Asymptotic behavior of a radical quadratic functional equation in quasi- β-Banach spaces

Muaadh Almahalebia,*, Abdellatif Chahbi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
${ }^{b}$ Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
(Communicated by Choonkil Park)

Abstract

Let \mathbb{R} be the set of real numbers and $(Y,\|\cdot\|)$ be a real quasi- β-Banach space. In this paper, we prove the Hyers-Ulam stability on a restricted domain in quasi- β-spaces for the following two radical functional equations $$
f\left(\sqrt{x^{2}+y^{2}}\right)=f(x)+f(y)
$$ and $$
f\left(\sqrt{x^{2}+y^{2}}\right)=g(x)+f(y)
$$ where $f, g: \mathbb{R} \rightarrow Y$. Also, we discuss an asymptotic behavior for these equations. Keywords: radical functional equation, Hyers-Ulam stability, quasi- β-normed spaces, restricted domain 2020 MSC: Primary 39B82; Secondary 39B52

1 Introduction

When defining, in some way, a class of approximate solutions of a given functional equation, one can ask if each mapping from this class can be approximated in some way by an exact solution of the considered equation. Specifically, when a functional equation is replaced with an inequality that serves as a perturbation of the considered equation. S. M. Ulam proposed the first functional equation stability problem in 1940 [23].

Ulam's problem:

Let $\left(G_{1}, *_{1}\right)$ be a group and let $\left(G_{2}, *_{2}\right)$ be a metric group with a metric $d(.,$.$) . Given \varepsilon>0$, does there exists a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d\left(h\left(x *_{1} y\right), h(x) *_{2} h(y)\right)<\varepsilon
$$

for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\delta
$$

[^0]for all $x \in G_{1}$?
We say that the homomorphism equation $h\left(x *_{1} y\right)=h(x) *_{2} h(y)$ is stable if the answer is affirmative. Many researchers have interested in this issue since then. In 1941, D. H. Hyers 9 offered a first partial response to Ulam's problem, presenting the stability result as follows:

Theorem 1.1. [9] Let E_{1} and E_{2} be two Banach spaces and $f: E_{1} \rightarrow E_{2}$ be a function such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for some $\delta>0$ and for all $x, y \in E_{1}$. Then the limit

$$
A(x):=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in E_{1}$, and $A: E_{1} \rightarrow E_{2}$ is the unique additive function such that

$$
\|f(x)-A(x)\| \leq \delta
$$

for all $x \in E_{1}$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E_{1}$, then the function A is linear.
T. Aoki [1] and D. G. Bourgin [2] investigated the stability problem with unbounded Cauchy variations. Th. M. Rassias [16] used a direct method to prove a generalization of Theorem 1.1 by weakening the condition for the bound of the norm of Cauchy difference.

Theorem 1.2. [16 Let E_{1} and E_{2} be two Banach spaces. If $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for some $\theta \geq 0$, for some $p \in \mathbb{R}$ with $0 \leq p<1$, and for all $x, y \in E_{1}$, then there exists a unique additive function $A: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-A(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for each $x \in E_{1}$. If, in addition, $f(t x)$ is continuous in t for each fixed $x \in E_{1}$, then the function A is linear.
Theorem 1.2 was then modified and improved by Th. M. Rassias [17, 18] as follows:
Theorem 1.3. 17, 18 Let E_{1} be a normed space, E_{2} be a Banach space, and $f: E_{1} \rightarrow E_{2}$ be a function. If f satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for some $\theta \geq 0$, for some $p \in \mathbb{R}$ with $p \neq 1$, and for all $x, y \in E_{1}-\left\{0_{E_{1}}\right\}$, then there exists a unique additive function $A: E_{1} \rightarrow E_{2}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{\left|2-2^{p}\right|}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for each $x \in E_{1}-\left\{0_{E_{1}}\right\}$.
When $p=0$, Theorem 1.3 is reduced to Theorem 1.1. The equivalent result is not valid for $p=1$. A number of authors have studied the stability problems of many functional equations in-depth, and there are many interesting findings to be found (see, for instance, [5, 10, 19, 20, and references therein).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.3}
\end{equation*}
$$

