+∞). Let (G, ∥ · ∥) be a real Banach space. Moreover,
let B(x, r) shows the closed ball with center x and radius r. Let Br be the ball B(0, r), and X and ConvX be
the closure and the closed convex hull of X, respectively, for arbitrary X ⊆ G. Furthermore, let MG = {A ⊆
G : A is nonempty and bounded } and NG = {A ⊆ G : A is relatively compact }.

Definition 1.1. [4] A mapping µ : MG −→ R+ is said to be a measure of noncompactness on G provided that:

1◦ The family kerµ is nonempty and kerµ ⊆ NG ;

2◦ µ(X) ≤ µ(Y ) whenever X ⊆ Y ;
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3◦ µ(X) = µ(X) = µ(ConvX);

4◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for all λ ∈ [0, 1];

5◦ If {Xn = Xn} ⊆ MG such that Xn+1 ⊂ Xn for all n = 1, 2, · · · , and if lim
n→∞

µ(Xn) = 0, then X∞ = ∩∞
n=1Xn ̸= ∅.

The Kuratowski measure of noncompactness [4, 24] is defined by

µ(X) := inf
{
σ > 0 : X =

n⋃
i=1

Xi, diam(Xi) ≤ σ
}

for bounded subset X of a metric space G, where diam(X) := sup{d(x, y) : x, y ∈ X}.

Theorem 1.2. ([1]) Let Ω be a nonempty, bounded, closed and convex (NBCC) subset of a Banach space G. Then
each continuous and compact mapping F : Ω → Ω has at least one fixed point.

Theorem 1.3. (Darbo[14]) Let C be a NBCC subset of a Banach space G and T : C → C be a continuous mapping.
Assume that µ(TX) ≤ Kµ(X) for any nonempty subset X of C, where K ∈ [0, 1) and µ is a MNC defined in G. Then
T has at least a fixed point in C.

Let G be a Banach space and let P(G) be the class of all subsets of G. Denote

Pp(G) = {A ⊆ G | A is non-empty and possesses property p}.

Here, p may be the property p = closed (in short cl), or p = compact (in short cp), or p = convex (in short cv),
or p = bounded (in short bd), etc. Thus, Pcl(G), Pcp(G), Pcv(G), Pbd(G), Pcl,bd(G), Pcp,cv(G) denote the classes of all
closed, compact, convex, bounded, closed-bounded and compact-convex subsets of G.

A correspondence Q : G → Pp(G) is called a multi-valued operator or multi-valued mapping on G into G. A
point z ∈ G is called a fixed point of Q if z ∈ Qz. Throughout this paper, unless otherwise mentioned, assume that
QA = ∪a∈AQa for all A ⊆ G.

Let G1 and G2 be two Banach spaces and Q : G1 → Pp(G2) be a multi-valued mapping. For any subset B of G2 let:

Q+B = {x ∈ G1|Qx ⊆ B},

Q−B = {x ∈ G1|Qx ∩B ̸= ∅},

Q−1B = {x ∈ G1| ∪x Qx = B}.

A multi-valued mapping Q : G1 → Pp(G2) is called upper semi-continuous (resp. lower semi-continuous and
continuous) if for any open subset U of G2, the set Q+U (resp. Q−U and Q−1U) is an open subset of G1.

The property of upper semi-continuity plays an essential role in the fixed point theory on multi-valued mappings.
The first important result in this direction is due to Kakutani [23] which is as follows:

Theorem 1.4. Let Ω be a compact subset of a Banach space G and let Q : Ω → Pcp,cv(Ω) be an upper semi-continuous
multi-valued mapping. Then Q has at least one fixed point.

The following theorem due to Bohnenblust and Karlin is the first generalization of Theorem 1.4.

Theorem 1.5. [12] Let X be a NBCC subset of a Banach algebra G and let Q : X → Pcp,cv(X) be an upper
semi-continuous multi-valued operator with a relatively compact range. Then Q has a fixed point.

