Differential subordinations and superordinations result for analytic univalent functions using the Darus-Faisal operator

Mohammed Abduljaleel Habeeb, Waggas Galib Atshan*
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq

(Communicated by Ehsan Kozegar)

Abstract

In this paper, we introduce some differential subordinations and superordinations results for a subclass of analytic univalent functions in the open unit disk U using the Darus-Faisal operator $G_{\lambda}^{m}(\sigma, \delta, \tau)$. Also, we study some sandwich theorems.

Keywords: Univalent function, Subordination, Superordination, sandwich, Darus-Faisal operator 2020 MSC: 30C45

1 Introduction

Let $B=B(U)$ the class of all functions that are analytic in U, where $U=\{z \in C:|z|<1\}$ is the open unit disk. Let $B[a, n]$ be a subclass of the functions $f \in B$, which is given by

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, \quad(a \in \mathbb{C})
$$

We also assume $A \subset B$, where A is said to be subclass of analytic and univalent functions in U, of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad(z \in U) \tag{1.1}
\end{equation*}
$$

Now, we suppose that f and $g \in A$, so that the function f is said to be subordinate to function g, or the function g is said to be superordinate to f, if there exists a Schwarz function w such that $f(z)=g(w(z))$, where $w(z)$ is analytic function in U with $w(0)=0$ and $|w(z)|<1, z \in U$, then one can say that $f \prec g$ or $f(z) \prec g(z)(z \in U)$ 13]. In addition, if g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$ 13, 17, 18.

Definition 1.1. [17] Let $\emptyset: \mathcal{C}^{3} \times U \longrightarrow \mathbb{C}$ and let $h(z)$ be univalent in U. If $p(z)$ is analytic function in U and fulfills the second-order differential subordination:

$$
\begin{equation*}
\emptyset\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \tag{1.2}
\end{equation*}
$$

[^0]then $p(z)$ is said to be a solution of the differential subordination 1.2 , and the univalent function $q(z)$ say it a dominant of the solution of the differential subordination (1.2), or more simply dominant, if $p(z) \prec q(z)$ for each $p(z)$ satisfying $\sqrt{1.2}$. A dominant function $\tilde{q}(z)$ that satisfies $\tilde{q}(z) \prec q(z)$ for each dominant $q(z)$ of $\sqrt{1.2}$) is called the best dominant of (1.2).

Definition 1.2. 18] Let $p, h \in A$ and $\emptyset(r, s, t ; z): \mathbb{C}^{3} \times U \rightarrow C$. If p and $\emptyset\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if p satisfies the second-order differential subordination:

$$
\begin{equation*}
h(z) \prec \emptyset\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \tag{1.3}
\end{equation*}
$$

then p is said to be a differential superordination solution, 1.3$)$. An analytic function $q(z)$, which is known a subordinat of the solutions of the differential superordination (1.3), or more simply a subordinant if $p \prec q$ for each the functions p satisfying (1.3). If \tilde{q} is univalent subordinant and that satisfy $q \prec \tilde{q}$ for each the subordinats q of (1.3), then is the best subordinat.

Many authors [1, 2, 3, 10, 17, 20, 21, obtained the necessary and sufficient conditions on the functions h, p and \emptyset whereby the following implication is true

$$
h(z) \prec \emptyset\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right),
$$

then

$$
\begin{equation*}
q(z) \prec p(z) \tag{1.4}
\end{equation*}
$$

Using results of other authors (see [4, 5, 6, 7, 11, 12, 15, 16, 18, 19, 22]) to obtain sufficient conditions for normalized analytic functions to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z)
$$

where q_{1} and q_{2} are given univalent functions in U and $q_{1}(0)=q_{2}(0)=1$. Also a number of authors look [2, 4, 6, 7, 8, , 9, they found some differential subordination and superordination results and sandwich theorems. For $f \in A$, Darus and Faisal [14] introduced the following differential operator:

$$
\begin{align*}
& G_{\lambda}^{0}(\sigma, \delta, \tau) f(z)=f(z) \tag{1.5}\\
& G_{\lambda}^{1}(\sigma, \delta, \tau) f(z)=\left[\frac{\delta-\tau+\delta-\lambda}{\sigma+\delta}\right] f(z)+\left[\frac{\tau+\lambda}{\sigma+\delta}\right] f^{\prime}(z) \\
& G_{\lambda}^{2}(\sigma, \delta, \tau) f(z)=G\left(G_{\lambda}^{1}(\sigma, \delta, \tau) f(z)\right)
\end{align*}
$$

$$
\vdots
$$

$$
G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)=G\left(G_{\lambda}^{n-1}(\sigma, \delta, \tau) f(z)\right)
$$