is referred to as a quadratic functional equation. A quadratic mapping is defined as a solution of the quadratic functional equation. In 1983, F. Skof [21] proved a generalized Hyers-Ulam stability problem for the quadratic functional equation for mappings $f: E \rightarrow F$, where E is a normed space and F is a Banach space.
P. W. Cholewa [3 proved that the Skof's result is still true if the relevant domain E is replaced by an abelian group. There are various interesting results which deal with the stability of functional equations in restricted domains
[4, 5, 11, 13, 14, 15]. In 2004, J. Tabor [22] presented and proved a version of the Hyers-Rassias-Gajda stability in quasi-Banach spaces.

In this paper, we discuss the Hyers-Ulam stability on restricted domain in quasi- β-normed spaces for the following two equations of these equations.

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)=f(x)+f(y) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)=g(x)+f(y) \tag{1.5}
\end{equation*}
$$

where $f, g: \mathbb{R} \rightarrow Y$ are functions such that Y is a quasi- β-Banach space, also we obtain an asymptotic behavior for them. Some basic facts about quasi- β-normed spaces must be remembered.

Definition 1.4. Let β be a fixed real number with $0<\beta \leq 1$, and \mathbb{K} be either \mathbb{R} or \mathbb{C}. Let X be a linear space over \mathbb{K}. A quasi- β-norm $\|\cdot\|$ is a real-valued function on X satisfying the following:

1. $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$,
2. $\|\lambda x\|=\left|\lambda^{\beta}\right| \cdot\|x\|$, for all $x \in X$ and $\lambda \in \mathbb{K}$,
3. There is a constant $\mathcal{K} \geq 1$ such that $\|x+y\| \leq \mathcal{K}(\|x\|+\|y\|)$, for all $x, y \in X$.

The pair $(X,\|\cdot\|)$ is called a quasi- β-normed space if $\|\cdot\|$ is a quasi- β-norm on X. The smallest possible \mathcal{K} is called the module of concavity of $\|\cdot\|$. A quasi- β-Banach space is a complete quasi- β-normed space.

2 Stability results for Eq. (1.4)

Let $(Y,\|\cdot\|)$ be a quasi- β-Banach space. In 2012, Kim et al. [12] gave the Hyers-Ulam stability for Eq. 1.4 in quasi- β-normed spaces as follows:

Theorem 2.1. [12] Let $\varepsilon \geq 0$. If a function $f: \mathbb{R} \rightarrow Y$ such that $f(0)=0$ and satisfies the following inequality

$$
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)\right\| \leq \varepsilon
$$

for all $x, y \in \mathbb{R}$, then there exists a unique quadratic function $F: \mathbb{R} \rightarrow Y$ satisfying Eq. 1.4 and the following inequality

$$
\|f(x)-F(x)\| \leq \frac{2 \mathcal{K} \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$.
In the following theorem, we present an investigation of the Hyers-Ulam stability for Eq. 1.4 on restricted domain in quasi- β-normed spaces.

Theorem 2.2. Let $d>0$ and $\varepsilon \geq 0$ be fixed. If a mapping $f: \mathbb{R} \rightarrow Y$, such that $f(0)=0$, satisfies the following functional inequality

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)\right\| \leq \varepsilon \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$ with $|x|+|y| \geq d$, then there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.4) satisfying the following inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{2 \mathcal{K}^{2}(2 \mathcal{K}+1) \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta} \tag{2.2}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
Proof. We consider the difference operator $D_{f}: \mathbb{R}^{2} \rightarrow Y$ defined as:

$$
D_{f}(x, y):=f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y), \quad x, y \in \mathbb{R}
$$