A multi-valued mapping Q : X → Pcp(X) is called compact if Q(X) is a compact subset of X. If Q : G1 → P(G2)
be a multi-valued operator, then the graph Gr(Q) is defined by Gr(Q) = {(x, y) ∈ G1×G2|y ∈ Tx}. The graph Gr(Q)
is said to be closed whenever if {(xn, yn)} be a sequence in Gr(Q) such that (xn, yn) → (x, y), then (x, y) ∈ Gr(Q).
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Definition 1.6. A multi-valued operator Q : G1 → Pcl(G2) is called closed if it has a closed graph in G1 × G2.

The following result concerning the upper semi-continuity of multi-valued mappings in Banach spaces is a useful
tool in multi-valued analysis. The details appears in Deimling [15].

Lemma 1.7. A multi-valued operator Q : G1 → Pcl(G2) is upper semi-continuous if and only if it is closed and has
compact range.

Theorem 1.8. Let X be a NBCC subset of a Banach algebra G and let Q : X → Pcp,cv(X) be a compact and closed
multi-valued operator. Then Q has a fixed point.

In 2010, Dhage [16] introduced multi-valued D-set-contractions and proved the existence of fixed point for such
mappings as follows:

Definition 1.9. A multi-valued operator Q : G → Pbd(G) is called a nonlinear D-set-Lipschitz if there exists a
continuous nondecreasing function ψ : R+ → R+ such that µ(Q(A)) ≤ ψ(µ(A)) for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G),
where ψ(0) = 0. Sometimes the function ψ in the above definition is called a D-function of Q on G. In the special
case, when ψ(r) = kr, 0 < k < 1, Q is called a k-set-contraction on G. Further, if ψ(r) < r for r > 0, then Q is called
a nonlinear D-set-contraction on G.

Lemma 1.10. If ψ be a D-function with ψ(r) < r for all r > 0, then lim
n→∞

ψn(t) = 0 for all t ∈ [0,∞).

Theorem 1.11. Let X be a NBCC subset of a Banach space G and let Q : X → Pcl,cv(X) be a closed and nonlinear
D-set-contraction. Then Q has a fixed point.

Corollary 1.12. Let X be a NBCC subset of a Banach space G and let Q : X → Pcl,cv(X) be a closed and nonlinear
k-set-contraction. Then Q has a fixed point.

In this paper, we extend the multi-valued version of Darbo’s fixed point theorem using generalized Mizogochi-Takahashi
mappings of Wardowski type.

2 Main Results

We begin with the definition of a Mizogochi-Takahashi mapping.

Definition 2.1. The function β : [0,∞) −→ [0, 1) such that lim sup
s→t+

β(s) < 1 for any t > 0, is called a Mizogochi-

Takahashi mapping. We denote this class by MT .

Denote by Γ the set of all functions γ : (0,∞) → R so that:

(F1) γ is continuous and increasing;

(F2) lim
n→∞

tn = 1 iff lim
n→∞

γ(tn) = 0 for all {tn} ⊆ (0,∞);

(F3) lim
n→∞

tn = 0 iff lim
n→∞

γ(tn) = −∞ for all {tn} ⊆ (0,∞).

Note that from (F2), we have γ(1) = 0.

Some examples of elements in Γ is as follows:

(i) γ1(t) = ln(t),

(ii) γ3(t) = − 1√
t
+ 1,

(iii) γ4(t) = − 1√
t
+ t,

(iv) γ5(t) = − 1
t + t.

(v) γ6(t) = − 1
t + 1.

Denote by Ψ the family of all mappings ψ : [0,∞) −→ [0,∞) so that
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1. ψ(s) = 0 iff s = 0;
2. ψ is nondecreasing, continuous and subadditive.

Definition 2.2. A multi-valued operator Q : G → Pbd(G) is called a generalized Mizogochi-Takahashi mapping of
Wardowski type if there exist functions γ ∈ Γ, ψ ∈ Ψ and β ∈ MT such that

γ
(
ψ
(
µ(QA)

))
≤ γ

(
β
(
ψ(µ(A))

))
+ γ

(
ψ
(
µ(A)

))
(2.1)

for all A ⊆ G with Q(A) ∈ Pbd(G) and µ(QA) > 0.

Now, we give the main result of this study regarding generalized Mizogochi-Takahashi mappings of Wardowski
type.

