Starlikeness of an integral operator associated with Mittag-Leffler functions

Poonam Dixit ${ }^{\text {a }}$, Saurabh Porwal ${ }^{\text {b,* }}$, Manoj Kumar Singh ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, UIET, CSJM University, Kanpur-208024, (U.P.), India
${ }^{b}$ Department of Mathematics, Ram Sahai Government Degree College, Bairi-Shivrajpur, Kanpur-209205, (Uttar Pradesh), India
${ }^{c}$ Department of Mathematics, Government Engineering College-Dahod Gujarat-389151, India

(Communicated by Mugur Alexandru Acu)

Abstract

In the present paper, we introduce a new integral operator involving with Mittag-Leffler function and the Salagean operator. Further, we obtain some sufficient conditions for this integral operator belonging to certain classes of starlike functions.

Keywords: Analytic function, Univalent function, Mittag-Leffler function, Starlike function, Salagean derivative, Integral operator 2020 MSC: 30C45

1 Introduction

Let \mathcal{A} represent the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, we represent \mathcal{S} by the subclass of \mathcal{A} consisting of functions f of the form (1.1) which are also univalent in Δ.

In 1936, Robertson [22] (see also [24]) introduced two most important and widely used classes of univalent functions as follows:
A function $f(z) \in \mathcal{A}$ is said to be starlike of order ϵ if it satisfies the following analytic criteria

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\epsilon, \quad z \in \Delta, \quad \text { for some } \epsilon(0 \leq \epsilon<1)
$$

Also, a function $f(z) \in \mathcal{A}$ is said to be convex of order ϵ if it satisfies the following analytic criteria

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\epsilon, \quad z \in \Delta, \text { for some } \quad \epsilon(0 \leq \epsilon<1)
$$

[^0]The classes of all starlike functions and convex functions of order ϵ are denoted by $\mathcal{S}^{*}(\epsilon)$ and $\mathcal{C}(\epsilon)$, respectively. For $\epsilon=0$, these classes reduce to the classes \mathcal{S}^{*} and \mathcal{C}, respectively. In 1983, Salagean [23] introduced an interesting derivative operator D^{p} known as Salagean derivative operator. Using this operator he generalized and unified the classes of starlike and convex functions, by investigating a new class $\mathcal{S}(p, \epsilon)$ consisting of functions f of the form 1.1 and satisfying the following analytic criteria

$$
\Re\left\{\frac{D^{p+1} f(z)}{D^{p} f(z)}\right\}>\epsilon, \quad z \in \Delta, \quad p \in \mathbb{N} \cup\{0\}, \quad \text { for some } \epsilon(0 \leq \epsilon<1)
$$

It is worthy to note that for $p=0$ and $p=1$, the class $\mathcal{S}(p, \epsilon)$ reduce to the classes $\mathcal{S}^{*}(\epsilon)$ and $\mathcal{C}(\epsilon)$, respectively. The class $\mathcal{S}(p, \epsilon)$ was further studied by Kadioğlu [9. By using Salagean operator several researchers introduced various subclasses of analytic and harmonic univalent functions. Recent work on Salagean operator may be find in [7, 8, 10]. Analogues to the class $\mathcal{S}(p, \epsilon)$, Porwal and Kumar [19] introduced a new class $\mathcal{N}(p, \omega)$ consisting of functions f of the form (1.1) and satisfying the following analytic criteria

$$
\Re\left\{\frac{D^{p+1} f(z)}{D^{p} f(z)}\right\}<\omega, \quad z \in \Delta, \quad p \in \mathbb{N} \cup\{0\}, \quad \text { for some } \omega\left(1<\omega \leq \frac{2^{p}+1}{2^{p-1}+1}\right) .
$$

The applications of various special functions on integral operator is a current and interesting topic of research in geometric function theory. From time-to-time various integral operators associated with several special functions like Bessel functions, Mittag-Leffler functions, Dini functions, Struve function and Lommel functions are introduced and extensively studied by several researchers. Noteworthy, contribution in this direction may be found in [1, [5, 6, 11, 12, 15, 17, 18, 19, 20, 21, 26.