We observe that

$$
\begin{aligned}
D_{f}(x, y)=f & \left(\sqrt{x^{2}+y^{2}}\right)+f(t)-f\left(\sqrt{x^{2}+y^{2}+t^{2}}\right)+f\left(\sqrt{x^{2}+y^{2}+t^{2}}\right)-f\left(\sqrt{x^{2}+t^{2}}\right)-f(y) \\
& +f\left(\sqrt{x^{2}+t^{2}}\right)-f(t)-f(x) \\
= & -D_{f}\left(\sqrt{x^{2}+y^{2}}, t\right)+D_{f}\left(\sqrt{x^{2}+t^{2}}, y\right)+D_{f}(x, t)
\end{aligned}
$$

for all $x, y, t \in \mathbb{R}$. Assume that $|x|+|y|<d$ and let $t \in \mathbb{R}$ such that $|t|=d$. Therefore, we note

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}}+|t| \geq d \\
& \sqrt{x^{2}+t^{2}}+|y| \geq d
\end{aligned}
$$

and

$$
|x|+|t| \geq d
$$

Using the definition of D_{f}, we obtain

$$
\left\|D_{f}\left(\sqrt{x^{2}+y^{2}}, t\right)\right\| \leq \varepsilon, \quad\left\|D_{f}\left(\sqrt{x^{2}+t^{2}}, y\right)\right\| \leq \varepsilon, \quad\left\|D_{f}(x, t)\right\| \leq \varepsilon
$$

for all $x, y \in \mathbb{R}$. Thus, using the triangle inequality, we get

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \mathcal{K}(2 \mathcal{K}+1) \varepsilon \tag{2.3}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. According to Theorem 2.1. there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.4 and the following inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{2 \mathcal{K}^{2}(2 \mathcal{K}+1) \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta} \tag{2.4}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
In view of Theorem 2.2, we get the following corollary.
Corollary 2.3. Suppose that $f: \mathbb{R} \rightarrow Y$ such that $f(0)=0$ and satisfying the equation

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)=0 \tag{2.5}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$ with $|x|+|y| \geq d$. Then, the equation 2.5 holds for all $x, y \in \mathbb{R}$.
Let us define a set B as $B:=\left\{(x, y) \in \mathbb{R}^{2}:|x|<d\right.$ and $\left.|y|<d\right\}$ for some $d>0$. In view of the fact that

$$
\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq 2 d\right\} \subset \mathbb{R}^{2}-B
$$

we deduce that the following corollary is a direct consequence of Theorem 2.2.
Corollary 2.4. Assume that a mapping $f: \mathbb{R} \rightarrow Y$ with $f(0)=0$ satisfies the inequality (2.1) for all $(x, y) \in \mathbb{R}^{2}-B$ and some $\varepsilon \geq 0$. Then there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.4 that satisfies the inequality (2.2).

In the following corollary, we give the asymptotic behavior of Eq. 1.4.
Corollary 2.5. Suppose that $f: \mathbb{R} \rightarrow Y$ with $f(0)=0$ satisfies the condition

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)\right\| \rightarrow 0, \quad \text { as } \quad|x|+|y| \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Then f is a solution of Eq. 1.4.

Proof . Due to the asymptotic condition 2.6 , there exists a strictly positive sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ monotonically decreasing to 0 such that

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)\right\| \leq \varepsilon_{n} \tag{2.7}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ with $|x|+|y|>n$. Hence, it follows from 2.7) and Theorem 2.2 that there exists a unique solution $F_{n}: \mathbb{R} \rightarrow Y$ of Eq. 1.4 such that

$$
\begin{equation*}
\left\|f(x)-F_{n}(x)\right\| \leq \frac{2 \mathcal{K}^{2}(2 \mathcal{K}+1) \varepsilon_{n}}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta} \tag{2.8}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Let $l, m \in \mathbb{N}$ such that $m \geq l$. Since $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ is a monotonically decreasing to 0 and in view of 2.8 , we obtain

$$
\begin{aligned}
\left\|f(x)-F_{m}(x)\right\| & \leq \frac{2 \mathcal{K}^{2}(2 \mathcal{K}+1) \varepsilon_{m}}{2^{\beta}-\mathcal{K}} \\
& \leq \frac{2 \mathcal{K}^{2}(2 \mathcal{K}+1) \varepsilon_{l}}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
\end{aligned}
$$

for all $x \in \mathbb{R}$. Then the uniqueness of F_{n} implies that $F_{m}=F_{l}$. Hence, letting $n \rightarrow \infty$ in 2.8), we deduce that $f=F_{m}$ which satisfies Eq. 1.4.