Theorem 2.3. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed generalized
Mizogochi-Takahashi mapping of Wardowski type. Then Q has a fixed point.

Proof . Define a sequence {Xn} such that X0 = X and Xn+1 = Conv(Q(Xn)) for all n = 0, 1, · · · .
If there exists an integer N ∈ N such that µ(XN ) = 0, then XN is compact and so Theorem 1.4 implies that Q

has a fixed point. So, we assume that µ(XN ) > 0 for each n ∈ N.
It is clear that {Xn}n∈N is a sequence of NBCC sets such that

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ Xn+1.

On the other hand,

γ
(
ψ
(
µ(Xn+1)

))
= γ

(
ψ
(
µ(QXn)

))
≤ γ

(
β
(
ψ(µ(Xn))

))
+ γ

(
ψ
(
µ(Xn)

))
< γ

(
ψ
(
µ(Xn)

))
. (2.2)

So,
{
γ
(
ψ
(
µ(Xn)

))}
is a positive decreasing and bounded below sequence of real numbers. Since γ is increasing,{

ψ
(
µ(Xn)

)}
is a positive decreasing and bounded below sequence of real numbers.

Thus,
{
ψ
(
µ(Xn)

)}
n∈N

is a convergent sequence. Suppose that lim
n→∞

ψ(µ(Xn)) = r.

Now, we show that r = 0. Suppose that r > 0. Taking the limit in (2.2),

γ(r) ≤ γ
(
lim sup
n→∞

β
(
ψ(µ(Xn))

))
+ γ(r) < γ(r),

which is a contradiction. Therefore, we have r = 0 and so lim
n→∞

ψ
(
µ(Xn)

)
= 0.

Since ψ
(
µ(Xn)

)
is decreasing and ψ is increasing, µ(Xn) is decreasing. Then there is some u ≥ 0 so that

{
µ(Xn)

}
converges to u. Since ψ is continuous,

ψ(u) = lim
n−→∞

ψ
(
µ(Xn)

)
= r = 0. (2.3)

Therefore, u = 0, i.e., lim
n→∞

µ(Xn) = 0. From principle (5◦) of Definition 1.6 we derive that the set X∞ =

∞⋂
n=1

Xn

is nonempty. As µ(X∞) = 0, thus from axiom 1◦, X∞ is compact. Since Q : Xn → Pcp,cv(Xn) and Xn+1 ⊆ Xn, for
all n = 0, 1, · · · , it is easy to show that Q : X∞ → Pcp,cv(X∞). Then in view of Theorem ??, Q has a fixed point. □

Taking γ(t) = ln(t) in Theorem 2.3, we have:

Corollary 2.4. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed multi-valued
mapping such that

ψ
(
µ(QA)

)
≤ β

(
ψ
(
µ(A)

))
ψ
(
µ(A)

)
(2.4)

for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G), where β ∈ MT , ψ ∈ Ψ and µ is an arbitrary MNC. Then Q has a fixed point.
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Taking β(t) = k in Theorem 2.3, we have:

Corollary 2.5. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed multi-valued
mapping such that there exist τ > 0, a function γ ∈ Γ and ψ ∈ Ψ so that

τ + γ
(
ψ
(
µ(QA)

))
≤ γ

(
ψ
(
µ(A)

))
(2.5)

for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G) and µ(QA) > 0, where µ is an arbitrary MNC. Then Q has a fixed point.

If ψ be the identity mapping in Corollary 2.5, we derive the following Wardowski type result for multi-valued
mappings:

Corollary 2.6. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed multi-valued
mapping such that there exist τ > 0 and a function γ ∈ Γ so that

τ + γ
(
µ(QA)

)
≤ γ

(
µ(A)

)
(2.6)

for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G) and µ(QA) > 0, where µ is an arbitrary MNC. Then Q has a fixed point.

Taking γ(t) = − 1
t + 1 and ψ the identity function in Theorem 1.4, we have:

Corollary 2.7. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed multi-valued
mapping such that

µ
(
Q(X)

)
≤

β
(
µ(X)

)
µ(X)

β
(
µ(X)

)
+ µ(X)− β

(
µ(X)

)
µ(X)

(2.7)

for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G) and µ(QA) > 0, where β ∈ MT and µ is an arbitrary MNC. Then Q has a
fixed point.