If f is given (1.5), then from (??), it can obtained

$$
\begin{equation*}
G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)=z+\sum_{n=2}^{\infty}\left[\frac{\sigma+(\tau+\lambda)(k-1)+\delta}{\sigma+\delta}\right]^{n} a_{k} z^{k} \tag{1.6}
\end{equation*}
$$

where $f \in A ; \sigma, \delta, \tau, \lambda \geq 0 ; \sigma+\delta \neq 0 ; n \in N_{0}$. From 1.6), we note that

$$
\begin{equation*}
z\left(G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)\right)^{\prime}=\left[\frac{\tau+\lambda}{\sigma+\delta}\right] G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)-\left[\frac{\sigma+\delta-\lambda-\tau}{\sigma+\delta}\right] G_{\lambda}^{m}(\sigma, \delta, \tau) f(z) \tag{1.7}
\end{equation*}
$$

The main object of the present investigation is to find sufficient conditions for certain normalized analytic function f to satisfy:

$$
q_{1}(z) \prec\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\Upsilon} \prec q_{2}(z),
$$

and

$$
q_{1}(z) \prec\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\Upsilon} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent functions in U with $q_{1}(0)=q_{2}(0)=1$. In this paper, we derive some sandwich theorems, involving the operator $G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)$.

2 Preliminaries

We need the following definitions and lemmas to prove our results.
Definition 2.1. [17] Denote by Q the set of all functions q that are analytic and injective on $\bar{U} \backslash E(q)$, where $\bar{U}=$ $U \cup\{z \in \partial U\}$, therefore

$$
E(q)=\left\{\varepsilon \in \partial U: \lim _{z \rightarrow \varepsilon} q(z)=\infty\right\}
$$

and are such that $q^{\prime}(\varepsilon) \neq 0$ for $\varepsilon \in \partial U \backslash E(q)$. Further, let the subclass of Q for which $q(0)=a$ be denoted by $Q(a)$, and $Q(0)=Q_{0}, Q(1)=Q_{1}=\{q \in Q: q(0)=1\}$.

Lemma 2.2. [18] Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}, \beta \in \mathbb{C} \backslash\{0\}$ with

$$
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\operatorname{Re}\left(\frac{\alpha}{\beta}\right)\right\}
$$

If p is analytic in U and

$$
\begin{equation*}
\alpha p(z)+\beta z p^{\prime}(z) \prec \alpha q(z)+\beta z q^{\prime}(z) \tag{2.1}
\end{equation*}
$$

then $p \prec q$ and q is the best dominant of (2.1).
Lemma 2.3. 5et q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$, when $w \in q(U)$. Set $Q(z)=z q^{\prime}(z) \phi(q(z))$ and $h(z)=\theta(q(z))+Q(z)$. Suppose that

- $Q(z)$ is starlike univalent in U,
- $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0$ for $z \in U$.

If p is analytic in U, with $p(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z)), \tag{2.2}
\end{equation*}
$$

then $p \prec q$ and q is the best dominant of 2.2 .
Lemma 2.4. [18] Let q be a convex univalent in U and let $\beta \in \mathbb{C}$, that $\operatorname{Re}(\beta)>0$. If $p \in B[q(0), 1] \cap Q$ and $p(z)+\beta z p^{\prime}(z)$ is univalent in U, then

$$
\begin{equation*}
q(z)+\beta z q^{\prime}(z) \prec p(z)+\beta z p^{\prime}(z) \tag{2.3}
\end{equation*}
$$

which implies that $q \prec p$ and q is the best subordinant of 2.3 .
Lemma 2.5. 13 Let q be a convex univalent function in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$. Suppose that

- $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}>0$ for $z \in U$.
- $(z)=z q^{\prime}(z) \phi(q(z))$ is starlike univalent in U.

If $p \in B[q(0), 1] \cap Q$, with $p(U) \subset D, \theta(p(z))+z p^{\prime}(z) \phi(p(z))$ is univalent in U and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \phi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \phi(p(z)) \tag{2.4}
\end{equation*}
$$

then $q \prec p$ and q is the best subordinant of (2.4).