3 Stability results for Eq. (1.5)

In this section, we give the Hyers-Ulam stability for the functional equation (1.5) on restricted domain in quasi- β normed spaces.

Theorem 3.1. Let $\varepsilon \geq 0$. If the functions $f, g: \mathbb{R} \rightarrow Y$, with $f(0)=0$, satisfy the following inequality

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)\right\| \leq \varepsilon \tag{3.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, then there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. (1.4) such that satisfies the following two inequalities

$$
\|f(x)-F(x)\| \leq \frac{2 \mathcal{K}^{2}\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
$$

and

$$
\|g(x)-F(x)\| \leq \frac{2 \mathcal{K}^{3}\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}+2 \mathcal{K}^{2}(\mathcal{K}+1) \varepsilon, \quad \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$.
Proof . Letting $x=y=0$ in (3.1), we get

$$
\begin{equation*}
\|g(0)\| \leq \varepsilon \tag{3.2}
\end{equation*}
$$

Setting $x=0$ and $y=x$ in (3.1), we have

$$
\begin{equation*}
\|f(|x|)-g(0)-f(x)\| \leq \varepsilon, \quad x \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

Putting $y=0$ in (3.1), we obtain

$$
\begin{equation*}
\|f(|x|)-g(x)\| \leq \varepsilon, \quad x \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

So, it follows from (3.1), (3.2), (3.3) and (3.4) that

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-f(x)-f(y)\right\| \leq \mathcal{K}\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon, \quad x, y \in \mathbb{R} . \tag{3.5}
\end{equation*}
$$

According to Theorem 2.1, there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. (1.4) such that satisfies the following inequality

$$
\|f(x)-F(x)\| \leq \frac{2 \mathcal{K}^{2}\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}, \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$. Thus, from the last inequality and in view of (3.2), (3.3) and (3.4), we conclude that

$$
\|g(x)-F(x)\| \leq \frac{2 \mathcal{K}^{3}\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}+2 \mathcal{K}^{2}(\mathcal{K}+1) \varepsilon, \quad \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$.

Theorem 3.2. Let $d>0$ and $\varepsilon \geq 0$ be fixed. If the functions $f, g: \mathbb{R} \rightarrow Y$ such that $f(0)=0$ satisfy the functional inequality

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)\right\| \leq \varepsilon \tag{3.6}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$ with $|x|+|y| \geq d$. Then there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.5 and satisfies the following inequalities

$$
\|f(x)-F(x)\| \leq \frac{4 \mathcal{K}^{3}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
$$

and

$$
\|g(x)-F(x)\| \leq \frac{4 \mathcal{K}^{4}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}+4 \mathcal{K} 3(\mathcal{K}+1) 2 \varepsilon, \quad \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$.
Proof. Let us consider the difference operator $C: \mathbb{R}^{2} \rightarrow Y$ defined as:

$$
C(x, y)=f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)
$$

for all $x, y \in \mathbb{R}$. Notice that

$$
\begin{aligned}
C(x, y)=f(& \left.\sqrt{x^{2}+y^{2}}\right)+g(t)-f\left(\sqrt{x^{2}+y^{2}+t^{2}}\right)+f\left(\sqrt{x^{2}+y^{2}+t^{2}}\right)-f\left(\sqrt{y^{2}+t^{2}}\right)-g(x) \\
& +f\left(\sqrt{y^{2}+t^{2}}\right)-g(t)-f(y) \\
=- & C\left(\sqrt{x^{2}+y^{2}}, t\right)+C\left(\sqrt{y^{2}+t^{2}}, x\right)+C(y, t),
\end{aligned}
$$

for all $x, y \in \mathbb{R}$. Assume that $|x|+|y|<d$ and let $t \in \mathbb{R}$ such that $|t|=d$. So,