Now, we recall the definition of Mittag-Leffler function $E_{\alpha}(z)$ which was introduced by Mittag-Leffler [13] and defined as

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+1)}, \quad(z \in \mathbb{C}, \quad \Re(\alpha)>0)
$$

In 1905, Wiman [27, 28] generalized the Mittag-Leffler function in $E_{\alpha, \beta}(z)$ by the relation

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)}, \tag{1.2}
\end{equation*}
$$

where $z, \alpha, \beta \in \mathbb{C}, \Re(\alpha)>0$. It should be easy to see that the function $E_{\alpha, \beta}(z)$ defined by 1.2 is not in class \mathcal{A}. Thus, first we normalize the Mittag-Leffler function as follows

$$
\begin{align*}
& \mathbb{E}_{\alpha, \beta}(z)=\Gamma(\beta) z E_{\alpha, \beta}(z) \\
& \mathbb{E}_{\alpha, \beta}(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} z^{n} \tag{1.3}
\end{align*}
$$

where $z, \alpha, \beta \in \mathbb{C}, \beta \neq 0,-1,-2, \cdots, \Re(\alpha)>0$. In the present work, we shall restrict our attention to the case for real-valued α, β and $z \in \Delta$. For specific values of α and β, the function $\mathbb{E}_{\alpha, \beta}(z)$ reduces to many well-known functions

$$
\begin{aligned}
& \mathbb{E}_{2,1}(z)=z \cosh \sqrt{z} \\
& \mathbb{E}_{2,2}(z)=\sqrt{z} \sinh \sqrt{z} \\
& \mathbb{E}_{2,3}(z)=2[\cosh \sqrt{z}-1] \text { and } \\
& \mathbb{E}_{2,4}(z)=\frac{6[\sinh \sqrt{z}-\sqrt{z}]}{\sqrt{z}}
\end{aligned}
$$

For further study of Mittag-Leffler function and generalized Mittag-Leffler function, interesting reader may refer to [2, 3].

Motivated with the above mentioned work, Srivastava et al. [26] investigated a new integral operator associated with Mittag-Leffler functions and obtain various interesting results.

In the present work, we introduce a new integral operator involving Mittag-Leffler function in the following way

$$
\begin{equation*}
F_{\alpha_{i}, \beta_{i}, \gamma_{i}, \lambda_{j}}(p, z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{\mathbb{E}_{\alpha_{i}, \beta_{i}}(t)}{t}\right)^{\gamma_{i}} \prod_{j=1}^{m}\left(\frac{D^{p} f_{j}(t)}{t}\right)^{\lambda_{j}} d t \tag{1.4}
\end{equation*}
$$

where the functions $\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)$ is normalized Mittag-Leffler functions defined by 1.3 , parameters γ_{i}, λ_{j} are positive real numbers such that the integral in (1.4) exists. The integral operator defined by (1.4) reduces to various integral operators for specific values of parameters $\alpha_{i}, \beta_{i}, \gamma_{i}, \lambda_{j}, p$, studied earlier by various researchers.

1. For $\gamma_{i}=0(i=1,2, \ldots, n)$, the integral operator studied by Porwal 16.
2. For $\gamma_{i}=0(i=1,2, \ldots, n), p=0,1$ the integral operator studied by Breaz [4].
3. For $\gamma_{i}=0(i=1,2, \ldots, n), p=1, m=1$ the integral operator studied by Passai and Pescar [14].
4. For $\lambda_{j}=0(j=1,2, \ldots, m)$ the integral operator studied by Srivastava et al. [26].

In the present paper, we obtain some sufficient conditions for the integral operator defined by (1.4) is in the class \mathcal{S}^{*}. For simplicity we can write $\mathbb{F}(p, z)=F_{\alpha_{i}, \beta_{i}, \gamma_{i}, \lambda_{j}}(p, z)$.