Taking γ(t) = − 1
t + 1, β(t) = 2

3 and ψ the identity function in Theorem 1.4, we have:

Corollary 2.8. Let X be a NBCC subset of a Banach space G and let Q : X → Pcp,cv(X) be a closed multi-valued
mapping such that

µ
(
QA)

)
≤ µ(A)

1 + 1
2µ(A)

(2.8)

for all A ∈ Pbd(G) with Q(A) ∈ Pbd(G) and µ(QA) > 0, where µ is an arbitrary MNC. Then Q has a fixed point.

3 n-tuplet fixed point

In [17], Erturk and Karakaya studied the existence and uniqueness of fixed points of the operator F : Xn → X
(n-tuplet fixed point), where n is an arbitrary positive integer and X is a partially ordered complete metric space. On
the other hand, in [31], some results on the existence of n-tuplet fixed points for multivalued contraction mappings
have been proved via a measure of noncompactness. As an application, the existence of solutions for a system of
integral inclusions was studied.

Definition 3.1. [31, 13] Let X be a nonempty set and P : Xn → P(X) be a multivalued mapping. An element
(x1, x2, ..., xn) ∈ X is called an n-tuplet fixed point of P if

x1 ∈ P (x1, x2, ..., xn−1, xn);
x2 ∈ P (x2, x3, ..., xn, x1);
...
xn ∈ P (xn, x1, ..., xn−2, xn−1).

(3.1)
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Theorem 3.2. [5] If µ1, µ2, . . . , µn be measures of noncompactness in Banach spaces G1,G2, . . . ,Gn, respectively, and
if f : [0,∞)n −→ [0,∞) be a convex function so that f(x1, . . . , xn) = 0 if and only if xi = 0 for i = 1, 2, . . . , n, then

µ̃(X) = f
(
µ1(X1), µ2(X2), . . . , µn(Xn)

)
,

defines a measure of noncompactness in G1 × G2 × . . .× Gn where Xi denotes the natural projection of X into Gi, for
i = 1, 2, . . . , n.

In the following, we assume that the function ψ ∈ Ψ is always convex.

Theorem 3.3. Let X be a NBCC subset of a Banach space G and P : Xn → Pcp,cv(X) be a continuous function
such that

γ
(
ψ
(
µ(P (X1 ×X2 × ...×Xn))

))
≤ γ

(
β
(
ψ( 1n

∑n
i=1 µ(Xi))

))
+γ

(
ψ( 1n

∑n
i=1 µ(Xi))

) (3.2)

for all subsets X1, X2, ..., Xn of X, where γ ∈ Γ, β ∈ MT , ψ ∈ Ψ is a convex function and µ is an arbitrary MNC.
Then P has at least an n-tuplet fixed point.

Proof . We define the mapping P̃ : Xn → Pcp,cv(X
n) by

P̃ (x1, x2, ..., xn) = P (x1, x2, ..., xn)× P (x2, x3, ..., xn, x1)× ...× P (xn, x1, ..., xn−1).

It is clear that P̃ is continuous. Also, in view of Theorem 3.2, µ̃(A) = 1
n

∑n
i=1 µ(Ai), for all A ⊆ Pbd(X

n) is

a (MNC) on Xn, where A1, A2, ...An denote the natural projections of A into X. We show that P̃ satisfies all the
conditions of Theorem 2.3. Let A ⊆ Pbd(X

n). From (3.2) we have

γ
{
ψ
[
µ̃(P̃ (A))

]}
≤ γ

{
ψ
[
µ̃
(
P (A1 ×A2...An)× ...× P (An ×A1...An−1)

)]}
= γ

{
ψ
[ 1
n

(
µ(P (A1 ×A2...An)) + ...+ µ(P (An ×A1...An−1))

)]}
≤ γ

{ 1

n

[
ψ
(
µ(P (A1 ×A2...An))

)
+ ...+ ψ

(
µ(P (An ×A1...An−1))

)]}
≤ γ

{ 1

n

[
γ−1

(
γ
(
β
(
ψ(

1

n

n∑
i=1

µ(Xi))
))

+ γ
(
ψ(

1

n

n∑
i=1

µ(Xi))
))

+ ...