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}}+|t| \geq d \\
& \sqrt{y^{2}+t^{2}}+|x| \geq d
\end{aligned}
$$

and

$$
|y|+|t| \geq d
$$

for all $x, y, t \in \mathbb{R}$. This implies that

$$
\left\|C\left(\sqrt{x^{2}+y^{2}}, t\right)\right\| \leq \varepsilon, \quad\left\|C\left(\sqrt{y^{2}+t^{2}}, x\right)\right\| \leq \varepsilon, \quad\|C(y, t)\| \leq \varepsilon
$$

for all $x, y, t \in \mathbb{R}$. Using the triangle inequality, we get

$$
\begin{equation*}
\|C(x, y)\| \leq 2 \mathcal{K}(\mathcal{K}+1) \varepsilon \tag{3.7}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Now, according to Theorem 3.1, there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.5) such that satisfies the following inequalities

$$
\|f(x)-F(x)\| \leq \frac{4 \mathcal{K}^{3}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
$$

and

$$
\|g(x)-F(x)\| \leq \frac{4 \mathcal{K}^{4}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon}{2^{\beta}-\mathcal{K}}+4 \mathcal{K}^{3}(\mathcal{K}+1)^{2} \varepsilon, \quad \mathcal{K}<2^{\beta}
$$

for all $x \in \mathbb{R}$.
Corollary 3.3. Suppose that $f, g: \mathbb{R} \rightarrow Y$ be two functions, with $f(0)=0$, satisfy the equation

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)=0 \tag{3.8}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$ with $|x|+|y| \geq d$. Then, the functional equation 3.8 holds for all $x, y \in \mathbb{R}$.

Let us define the set B as

$$
B:=\left\{(x, y) \in \mathbb{R}^{2}:|x|<d \text { and }|y|<d\right\}
$$

for some $d>0$. Indeed, we have

$$
\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq 2 d\right\} \subset \mathbb{R}^{2}-B
$$

Then, we present the following corollary as a direct consequence of Theorem 3.2.
Corollary 3.4. Assume that a mapping $f: \mathbb{R} \rightarrow Y$ such that $f(0)=0$ and satisfies the inequality (3.6) for all $(x, y) \in \mathbb{R}^{2}-B$ and some $\varepsilon \geq 0$. Then there exists a unique solution $F: \mathbb{R} \rightarrow Y$ of Eq. 1.5 that satisfies the inequality (2.2).

By similar method of the proof of Corollary 2.5. we can prove the following corollary.
Corollary 3.5. Suppose that $f, g: \mathbb{R} \rightarrow Y$ be two functions, with $f(0)=0$, satisfy the condition

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)\right\| \rightarrow 0, \text { as }|x|+|y| \rightarrow \infty \tag{3.9}
\end{equation*}
$$

Then f, g satisfy the functional equation (1.5).
Proof . From the condition $\sqrt[3.9]{ }$, we get that there exists a strictly positive sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ monotonically decreasing to 0 such that

$$
\begin{equation*}
\left\|f\left(\sqrt{x^{2}+y^{2}}\right)-g(x)-f(y)\right\| \leq \varepsilon_{n} \tag{3.10}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ with $|x|+|y|>n$. Hence, it follows from 3.10) and Theorem 3.2 that there exists a unique solution $F_{n}: \mathbb{R} \rightarrow Y$ of Eq. 1.5) such that