2 Preliminary Results

To prove our main results we shall require the following lemmas.
Lemma 2.1. ([26]) Let $\alpha \geq 1, \beta \geq 1$. Then

$$
\left|\frac{z \mathbb{E}_{\alpha, \beta}^{\prime}(z)}{\mathbb{E}_{\alpha, \beta}(z)}-1\right| \leq \frac{2 \beta+1}{\beta^{2}-\beta-1}, \quad z \in \Delta
$$

Lemma 2.2. ([25]) If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& \quad \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{\delta+1}{2(\delta-1)}, \quad z \in \Delta, \text { for some } 2 \leq \delta<3, \\
& \text { or } \quad \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{5 \delta-1}{2(\delta+1)}, \quad z \in \Delta, \text { for some } 1<\delta \leq 2, \text { then } f \in \mathcal{S}^{*} .
\end{aligned}
$$

Lemma 2.3. ([25) If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{\delta+1}{2 \delta(\delta-1)}, \\
\text { or } & \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{3 \delta+1}{2 \delta(\delta+1)}, \quad z \in \Delta, \text { for some some } \delta \leq-1 \\
& \delta>1, \text { then } f \in \mathcal{S}^{*}\left(\frac{\delta+1}{2 \delta}\right)
\end{aligned}
$$

3 Main Results

Theorem 3.1. Let n, m be natural numbers and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \geq 1, \beta_{1}, \beta_{2}, \cdots, \beta_{n} \geq \frac{1}{2}(1+\sqrt{5})$ and suppose that $\beta=\min \left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ and suppose that $\gamma_{i}(i=1,2, \ldots, n), \lambda_{j}(j=1,2, \ldots, m)$ are positive real numbers. Further, we let $f_{j}(z)$ be of the form (1.1) in the class $N\left(p, \omega_{j}\right)$ for $(j=1,2, \ldots, m)$, also let $\omega=\max \left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$. Moreover, suppose that these numbers satisfy the following inequality

$$
\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(\omega-1) \sum_{j=1}^{m} \lambda_{j} \leq \frac{3-\delta}{2(\delta-1)}
$$

is satisfied. Then the function $\mathbb{F}(p, z)$ defined by (1.4) is in the class \mathcal{S}^{*} for some $2 \leq \delta<3$.

Proof . Differentiating equation (1.4) we have

$$
\mathbb{F}^{\prime}(p, z)=\prod_{i=1}^{n}\left(\frac{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}{z}\right)^{\gamma_{i}} \prod_{j=1}^{m}\left(\frac{D^{p} f_{j}(z)}{z}\right)^{\lambda_{j}}
$$

Taking logarithmic differentiation, we have

$$
\frac{\mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}=\sum_{i=1}^{n} \gamma_{i}\left(\frac{\mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}-\frac{1}{z}\right)+\sum_{j=1}^{m} \lambda_{j}\left(\frac{\left(D^{p} f_{j}(z)\right)^{\prime}}{D^{p} f_{j}(z)}-\frac{1}{z}\right)
$$

or equivalently

$$
\begin{equation*}
1+\frac{z \mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}=\sum_{i=1}^{n} \gamma_{i}\left(\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}-1\right)+\sum_{j=1}^{m} \lambda_{j}\left(\frac{D^{p+1} f_{j}(z)}{D^{p} f_{j}(z)}-1\right)+1 \tag{3.1}
\end{equation*}
$$

Taking the real part of both side of (3.1) we have

$$
\begin{align*}
\Re\left\{1+\frac{z \mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}\right\} & =\sum_{i=1}^{n} \gamma_{i} \Re\left\{\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)-1}\right\}+\sum_{j=1}^{m} \lambda_{j} \Re\left(\frac{D^{p+1} f_{j}(z)}{D^{p} f_{j}(z)}-1\right)+1 \\
& \leq 1+\sum_{i=1}^{n} \gamma_{i}\left|\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}-1\right|+\sum_{j=1}^{m} \lambda_{j}\left(\omega_{j}-1\right) \tag{3.2}\\
& \leq 1+\sum_{i=1}^{n} \gamma_{i}\left(\frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1}\right)+\sum_{j=1}^{m} \lambda_{j}\left(\omega_{j}-1\right) \tag{3.3}
\end{align*}
$$