+ γ−1
(
γ
(
β
(
ψ(

1

n

n∑
i=1

µ(Xi))
))

+ γ
(
ψ(

1

n

n∑
i=1

µ(Xi))
))]}

= γ
{
γ−1

(
γ
(
β
(
ψ(

1

n

n∑
i=1

µ(Xi))
))

+ γ
(
ψ(

1

n

n∑
i=1

µ(Xi))
))}

= γ
(
β
(
ψ(

1

n

n∑
i=1

µ(Xi))
))

+ γ
(
ψ(

1

n

n∑
i=1

µ(Xi))
)

= γ
(
β(ψ(µ̃(X)))

)
+ γ

(
ψ(µ̃(X))

)
.

Now, from Theorem 2.3 we deduce that P̃ has at least a fixed point which implies that P has at least an n-tuplet
fixed point. □

Theorem 3.4. Let X be a NBCC subset of a Banach space G and P : Xn → Pcp,cv(X) be a continuous function
such that

γ
(
ψ
(
µ(P (X1 ×X2 × ...×Xn))

))
≤ γ

(
β
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
))

+γ
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
) (3.3)

for all subsets X1, X2, ..., Xn of X, where γ ∈ Γ, β ∈ MT , ψ ∈ Ψ and µ is an arbitrary MNC. Then P has at least an
n-tuplet fixed point.
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Proof . We define the mapping P̃ : Xn → Pcp,cv(X
n) by

P̃ (x1, x2, ..., xn) = P (x1, x2, ..., xn)× P (x2, x3, ..., xn, x1)× ...× P (xn, x1, ..., xn−1).

It is clear that P̃ is continuous. Also, in view of Theorem 3.2, µ̃(A) = max
{
µ(X1), ..., µ(Xn)

}
, for all A ⊆ Pbd(X

n)

is a (MNC) on Xn, where A1, A2, ...An denote the natural projections of A into X. We show that P̃ satisfies all the
conditions of Theorem 2.3. Let A ⊆ Pbd(X

n). From (3.3) we have

γ
[
ψ
(
µ̃
(
P̃ (A)

))]
≤ γ

[
ψ
(
µ̃
(
P (A1 ×A2...An)× ...× P (An ×A1...An−1)

))]
= γ

[
ψ
(
max

{
µ(P (A1 ×A2...An)), ..., µ(P (An ×A1...An−1))

})]
= γ

[
max

{
ψ
(
µ(P (A1 ×A2...An))

)
, ..., ψ

(
µ(P (An ×A1...An−1))

)}]
≤ γ

[
max

{
γ−1

[
γ
(
β
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
))

+ γ
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
)]
,

..., γ−1
[
γ
(
β
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
))

+ γ
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
)]}]

= γ
[
γ−1

[
γ
(
β
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
))

+ γ
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
)]]

= γ
(
β
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
))

+ γ
(
ψ(max

{
µ(X1), ..., µ(Xn)

}
)
)

= γ
(
β(ψ(µ̃(X)))

)
+ γ

(
ψ(µ̃(X))

)
.

Now, from Theorem 2.3, we deduce that P̃ has at least a fixed point which implies that P has at least an n-tuplet
fixed point. □

4 Application to solvability of integral inclusions

Let R+ = [0,+∞), |.| be the Euclidean norm on Rn := G, H = {(ρ, ϱ) ∈ R+ × R+ : ϱ ≤ ρ} and U : H × G → 2G

be a multi-valued map. For each x ∈ C(R+,G), which consists of all continuous functions on R+ with values in G, the
set of L1-selections SU,x of the multivalued map U is defined by

SU,x :=
{
fx ∈ L1(R+,G) : fx(ρ, ϱ) ∈ U(ρ, ϱ, x(ϱ)) a.e., for all ρ ≥ 0

}
.

