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Abstract

The PID controller’s well-established advantages have led to its widespread application in practically all industrial
operations. The effectiveness of the controller has a major impact on the overall performance of the system, making
tuning an essential part of the system’s operation, which made this a hot topic for academics to dig into for some time.
This paper provides an overview of both contemporary and old PID tuning methods. Techniques can be categorized
into two major groups, namely: Traditional and optimization tuning methods are two examples of tuning techniques.
A comparison between some of the different methods has as well as being made available. The primary objective of
this paper is to give thorough for PID professional controllers.
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1 Introduction

As a general control loop feedback mechanism, the PID controller may be found in a variety of industrial control
systems, especially those with exact mathematical models. The proportional, integral, and derivative values are used
to calculate the PID controller [9]. The proportional word refers to adjusting the control output in proportion to
the amount of mistake (the difference between the set point and the process variable) [6]. Integral term: This term
reduces the offset by raising the system’s type and order by one and boosting the system’s reaction speed, albeit at
the price of prolonged oscillations [3].

The reaction is defined by the derivative value, which is based on the pace at which the error is changing. The
sum of these three acts issued to be imported into the regulated system [9]. Changes in the proportionality constants
of these variables have an effect on the system’s reaction. PID tuning or adjusting the PID proportionality constants
is critical because of this [3]. Traditional parameter tuning methods and clever optimization algorithms are the two
types of PID controller parameter tuning methods available. Traditional approaches to parameter tuning include the
empirical, upwards curve, critical ratio, damping oscillatory, and relay feedback techniques. There has been tremendous
influence on the real control system as a result of using or modifying the Z-N approach as an empirical parameter
tuning method ; almost all PID controller suppliers and users do so [23]. Various strategies have been employed for
PID tuning, with the Ziegler Nichols methodology being one of the first. There are two types of approaches: classical
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and computational or optimization techniques. Classical procedures establish assumptions about the plant and the
desired output and seek to get some process characteristic analytically or visually. This knowledge is then utilized
to select controller settings. These strategies are appropriate for initial iteration since they are computationally very
quick and easy to apply. It’s not always possible to get the expected effects from controller settings because of the
assumptions made. Traditional methods were evaluated in this article. Techniques for Improving Results PID tuning
for data modeling and cost function optimization has made use of these strategies. Genetic algorithms and differential
evolution are two examples of computer methods for modeling complicated systems. There is a cost function that
must be minimized in order for optimization techniques to work. Cost functions are classified into four types: integral
absolute error (IAE), integral square error (ISE), integral time absolute error (ITAE), and integral time square error
(ITSE).

IAE =

∫ T

0

|e(t)| (1.1)

ISE =

∫ T

0

|e(t)|2 (1.2)

ITAE =

∫ T

0

t|e(t)| (1.3)

ITSE =

∫ T

0

t|e(t)|2. (1.4)

Computer models are used to adjust PID controllers for optimal performance. If there are any process deviations
detected, the PID settings are reset to provide the desired response. PID controller self-tuning effectively sets the PID
parameters while simultaneously modeling the process using some computational model and compares the results.
Adaptive approaches are categorized based on the idea that if the process dynamics change [16], the controller should
alter its settings. There are two sorts of process dynamics variations: predictable and unexpected. If you have
nonlinearities, you can use an auto-tuning strategy to deal with them. Then, a gain schedule may be employed to deal
with the non-linearities [3].

2 Classical techniques

Assumptions concerning model assumptions and controller settings are commonly made in conventional method-
ologies. Step response data is used to determine the dynamics of these systems. Different traditional techniques have
relied on various equations to specify this reaction [3].

2.1 Ziegler–Nichols

ZN rules, which are typically used to tune PID controllers for plants with unknown dynamics, may also be used
to tune PID controllers for plants with known dynamics. Ziegler and Nichols presented guidelines for finding the
values of proportional gain KP , integral time Ti, and derivative time Td based on the transient response characteristic
of a specific plant. It’s best to use tuning rules when you have a linear, monotonic and slow system, a single-pole
exponential ”lag” or something like, and an analog controller. This approximation accurately depicts the frequency
response rolloff in the great majority of situations, even though genuine plants are unlikely to have a flawless first-order
lag characteristic in place. There will be an extra phase shift when using higher-order poles. For loop stability, phase
shift is extremely significant, even though it has only a little impact on the gain rolloff form. The amplitude rolloff
and the phase shift cannot be adequately matched by a single ”lag” pole. Thus, the Ziegler-Nichols model uses an
imaginary phase adjustment that does not alter the anticipated magnitude rolloff. As we get closer to the stability
margin, we see a 180 degree phase change in the feedback loop. A phase shift of up to 90 degrees can be caused by
a first order lag. The rest of the observed phase shift must be compensated for by an artificial phase adjustment.
Between zero and critical frequency, the phase adjustment is considered to be a straight line with a 180-degree phase
shift between two points. A time delay is the same as a ”straight line” phase shift. If so, is this in line with the
observed phase shifts? Let’s wish for the best, as it is the least likely scenario [13]. Based on controller assumptions,
the Ziegler and Nichols technique was the first to be created. Since the controller settings generated are very aggressive,
they result in excessive overshoot and oscillatory response, which necessitate additional tuning. The first method’s
parameters are likewise difficult to estimate in a noisy environment.
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2.2 Cohen-Coon