$$
\begin{equation*}
\left\|f(x)-F_{n}(x)\right\| \leq \frac{4 \mathcal{K}^{3}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{n}}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g(x)-F_{n}(x)\right\| \leq \frac{4 \mathcal{K}^{4}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{n}}{2^{\beta}-\mathcal{K}}+4 \mathcal{K}^{3}(\mathcal{K}+1)^{2} \varepsilon_{n}, \quad \mathcal{K}<2^{\beta} \tag{3.12}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Let $l, m \in \mathbb{N}$ such that $m \geq l$. Since $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ is a monotonically decreasing to 0 and in view of 3.11 and 3.12, we get

$$
\begin{aligned}
\left\|f(x)-F_{m}(x)\right\| & \leq \frac{4 \mathcal{K}^{3}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{m}}{2^{\beta}-\mathcal{K}} \\
& \leq \frac{4 \mathcal{K}^{3}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{l}}{2^{\beta}-\mathcal{K}}, \quad \mathcal{K}<2^{\beta}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|g(x)-F_{m}(x)\right\| & \leq \frac{4 \mathcal{K}^{4}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{m}}{2^{\beta}-\mathcal{K}}+4 \mathcal{K}^{3}(\mathcal{K}+1)^{2} \varepsilon_{m} \\
& \leq \frac{4 \mathcal{K}^{4}(\mathcal{K}+1)\left(2 \mathcal{K}^{2}+\mathcal{K}+1\right) \varepsilon_{l}}{2^{\beta}-\mathcal{K}}+4 \mathcal{K}^{3}(\mathcal{K}+1)^{2} \varepsilon_{l}, \quad \mathcal{K}<2^{\beta}
\end{aligned}
$$

Then the uniqueness of F_{n} implies that $F_{m}=F_{l}$. Hence, letting $n \rightarrow \infty$ in (3.11) and (3.12), we deduce that $f=g=F_{m}$ which satisfies Eq. 1.5).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237.
[3] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[4] J. Chung, D. Kim and J.M. Rassias, Stability of Jensen-type functional equations on restricted domains in a group and their asymptotic behaviors, J. App. Math. 2012 (2012), Article ID 691981.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[6] M.E. Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009), 5629-5643.
[7] M.E. Gordji and M. Parviz, On the Hyers-Ulam stability of the functional equation $f\left(\sqrt[2]{x^{2}+y^{2}}\right)=f(x)+f(y)$, Nonlinear Funct. Anal. Appl. 14 (2009), 413-420.
[8] M.E. Gordji, H. Khodaei, A. Ebadian and G.H. Kim, Nearly radical quadratic functional equations in p-2-normed spaces, Abstr. Appl. Anal. 2012 (2012), Article ID 896032.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] K. Jun and H. Kim, On the stability of an n-dimensional quadratic and additive functional equation, Math. Inequal. Appl. 9 (2006), 153-165.
[11] S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[12] S.S. Kim, Y.J. Cho and M.E. Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 2012 (2012), Article ID 186.
[13] J.M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276 (2002), 747-762.
[14] J.M. Rassias and M.J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281 (2003), 516-524.
[15] J.M. Rassias and M.J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), 545-558.
[16] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[17] Th.M. Rassias, Problem 16; 2. Report of the 27th international symposium on functional equations, Aequationes Math. 39 (1990), 292-293.
[18] Th.M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113.
[19] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. BabesBolyai Math. XLIII (1998), 89-124.
[20] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000), no. 1, 23-130.
[21] F. Skof, Proprietà locali e approssimazione di operatori Rend, Semin. Mat. Fis. Milano 53 (1983), 113-129.
[22] J. Tabor, Stability of Cauchy functional equation in quasi-Banach spaces, Ann. Pol. Math. 83 (2004), 243-255.
[23] S.M. Ulam, Problems in Modern Mathematics, Science Editions, John-Wiley \& Sons Inc., New York, 1964.

[^0]: * Corresponding author

 Email addresses: muaadh1979@hotmail.fr (Muaadh Almahalebi), abdellatifchahbi@gmail.com (Abdellatif Chahbi)