For all $z \in \Delta$ and $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) \geq \frac{1}{2}(1+\sqrt{5})$. Since the function $\phi:\left(\frac{1}{2}(1+\sqrt{5}), \infty\right) \rightarrow \mathbb{R}$, defined by $\phi(x)=\frac{2 x+1}{x^{2}-x-1}$ is decreasing. Therefore, for all $i \in\{1,2, \cdots, n\}$, we obtain

$$
\frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1} \leq \frac{2 \beta+1}{\beta^{2}-\beta-1}
$$

Using this result, inequality (3.2) can be written as

$$
\Re\left\{1+\frac{z \mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}\right\} \leq 1+\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(\omega-1) \sum_{j=1}^{m} \lambda_{j}
$$

Since

$$
\begin{aligned}
1+\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(\omega-1) \sum_{j=1}^{m} \lambda_{j} & <\frac{\delta+1}{2(\delta-1)} \\
\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(\omega-1) \sum_{j=1}^{m} \lambda_{j} & <\frac{\delta+1}{2(\delta-1)}-1 \\
& =\frac{3-\delta}{2(\delta-1)}
\end{aligned}
$$

Therefore, from Lemma $2.2, \mathbb{F}(p, z) \in \mathcal{S}^{*}$ for some $2 \leq \delta<3$. Thus, the proof of Theorem 3.1 is established.
Theorem 3.2. Let n, m be natural numbers and $\alpha_{i} \geq 1, \beta_{i} \geq \frac{1}{2}(1+\sqrt{5})$ for $i=1,2, \ldots, n ; \beta=\min \left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ and suppose that $\gamma_{i}(i=1,2, \ldots, n), \lambda_{j}(j=1,2, \ldots, m)$ are positive real numbers. Further, we let $f_{j}(z)$ be of the
form (1.1) in the class $N\left(p, \omega_{j}\right)$ for $(j=1,2, \ldots, m), p \in N_{0}, 1<\omega_{j} \leq \frac{2^{p}+1}{2^{p-1}+1}$, also let $\omega=\max \left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$. Moreover, suppose that these numbers satisfy the following inequality

$$
\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(\omega-1) \sum_{j=1}^{m} \lambda_{j} \leq \frac{3(\delta-1)}{2 \delta+1}
$$

is satisfied. Then the function $\mathbb{F}(p, z)$ defined by (1.4) is in the class \mathcal{S}^{*} for some $1<\delta \leq 2$.
Proof .The proof of above theorem is much similar to that Theorem 3.1. Therefore, we omit the detail.
Theorem 3.3. Let n, m be natural numbers and $\alpha_{i} \geq 1, \beta_{i} \geq \frac{1}{2}(1+\sqrt{5})$ for $i=1,2, \ldots, n ; \beta=\max \left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ and suppose that $\gamma_{i}(i=1,2, \ldots, n), \lambda_{j}(j=1,2, \ldots, m)$ are positive real numbers. Further, we let $f_{j}(z)$ be of the form (1.1) in the class $\mathcal{S}\left(p, \epsilon_{j}\right)$ for $(j=1,2, \ldots, m), p \in N_{0}, 0 \leq \epsilon_{j}<1$, also let $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m}\right\}$. Moreover, suppose that these numbers satisfy the following inequality

$$
\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(1-\epsilon) \sum_{j=1}^{m} \lambda_{j} \leq \frac{2 \delta^{2}-\delta+1}{2 \delta(\delta-1)}
$$

is satisfied. Then the function $\mathbb{F}(p, z)$ defined by (1.4) is in the class $\mathcal{S}\left(\frac{\delta+1}{2 \delta}\right)$ for some $\delta \leq-1$.
Proof . The equation (3.1) can be re-written as

$$
\begin{equation*}
\Re\left\{1+\frac{z \mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}\right\}=\sum_{i=1}^{n} \gamma_{i} \Re\left\{\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}\right\}+\sum_{j=1}^{m} \lambda_{j} \Re\left(\frac{D^{p+1} f_{j}(z)}{D^{p} f_{j}(z)}\right)+1-\sum_{i=1}^{n} \gamma_{i}-\sum_{j=1}^{m} \lambda_{j} . \tag{3.4}
\end{equation*}
$$