Remark 4.1. SU,x may be empty. It is nonempty if and only if the function Y : J → R defined by

Y (ϱ) = inf
{
|v| : v ∈ U(ρ, ϱ, x(ϱ))

}
belongs to L1(J,R) where J = [0, T ] with T > 0 and ρ ∈ R+ is fixed (see, [25]).

We will prove the existence of at least one solution in C(R+,G) for the multivalued integral inclusion

x(ρ) ∈ f(ρ, x(ρ))

∫ ρ

0

U(ρ, ϱ, x(ϱ))dϱ, ρ ≥ 0, (4.1)

where f : R+ × G → G is a single-valued map and U : H × G → 2G is a multi-valued mapping.

To derive the existence of solutions we need some notations and preliminaries. By BC := BC(R+,G) we mean the
Banach algebra consisting of all bounded and continuous functions defined on R+ with the norm

∥x∥0 = sup
{
|x(ρ)| : ρ ≥ 0

}
.

Let L1(R+,G) be the Banach space of all measurable functions x : R+ → G which are Lebesgue integrable with
norm

∥x∥1 =

∫ ∞

0

|x(ρ)|dt.

We denote by Pnbcc(G) the set of all NBCC subsets of G. A multivalued map G : G → 2G is said to be convex
(closed) if G(x) is convex (closed) for all x ∈ C(R+,G). G is bounded if G(B) = ∪x∈BG(x) is bounded in G for any

bounded subset B of G (i.e., supx∈B

{
sup{|y| : y ∈ G(x)}

}
<∞). For the multivalued mapping U : H × G → 2G , by

∥U(ρ, ϱ, x)∥ we mean the sup{|y| : y ∈ U(ρ, ϱ, x)}. A multivalued map U : H ×G → 2G is said to be L1-Caratheodory
if
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(i) (ρ, ϱ, x) → U(ρ, ϱ, x) is a measurable multivalued map with respect to ϱ for each ρ ∈ R+ and x ∈ C(R+,G);

(ii) (ρ, ϱ, x) → U(ρ, ϱ, x) is an u.s.c. multivalued map with respect to x for each (ρ, ϱ) ∈ H.

Throughout this paper, we always assume that the multivalued map U has nonempty closed values. In the following
theorem, we need to add the following hypothesis to the functions f and U .

(h1) f : R+ × G → G is continuous and maps bounded sets into bounded sets, that is, there exists a function
C : R+ → R+ such that |f(ρ, x)| ≤ C(q), for all ρ ≥ 0 and all x ∈ C(R+,G) with |x| ≤ q.

(h2) U : H × G → Pnbcc(G) is L1-Caratheodory and the set SU,x is nonempty for each fixed x ∈ C(R+,G).

(h3) There exists a function γ ∈ Γ such that γ
(
|f(ρ, x)− f(ρ, y)|

)
≤ γ

(
β
(
ψ(|x− y|)

))
+ γ

(
ψ(|x− y|)

)
for any ρ ≥ 0

and x, y ∈ G.

(h4) There exist a bounded function α ∈ L1(R+,R+), a bounded function β : R+ → R+ and a nondecreasing function
ϕ : R+ → R+ such that ∥U(0, ϱ, x)∥ ≤ α(ϱ)ϕ(|x(ϱ)|) for any ϱ ∈ R+ and x ∈ C(R+,G). Moreover,

|ux(ρ, ϱ)− ux(ρ
′, ϱ)| ≤ |β(ρ)− β(ρ′)|α(ϱ)ϕ(|x(ϱ)|)

for any fixed x ∈ C(R+,G) and for all ux ∈ SU,x and (ρ, ϱ), (ρ′, ϱ) ∈ H and

∥U(ρ, ϱ, x)− U(ρ, ϱ, y)∥ ≤ β(ρ)α(ϱ)γ−1
{
γ
(
β
(
ψ(|x− y|)

))
+ γ

(
ψ(|x− y|)

)}
for any x, y ∈ G with x ̸= y, (ρ, ϱ) ∈ H and γ given in (h3).

(h5)

[C(q)β(ρ) + ϕ(q)|β(ρ)− β(0)|+ ϕ(q)]

∫ ρ

0

α(ϱ)dϱ ≤ 1

2

for each q ≥ 0 and ρ ≥ 0.