3 Differential Subordination Results

Here, we introduce some differential subordination results by using the Darus-Faisal operator.
Theorem 3.1. Let q be convex univalent function in U with $q(0)=1,0 \neq \varepsilon \in \mathbb{C} \backslash\{0\}, \gamma>0$ and suppose that q satisfies:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\operatorname{Re}\left(\frac{\gamma}{\varepsilon}\right)\right\} \tag{3.1}
\end{equation*}
$$

If $f \in A$ satisfies the subordination condition:

$$
\begin{equation*}
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec q(z)+\frac{\varepsilon}{\gamma} z q^{\prime}(z) \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec q(z) \tag{3.3}
\end{equation*}
$$

and q is the best dominant of 3.2 .
Proof . Define the function p by

$$
\begin{equation*}
p(z)=\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \tag{3.4}
\end{equation*}
$$

then the function $p(z)$ is analytic in U and $p(0)=1$, therefore, differentiating (3.4 with respect to z and using the identity 1.7 in the resulting equation, we obtain

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\gamma\left[\frac{z\left(G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)\right)^{\prime}}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right] \tag{3.5}
\end{equation*}
$$

Hence,

$$
\frac{z p^{\prime}(z)}{p(z)}=\gamma\left[\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)\right]
$$

Therefore,

$$
\frac{z p^{\prime}(z)}{\gamma}=\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left[\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)\right]
$$

The subordination $\sqrt{3.2}$ from the hypothesis becomes

$$
p(z)+\frac{\varepsilon}{\gamma} z p^{\prime}(z) \prec q(z)+\frac{\varepsilon}{\gamma} z q^{\prime}(z) .
$$

An application of lemma 2.2 with $\beta=\frac{\varepsilon}{\gamma}$ and $\alpha=1$, we obtain (3.3).
Putting $q(z)=\left(\frac{1+z}{1-z}\right)$ in Theorem 3.1. we obtain the following corollary:
Corollary 3.2. Let $0 \neq \varepsilon \in \mathbb{C} \backslash\{0\}, \gamma>0$ and

$$
\operatorname{Re}\left\{1+\frac{2 z}{1-z}\right\}>\max \left\{0,-\operatorname{Re}\left(\frac{\gamma}{\varepsilon}\right)\right\}
$$

If $f \in A$ satisfies the subordination condition:

$$
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec\left(\frac{1-z^{2}+2 \frac{\varepsilon}{\gamma} z}{(1-z)^{2}}\right)
$$

then

$$
\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec\left(\frac{1+z}{1-z}\right)
$$

and $q(z)=\left(\frac{1+z}{1-z}\right)$ is the best dominant.

Theorem 3.3. Let q be a convex univalent function in U with $q(0)=1, q^{\prime}(z) \neq 0(z \in U)$ and assume that q satisfies:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{m}{\varepsilon}(q(z))^{m}+\frac{m-1}{\varepsilon}(q(z))^{m-1}-z \frac{q^{\prime}(z)}{q(z)}+z \frac{q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0 \tag{3.6}
\end{equation*}
$$

where $m \in C, \varepsilon \in \mathbb{C} \backslash\{0\}$ and $z \in U$. Suppose that $z \frac{q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $f \in A$ satisfies:

$$
\begin{equation*}
\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m ; z) \prec(1+q(z)) q(z)^{m-1}+\varepsilon z \frac{q^{\prime}(z)}{q(z)}, \tag{3.7}
\end{equation*}
$$

where,

$$
\begin{align*}
\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)=\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma m} & +\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma(m-1)} \\
& +\varepsilon \gamma\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left(\frac{G_{\lambda}^{m+2}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}-\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right), \tag{3.8}
\end{align*}
$$

then

$$
\begin{equation*}
\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \prec q(z), \tag{3.9}
\end{equation*}
$$

and q is the best dominant of (3.9).
Proof. Define the function p by

$$
\begin{equation*}
p(z)=\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma}, \tag{3.10}
\end{equation*}
$$

then the function $p(z)$ is analytic in U and $p(0)=1$, differentiating with respect to z and using the identity (1.7), we get,

$$
\frac{z p^{\prime}(z)}{p(z)}=\gamma\left[\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left(\frac{G_{\lambda}^{m+2}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}-\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right)\right]
$$

By setting

$$
\theta(w)=(1+w) w^{m-1} \text { and } \phi(w)=\frac{\varepsilon}{w}, w \neq 0 .
$$