The Cohen-Coon method of controller tuning corrects the slow steady-state response provided by the Ziegler-
Nichols method when there is a large dead time (process delay) relative to the open loop time constant; a large process
delay is required for this method to be practical because otherwise unreasonable controller gains will be predicted. This
approach can only be used with first-order models with time delay since the controller does not respond immediately to
the disturbance (the step disturbance is progressive rather than instantaneous). The Cohen-Coon technique is a ’offline’
tuning approach, which implies that after the input has achieved steady-state, a step change can be implemented.
Once the output has been measured, the initial control settings may be evaluated based on the response. In Cohen-
Coon approach, there are specified parameters to achieve a minimal offset and a standard decay ratio of 1:4. (QDR).
A decay ratio of 1/4(QDR) means that the second oscillation has just a quarter of the amplitude of the first. Table 1
displays these options [19].

Table 1: Cohen Coon forecasts can be improved by using the standard suggested formulae.

Kc Ti Td
P (P/Nl) ∗ (1 + (R/3))
PI (P/Nl) ∗ (0.9 + (R/12)) L ∗ (30 + 3R)/(9 + 20R)
PID (P/Nl) ∗ (1.33 + (R/4)) L ∗ (30 + 3R)/(9 + 20R) 4L/(11 + 2R)

where P is the percent change in input, N is the percent change in output/T, and L is Tdead, R is Tdead/T . This
method is useful for systems with a time delay and a faster closed loop response time [22].

3 Optimization Techniques

Additional mathematical programming approaches that differ conceptually from the tar-based optimization meth-
ods have been developed in the last several years. Methods like this are considered to be contemporary or uncon-
ventional. Numerous techniques have been developed by studying biological, molecular, swarm-insect, and neural
systems.

Genetic algorithms, simulated annealing, Particle Swarm Optimization, Ant Colony Optimization, Fuzzy Optimiza-
tion, Neural-Network-Based Approaches, Crow Search Algorithm, Artificial Bee Colony and Grey Wolf Optimizer are
some of the methods covered in this area.

3.1 Genetic Algorithms

Inherent in genetic algorithms are concepts from natural selection and evolutionary genetics. The genetic search
strategy makes use of the natural processes of reproduction, genetic crossover, and mutation. Some of the ways in
which GAs diverge from conventional optimization strategies are as follows: First, instead of starting with a single
design point, a set of points (called trial design vectors) is used. Population size is often expected to be between two
and four design variables n. To avoid being stuck at a single point, GAs employ many points as possible solutions.
GAs only utilize the value of the goal function. No derivatives are used in the search algorithm. In natural genetics,
chromosomes are represented as strings of binary values in GA design variables. Consequently, the search approach
may be used to solve discrete and integer programming issues. The length of the string for continuous design variables
can be changed to obtain any resolution required. In natural genetics, a design vector’s objective function value is
used as fitness. A new set of strings is generated with each generation by randomly selecting some of the existing
strings and crossing them with new ones. However, GAs are not just a basic random search strategy since they are
randomized. They effectively integrate fresh data with existing knowledge to find a new generation with improved
fitness or an objective function value. The standard genetic algorithm is given below, and the algorithm flowchart is
shown in Fig. 1.