(h6) There exists r > 0 such that

2C(r)ϕ(r)∥β∥
∫ ∞

0

α(ϱ)dϱ+ C(r)ϕ(r)

∫ ∞

0

α(ϱ)dϱ ≤ r.

Theorem 4.2. Assume that conditions (h1)− (h5) are satisfied. Then (4.2) has at least one solution x ∈ BC(R+,G).

Proof . Let us define the multivalued map Q on the space BC(R+,G) by the formula

(Qx)(ρ) =
{
f(ρ, x(ρ))

∫ ρ

0

ux(ρ, ϱ)dϱ : ux ∈ SU,x, ρ ≥ 0
}
. (4.2)

We will show that Q has a fixed point.

Step 1. Set Br =
{
x ∈ BC(R+,G) : ∥x∥ ≤ r

}
.

We will prove that Q : Br → Pnbcc(Br). Fix an element x ∈ Br. First, note that for any y ∈ Qx, there exists
ux ∈ SU,x such that y(ρ) = f(ρ, x(ρ))

∫ ρ

0
ux(ρ, ϱ)dϱ, for all ρ ≥ 0. It is easy to see that y(ρ) is continuous. Applying

our assumptions we have:

|y(ρ)| ≤ |f(ρ, x)|
∫ ρ

0

|ux(ρ, ϱ)|dϱ ≤ |f(ρ, x)|
∫ ρ

0

[
|ux(ρ, ϱ)− ux(0, ϱ)|+ |ux(0, ϱ)|

]
dϱ

≤ C(∥x∥0)
∫ ρ

0

[
|ux(ρ, ϱ)− ux(0, ϱ)|+ |ux(0, ϱ)|

]
dϱ

≤ C(∥x∥0)|β(ρ)− β(0)|
∫ ρ

0

α(ϱ)ϕ(|x(ϱ)|)dϱ+ C(∥x∥0)
∫ ρ

0

α(ϱ)ϕ(|x(ϱ)|)dϱ

≤ C(∥x∥0)ϕ(∥x∥0)|β(ρ)− β(0)|
∫ ρ

0

α(ϱ)dϱ+ C(∥x∥0)ϕ(∥x∥0)
∫ ρ

0

α(ϱ)dϱ

≤ 2C(r)ϕ(r)∥β∥
∫ ∞

0

α(ϱ)dϱ+ C(r)ϕ(r)

∫ ∞

0

α(ϱ)dϱ

≤ r.
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This implies that Qx ⊆ Br. Therefore Q maps Br into Pbd(Br). Now, we show that Qx is convex. Let h1, h2 ∈ Qx.
Thus, there exist ux, vx ∈ SU,x such that

h1(ρ) = f(ρ, x(ρ))

∫ ρ

0

ux(ρ, ϱ)dϱ, h2(ρ) = f(ρ, x(ρ))

∫ ρ

0

vx(ρ, ϱ)dϱ

for each ρ ≥ 0. Let 0 ≤ k ≤ 1. Then(
kh1 + (1− k)h2

)
(ρ) = kf(ρ, x(ρ))

∫ ρ

0

ux(ρ, ϱ)dϱ+ (1− k)f(ρ, x(ρ))

∫ ρ

0

vx(ρ, ϱ)dϱ

= f(ρ, x(ρ))

∫ ρ

0

(
kux(ρ, ϱ) + (1− k)vx(ρ, ϱ)

)
dϱ,

for each ρ ≥ 0. Since SU,x is convex (because U has convex values), kux(ρ, ϱ) + (1 − k)vx(ρ, ϱ) ∈ SU,x. Therefore,
kh1 + (1− k)h2 ∈ Qx. Thus, Qx is convex. Obviously, Qx is closed. Hence, we derive the claim of Step 1.

Step 2. Q has closed graph: The proof of this step is identical to the proof of Theorem 1. in [20].