We see that $\theta(w)$ is analytic in \mathbb{C} and $\phi(w)$ is analytic in $\mathbb{C} \backslash\{0\}$ and that $\phi(w) \neq 0, w \in \mathbb{C} \backslash\{0\}$. Also, we get

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\varepsilon z \frac{q^{\prime}(z)}{q(z)},
$$

and

$$
h(z)=\theta(q(z))+Q(z)=(1+q(z)) q(z)^{m-1}+\varepsilon z \frac{q^{\prime}(z)}{q(z)} .
$$

It is clear that $Q(z)$ is starlike univalent in U, we have

$$
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{1+\frac{m}{\varepsilon}(q(z))^{m}+\frac{m-1}{\varepsilon}(q(z))^{m-1}-z \frac{q^{\prime}(z)}{q(z)}+z \frac{q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0 .
$$

By a straightforward computation, we obtain

$$
\begin{equation*}
\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)=(1+p(z))(p(z))^{m-1}+\varepsilon z \frac{p^{\prime}(z)}{p(z)}, \tag{3.11}
\end{equation*}
$$

where $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is given by (3.8). From (3.7) and 3.11), we have

$$
\begin{equation*}
(1+p(z))(p(z))^{m-1}+\varepsilon z \frac{p^{\prime}(z)}{p(z)} \prec(1+q(z))(q(z))^{m-1}+\varepsilon z \frac{q^{\prime}(z)}{q(z)} . \tag{3.12}
\end{equation*}
$$

Therefore, by Lemma 2.3, we get $p(z) \prec q(z)$. By using (3.10), we obtain the result.
Putting $q(z)=\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right),(-1 \leq \mathfrak{j}<\ell \leq 1)$ in Theorem 3.3. we obtain the following corollary:

Corollary 3.4. Let $-1 \leq \mathfrak{j}<\ell \leq 1$ and

$$
\operatorname{Re}\left\{\frac{m}{\varepsilon}\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right)^{m}+\frac{m-1}{\varepsilon}\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right)^{m-1}+\frac{1+\mathfrak{j} z(4+3 \ell z)}{(1+\mathfrak{j} z)(1+\ell z)}\right\}>0
$$

where $\varepsilon \in \mathbb{C} \backslash\{0\}$ and $z \in U$, if $f \in A$ satisfies:

$$
\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z) \prec\left[\left[1+\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right)\right]\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right)^{m-1}+\varepsilon z \frac{\ell-\mathfrak{j}}{(1+\ell z)(1+\mathfrak{j} z)}\right],
$$

where $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is given by (3.8), then

$$
\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \prec\left(\frac{1+\ell z}{1+\mathfrak{j} z}\right)
$$

and $q(z)=\left(\frac{1+\ell z}{1+\mathrm{j} z}\right)$ is the best dominant.

4 Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with $q(0)=1, \gamma>0$ and $\operatorname{Re}\{\varepsilon\}>0$. Let $f \in A$ satisfies

$$
\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \in B[q(0), 1] \cap Q
$$

and

$$
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}
$$

be univalent in U. If

$$
\begin{equation*}
q(z)+\frac{\varepsilon}{\gamma} z q^{\prime}(z) \prec\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}, \tag{4.2}
\end{equation*}
$$

and q is the best subordinant of 4.1.

Proof . Define the function p by

$$
\begin{equation*}
p(z)=\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \tag{4.3}
\end{equation*}
$$

Differentiating (4.3) with respect to z, we get

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\gamma\left[\frac{z\left(G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)\right)^{\prime}}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right] . \tag{4.4}
\end{equation*}
$$

After some computations and using (1.7), from 4.4, we obtain

$$
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}=p(z)+\frac{\varepsilon}{\gamma} z p^{\prime}(z)
$$

and now, by using Lemma 2.4 , we get the desired result.
Putting $q(z)=\left(\frac{1+z}{1-z}\right)$ in Theorem 4.1 we obtain the following corollary:

Corollary 4.2. Let $\gamma>0$ and $\operatorname{Re}\{\varepsilon\}>0$. If $f \in A$ satisfies

$$
\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \in B[q(0), 1] \cap Q
$$

and

$$
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}
$$

be univalent in U. If

$$
\left(\frac{1-z^{2}+2 \frac{\varepsilon}{\gamma} z}{(1-z)^{2}}\right) \prec\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}
$$

then

$$
\left(\frac{1+z}{1-z}\right) \prec\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma},
$$

and $q(z)=\left(\frac{1+z}{1-z}\right)$ is the best subordinant.
Theorem 4.3. Let q be convex univalent function in U with $q(0)=1, q^{\prime}(z) \neq 0$ and assume that q satisfies:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{m}{\varepsilon}(q(z))^{m} q^{\prime}(z)+\frac{m-1}{\varepsilon}(q(z))^{m-1} q^{\prime}(z)\right\}>0 \tag{4.5}
\end{equation*}
$$

where $m \in \mathbb{C}, \varepsilon \in \mathbb{C} \backslash\{0\}$ and $z \in U$. Suppose that $z\left(q^{\prime}(z)\right) /(q(z))$ is starlike univalent in U. Let $f \in A$ satisfies:

$$
\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \in B[q(0), 1] \cap Q
$$

and $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is univalent function in U, where $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is given by 3.8). If

$$
\begin{equation*}
(1+q(z))(q(z))^{m-1}+\varepsilon z \frac{q^{\prime}(z)}{q(z)} \prec \Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z), \tag{4.6}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma}, \tag{4.7}
\end{equation*}
$$

and q is the best subordinant of 4.6).
Proof . Define the function p by

$$
\begin{equation*}
p(z)=\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \tag{4.8}
\end{equation*}
$$

Differentiating 4.8 with respect to z, we get

$$
\frac{z p^{\prime}(z)}{p(z)}=\gamma\left[\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left(\frac{G_{\lambda}^{m+2}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}-\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right)\right]
$$

By setting

$$
\theta(w)=(1+w) w^{m-1} \text { and } \phi(w)=\frac{\varepsilon}{w}, w \neq 0
$$

we see that $\theta(w)$ is analytic function in \mathbb{C} and $\phi(w)$ is analytic in $\mathbb{C} \backslash\{0\}$ and that $\phi(w) \neq 0, w \in \mathbb{C} \backslash\{0\}$. Also, we get

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\varepsilon z \frac{q^{\prime}(z)}{q(z)}
$$

It is clear that $Q(z)$ is starlike univalent function in U,

$$
\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}=\operatorname{Re}\left\{\frac{m}{\varepsilon}(q(z))^{m} q^{\prime}(z)+\frac{m-1}{\varepsilon}(q(z))^{m-1} q^{\prime}(z)\right\}>0
$$

By a straightforward computation, we obtain

$$
\begin{equation*}
\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)=(1+p(z))(p(z))^{m-1}+\varepsilon z \frac{p^{\prime}(z)}{p(z)} \tag{4.9}
\end{equation*}
$$

where $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is given by (3.8). From 4.6) and 4.9), we have

$$
\begin{equation*}
(1+q(z))(q(z))^{m-1}+\varepsilon z \frac{q^{\prime}(z)}{q(z)} \prec(1+p(z))(p(z))^{m-1}+\varepsilon z \frac{p^{\prime}(z)}{p(z)} \tag{4.10}
\end{equation*}
$$

Therefore, by Lemma 2.5, we get $q(z) \prec p(z)$.

5 Sandwich Results

Theorem 5.1. Let q_{1} be a convex univalent function in U with $q_{1}(0)=1, \gamma>0$ and $\operatorname{Re}\{\varepsilon\}>0$ and q_{2} be univalent function U, with $q_{2}(0)=1$ satisfies (3.1). Let $f \in A$ satisfies:

$$
\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \in B[1,1] \cap Q
$$

and

$$
\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}
$$

be univalent in U. If

$$
q_{1}(z)+\frac{\varepsilon}{\gamma} z q_{1}^{\prime}(z) \prec\left[\frac{\tau+\lambda}{\sigma+\delta}\right]\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma}\left(\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}-1\right)+\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec q_{2}(z)+\frac{\varepsilon}{\gamma} z q_{2}^{\prime}(z),
$$

then

$$
q_{1}(z) \prec\left[\frac{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}{z}\right]^{\gamma} \prec q_{2}(z),
$$

and q_{1} and q_{2} are respectively the best subordinant and the best dominant.
Theorem 5.2. Let q_{1} be a convex univalent in U with $q_{1}(0)=1$, and satisfies 4.5). Let q_{2} be univalent function in U with $q_{2}(0)=1$ satisfies 3.6. Let $f \in A$ satisfies:

$$
\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \in B[1,1] \cap Q
$$

and $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is univalent in U, where $\Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z)$ is given by (3.8). If

$$
\left(1+q_{1}(z)\right)\left(q_{1}(z)\right)^{m-1}+\varepsilon z \frac{q_{1}^{\prime}(z)}{q_{1}(z)} \prec \Psi(\gamma, \tau, \delta, \lambda, \theta, k, m, \varepsilon ; z) \prec\left(1+q_{2}(z)\right)\left(q_{2}(z)\right)^{m-1}+\varepsilon z \frac{q_{2}^{\prime}(z)}{q_{2}(z)}
$$

then

$$
q_{1}(z) \prec\left[\frac{G_{\lambda}^{m+1}(\sigma, \delta, \tau) f(z)}{G_{\lambda}^{m}(\sigma, \delta, \tau) f(z)}\right]^{\gamma} \prec q_{2}(z)
$$

and q_{1} and q_{2} are respectively the best subordinant and the best dominant.

References

[1] R. Abd Al-Sajjad and W.G. Atshan, Certain analytic function sandwich theorems involving operator defined by Mittag-Leffler function, AIP Conf. Proc. 2398 (2022), 060065.
[2] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, J. Interdiscip. Math. 23 (2020), no. 4, 803-809.
[3] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, Some new results of differential subordinations for Higherorder derivatives of multivalent functions, J. Phys.: Conf. Ser. 1804 (2021), 012111.
[4] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), 87-94.
[5] F.M. Al-Oboudi and H.A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to some classes of meromorphic functions, Arab J. Math. Sci. 12(2006), no. 1, 17-30.
[6] W.G. Atshan and A.A.R. Ali, On some sandwich theorems of analytic functions involving Noor-Sãlãgean operator, Adv. Math.: Sci. J. 9 (2020), no. 10, 8455-8467.
[7] W.G. Atshan and A.A.R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi J. Sci. 62 (2021), no. 7, 2376-2383.
[8] W.G. Atshan, A.H. Battor and A.F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, J. Interdiscip. Math. 24 (2021), no. 3, 579-591.
[9] W.G. Atshan and R.A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, J. Phys.: Conf. Ser. 1664 (2020), 012043.
[10] W.G. Atshan and S.R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, J. Inequal. Pure Appl. Math. 10 (2009), no. 2, 11.
[11] W.G. Atshan, I.A.R. Rahman and A.A. Lupas, Some results of new subclasses for bi-univalent functions using Quasi-subordination, Symmetry 13 (2021), no. 9, 1653.
[12] T. Bulboacã, Classes of first-order differential superordinations, Demonst. Math. 35 (2002), no. 2, 287-292.
[13] T. Bulboacã, Differential subordinations and superordinations, recent results, House of Scientific Book Publ. ClujNapoca, 2005.
[14] M. Darus, and I. Faisal, A different approach to normalized analytic functions through meromorphic functions defined by extended multiplier transformations operator, Int. J. App. Math. Stat. 23 (2011), no. 11, 112-121.
[15] I.A. Kadum, W.G. Atshan and A.T. Hameed, Sandwich theorems for a new class of complete homogeneous symmetry, functions by using cyclic operator, Symmetry 14 (2022), no. 10, 2223.
[16] B.K. Mihsin, W.G. Atshan and S.S. Alhily, On new sandwich results of univalent functions defined by a linear operator, Iraqi J. Sci. 63 (2022), no. 12, 5467-5475.
[17] S.S. Miller and P.T. Mocanu, Differential subordinations: theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc. New York and Basel, 2000.
[18] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Variables 48 (2003), no. 10, 815-826.
[19] M.A. Sabri, W.G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry 14 (2022), no. 5, 931.
[20] F.O. Salman and W.G. Atshan, New results on integral operator for a subclass of analytic functions using differential subordinations and superordinations, Symmetry 15 (2023), no. 2, 1-10.
[21] T.N. Shanmugam, S. Shivasubramaniam and H. Silverman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci. 29684 (2006), 1-13.
[22] S.D. Theyab, W.G. Atshan and H.K. Abdullah, On some sandwich results of univalent functions related by differential operator, Iraqi J. Sci. 63 (2022), no. 11, 4928-4936.

[^0]: *Corresponding author
 Email addresses: mohammed20002049@gmail.com (Mohammed Abduljaleel Habeeb), waggas.galib@qu.edu.iq (Waggas Galib Atshan)