From Lemma 2.1, we have

$$
\left|\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}-1\right| \leq \frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1}
$$

Using the identity $\Re\{z\} \leq|z|$, we have

$$
\Re\left\{1-\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}\right\} \leq \frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1}, \quad \text { or } \quad \Re\left\{\frac{z \mathbb{E}_{\alpha_{i}, \beta_{i}}^{\prime}(z)}{\mathbb{E}_{\alpha_{i}, \beta_{i}}(z)}\right\} \geq 1-\frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1}
$$

Using the above result in (3.4, we have

$$
\begin{aligned}
\Re\left\{1+\frac{z \mathbb{F}^{\prime \prime}(p, z)}{\mathbb{F}^{\prime}(p, z)}\right\} & \geq \sum_{i=1}^{n} \gamma_{i}\left(1-\frac{2 \beta_{i}+1}{\beta_{i}^{2}-\beta_{i}-1}\right)+\sum_{j=1}^{m} \lambda_{j} \epsilon_{j}+1-\sum_{i=1}^{n} \gamma_{i}-\sum_{j=1}^{m} \lambda_{j} \\
& \geq 1-\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}-(1-\epsilon) \sum_{j=1}^{m} \lambda_{j} \\
& \geq-\frac{\delta+1}{2 \delta(\delta-1)}, \quad \text { (by the given hypothesis). }
\end{aligned}
$$

Theorem 3.4. Let n, m be natural numbers and $\alpha_{i} \geq 1, \beta_{i} \geq \frac{1}{2}(1+\sqrt{5})$ for $i=1,2, \ldots, n ; \beta=\max \left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ and suppose that $\gamma_{i}(i=1,2, \ldots, n), \lambda_{j}(j=1,2, \ldots, m)$ are positive real numbers. Further, we let $f_{j}(z)$ be of the form (1.1) in the class $\mathcal{S}\left(p, \epsilon_{j}\right)$ for $(j=1,2, \ldots, m), p \in N_{0}, 0 \leq \epsilon_{j}<1$, also let $\epsilon=\min \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m}$. Moreover, suppose that these numbers satisfy the following inequality

$$
\frac{2 \beta+1}{\beta^{2}-\beta-1} \sum_{i=1}^{n} \gamma_{i}+(1-\epsilon) \sum_{j=1}^{m} \lambda_{j} \leq \frac{\delta+1-2 \delta^{2}}{2 \delta(\delta-1)}
$$

is satisfied. Then the function $\mathbb{F}(p, z)$ defined by (1.4) is in the class $\mathcal{S}\left(\frac{\delta+1}{2 \delta}\right)$ for some $\delta>1$.

Proof . The proof of above theorem runs parallel to that of Theorem 3.3. Therefore, we omit the details involved.
Remark 3.5. 1. If we put $\gamma_{i}=0(i=1,2, \ldots, n)$ in Theorem 3.1 3.4 then we obtain the corresponding results for the integral operator introduced by Porwal 16.
2. If we put $\lambda_{j}=0(j=1,2, \ldots, m$ in Theorem 3.1 3.4 then we obtain the corresponding results for the integral operator studied by Srivastava et al. 26]

Acknowledgment

The authors would like thank the referee for their insightful suggestions to improve the paper in the present form.