Step 3. Q satisfies the contractive condition (2.1): Fix a bounded set D ⊆ Br. Let q = supx∈D ∥x∥0. Let us
choose functions x, y ∈ D with x ̸= y and take (ρ, ϱ) ∈ H. Then, for any h1 ∈ Qx and h2 ∈ Qy there exist functions
ux ∈ SU,x and vy ∈ SU,y such that

h1(ρ) = f(ρ, x(ρ))

∫ ρ

0

ux(ρ, ϱ)dϱ, h2(ρ) = f(ρ, y(ρ))

∫ ρ

0

vy(ρ, ϱ)dϱ.

In view of our assumptions we have

|h1(ρ)− h2(ρ)| ≤
∣∣∣f(ρ, x(ρ)) ∫ ρ

0

ux(ρ, ϱ)dϱ− f
(
ρ, x(ρ)

) ∫ ρ

0

vy(ρ, ϱ)dϱ
∣∣∣

+
∣∣∣f(ρ, x(ρ)) ∫ ρ

0

vy(ρ, ϱ)dϱ− f
(
ρ, y(ρ)

) ∫ ρ

0

vy(ρ, ϱ)dϱ
∣∣∣

≤|f
(
ρ, x(ρ)

)
|
∫ ρ

0

|ux(ρ, ϱ)dϱ− vy(ρ, ϱ)|dϱ+ |f
(
ρ, x(ρ)

)
− f

(
ρ, y(ρ)

)
|
∫ ρ

0

|vy(ρ, ϱ)|dϱ

≤C(q)γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}∫ ρ

0

α(ϱ)β(ρ)dϱ

+ γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}∫ ρ

0

[|vy(ρ, ϱ)− vy(0, ϱ)|+ |vy(0, ϱ)|]dϱ

≤C(q)γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}∫ ρ

0

α(ϱ)β(ρ)dϱ

+ γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}∫ ρ

0

[α(ϱ)|β(ρ)− β(0)|ϕ(|y(ϱ)|) + α(ϱ)ϕ(|y(ϱ)|)]dϱ

≤γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}
[C(q)β(ρ) + ϕ(q)|β(ρ)− β(0)|+ ϕ(q)]

∫ ρ

0

α(ϱ)dϱ

≤1

2
γ−1

{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}
.

If h1, h2 ∈ Qx, then for any h ∈ Qy, it is easy to see

|h1(ρ)− h2(ρ)| ≤ |h1(ρ)− h(ρ)|+ |h(ρ)− h2(ρ)|

≤ γ−1
{
γ
(
β
(
ψ(∥x− y∥0)

))
+ γ

(
ψ(∥x− y∥0)

)}
.

Therefore, for any bounded D ⊆ Br, we have

diamQ(D) ≤ γ−1
{
γ
(
β
(
ψ(diamD)

))
+ γ

(
ψ(diamD)

)}
.
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For any given ε > 0, there exist a finite number of subsets D1, D2, ..., Dn of Br such that

D ⊆
n⋃

i=1

Di, diamDi ≤ µ(D) + ε,

where µ denotes the Kuratowski’s measure of noncompactness. Since

QD ⊆
n⋃

i=1

QDi

and

diamQ(Di) ≤ γ−1
{
γ
(
β
(
ψ(diamDi)

))
+ γ

(
ψ(diamDi)

)}
≤ γ−1

{
γ
(
β
(
ψ(µ(D) + ε)

))
+ γ

(
ψ(µ(D) + ε)

)}
,

this implies that

µ(Q(D)) ≤ γ−1
{
γ
(
β
(
ψ(µ(D) + ε)

))
+ γ

(
ψ(µ(D) + ε)

)}
.

Taking ε→ 0, we have

µ(Q(D)) ≤ γ−1
{
γ
(
β
(
ψ(µ(D))

))
+ γ

(
ψ(µ(D))

)}
,

and so
γ(ψ(µ

(
Q(D)

)
)) ≤ γ

(
β
(
ψ(µ(D))

))
+ γ

(
ψ(µ(D))

)
.

Thus, Q satisfies the contractive condition (2.1). □
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[5] S. J. Baná, M. Jleli, M. Mursaleen and B. Samet, Advances in Nonlinear Analysis via the Concept of Measure of
Noncompactness, Springer, Singapore, 2017.

[6] Sh. Banaei, Solvability of a system of integral equations of Volterra type in the Fréchet space Lp
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