References

[1] M. Arif and M. Raza, Some properties of an integral operator defined by Bessel functions, Acta Univ. Apulensis 26 (2011), 69-74.
[2] A.A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat 30 (2016), no. 7, 2075-2081.
[3] D. Bansal and J.K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61 (2016), no. 3, 338-350.
[4] D. Breaz, Certain integral operators on the classes $M\left(\beta_{i}\right)$ and $N\left(\beta_{i}\right)$, J. Inequal. Appl. 2008 (2008), Art. ID 719354, 1-4.
[5] E. Deniz, H. Orhan and H.M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math. 15 (2011), 883-917.
[6] B.A. Frasin, Sufficient condition for integral operator defined by Bessel functions, J. Math. Inequal. 4 (2010), no. 3, 301-306.
[7] H.Ö. Güney, G.I. Oros and S. Owa, An application of Salagean operator concerning starlike functions, Axioms 11 (2022), no. 2, 50. https://doi.org/10.3390/axioms11020050
[8] A.R.S. Juma and L.I. Cotirla, On harmonic univalent function defined by generalized Salagean derivatives, Acta Univ. Apulensis 23 (2010), 179-188.
[9] E. Kadioğlu, On subclass of univalent functions with negative coefficients, Appl. Math. Comput. 146 (2003), 351-358.
[10] A.A. Lupas, On special fuzzy differential subordinations obtained for Riemann-Liouville fractional integral of Ruscheweyh and Sălăgean operators, Axioms 11 (2022), no. 9, 428.
[11] N. Magesh, S. Porwal and S.P. Singh, Some geometric properties of an integral operator involving Bessel functions, Novi Sad J. Math. 47 (2017), no. 2, 149-156.
[12] S. Mahmood, H.M. Srivastava, S.N. Malik, M. Raza, N. Shahzadi and S. Zainab, A certain family of integral operators associated with the Struve functions, Symmetry 11 (2019), Art. ID 463, 1-16.
[13] G.M. Mittag-Leffler, Sur la nouvelle function $E(x)$, C. R. Acad. Sci. Paris 137 (1903), 554-558.
[14] N.N. Pasai and V. Pescar, On the integral operators of Kim-merkes and Pfaltzgraff, Mathematica 32 (1990), no. 2, 185-192.
[15] G.H. Park, H.M. Srivastava and N.E. Cho, Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind, AIMS Math. 6 (2021), no. 10, 11380-11402.
[16] Saurabh Porwal, Mapping properties of an integral operator, Acta Univ. Apulensis 27 (2011), 151-155.
[17] Saurabh Porwal, Geometric properties of an integral operator associated with Bessel functions, Electronic J. Math. Anal. Appl. 8 (2020), no. 2, 75-80.
[18] S. Porwal and D. Breaz, Mapping properties of an integral operator involving Bessel functions, Analytic Number Theory, Approximation Theory and Spect. Funct., 821-826, Springer, New York, 2014.
[19] S. Porwal and M. Kumar, Mapping properties of an integral operator involving Bessel functions on some subclasses of univalent functions, Afr. Mat. 28 (2017), no. 1-2, 165-170
[20] S. Porwal, A. Gupta and G. Murugasundaramoorthy, New sufficient conditions for starlikeness of certain integral operators involving Bessel functions, Acta Univ. Math. Belii Ser. Math. 27 (2017), 10-18.
[21] M. Raza, S. Noreen and S.N. Malik, Geometric properties of integral operators defined by Bessel functions, J. Ineq. Spec. Funct., 7(2016), 34-48.
[22] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), no. 2, 374-408.
[23] G.S. Salagean, Subclasses of univalent functions, Complex Anal. Fifth Roman. Finish Seminar, Bucharest, 1983, pp. 362-372.
[24] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[25] H. Shiraishi and S. Owa, Starlikeness and convexity for analytic functions concerned with Jack's Lemma, Int. J. Open Problem Comput. Math. 2 (2009), no. 1, 37-47.
[26] H.M. Srivastava, B.A. Frasin and V. Pescar, Univalance of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci. 11 (2017), no. 3, 635-641.
[27] A. Wiman, Ŭber den fundamental satz in der Theorie der Funcktionen E(x), Acta Math. 29 (1905), 191-201.
[28] A. Wiman, Ŭber die Nullstellum der Funcktionen E(x), Acta Math. 29 (1905), 271-234.

[^0]: *Corresponding author
 Email addresses: dixit_poonam14@rediffmail.com (Poonam Dixit), saurabhjcb@rediffmail.com (Saurabh Porwal), ms84ddu@gmail.com (Manoj Kumar Singh)