GA is widely used in PID tuning and has many applications in control systems [12]. Girishraj et. al This study
found that GA beat Ziegler Nichols, Skogestad modification and IMC rule [4] in terms of overshoot, disturbance
rejection, gain margin, and phase marginality in a bioreactor PID controller. The scalability and applicability of GA
in multivariable system tuning were examined. A DC motor’s position and speed may be controlled using GA Reverse
osmosis and cascade control systems’ PIDs have been fine-tuned with the help of GA [11].
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Figure 1: Flowchart of genetic algorithm based tuning

3.2 Simulated Annealing

This approach is based on a simulation of thermal annealing of critical hot solids. When the metal is heated to
a high enough temperature, the atoms in the molten state are no longer bound to each other and may move freely
with respect to one another. Atoms, on the other hand, are confined in their mobility when the temperature lowers.
Crystals with the lowest possible internal energy are formed when the temperature decreases, since the atoms tend to
organize themselves as a result of this tendency.

The PID tuning of time-delay controllers for high-performance drilling processes has made use of simulated anneal-
ing through the use of simulated heat. As a result of the multimodal search space’s enormous size and nonlinearity, the
typical Simulated annealing method is computationally costly The outcome is a modified form of SA called Orthogonal
Simulated Annealing (OSA), which is used to optimize several fuzzy neural networks simultaneously while PID tuning
different controllers [3].

3.3 Particle Swarm Optimization

When it comes to ants, termites, bees, and wasps, Particle Swarm Optimization (PSO) takes its cues from the
behavior of these and other swarming insects, as well as from birds and fish. Particle swarm optimization is aimed
to emulate the behavior of social creatures. A bee colony or a group of birds might be referred to as a particle. The
swarm’s collective or group intelligence is utilized by each person or particle in a swarm in a dispersed fashion. Since
the swarm can communicate with each other instantaneously, even far away particles can follow an individual particle’s
discovery of an efficient route to food. Genetic algorithms, which are based on evolution, are known as behaviorally
inspired algorithms. Swarm intelligence-based optimization approaches, on the other hand, are known as evolutionary
algorithms. In 1995, Kennedy and Eberhart developed the PSO algorithm [17].

Due to its great computing efficiency, the Particle Swarm Optimization (PSO) approach established by Kennedy
and Eberhart is frequently employed in a wide range of engineering challenges, such as the optimization of complex
systems. In order to reduce the maximum overshoot, rising time, speed tracking error, steady state error, and settling
time, this approach is applied. As a result of the optimization solution, the Pareto front or ideally surfaces may be
found.

With the help of the movement of swarm intelligence, PSO is an effective stochastic optimization approach. PSO
components include swarm size, velocity, position components, and the maximum number of iterations. PSO controller
construction is depicted in Fig. 2.

Random candidate solutions are seeded into the Particle Swarm Optimization (PSO) model by a swarm of particles.
They scan the d-dimension issue space again and over again for fresh approaches. Position vector Xi

k represents the
location of every particle. I is the index of the particle and V i

k is the speed of the particle represented by two vectors: a
location and a velocity P i

best denotes the particle’s most recent and most preferred location. The P i
globel vector is then

used to hold the swarm’s optimal location vector. At iteration k, the following formula determines the new velocity
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Figure 2: The structure of the PID controller with PSO algorithm

based on the old one:
V i
k = wV i

k + c1R1(P
i
best −Xi

k) + c2R2(P
i
globel −Xi

k) (3.1)

The new location is then calculated by the sum of the previous and the new velocity:

Xi
k+1 = Xi

k + V i
k (3.2)

There are two random numbers, referred to as R1 and R2. To choose its next move, a particle takes into account the
memory of its best prior location and the swarm’s most successful particle’s experience [15].

3.4 Ant Colony Optimization

Authentic ant colonies work together to choose the quickest route from their homes to their sources of food. ACO,
on the other hand, mimics this cooperative conduct. The approach was developed by Dorigo and his colleagues in the
early 1990s. Each ant leaves a pheromone trail behind it as it searches for food. It becomes weaker as the number of
ants going through it falls, and it becomes stronger as the number of ants travelling through it rises. An ant search
algorithm that relies on the cooperation of several colonies is what we’re talking about here [3].

Ants, according to Ibtissem Chiha and his coworkers, solve problems by applying a probability rule to their
decisions. Two variables are used to derive the probability rule between nodes I and j.

pij =
[TIJ ]

∝[ηij ]
β∑

h ∈ s[τih]α[ηih]β
(3.3)

Factor ηij is the inverse of the cost function. This factor doesn’t change while the algorithm is running; rather, the
factor τih (associated with pheromone and starting at a value of 0) is modified after each iteration. The heuristic
or pheromone factor may be targeted with the help of the parameters α and β. For each path, the following is the
pheromone amount change:

∇τAij =

{
Lmin

LA , if i, j ∈ TA;
0, else.

(3.4)

It’s been determined that Lmin, proposed by ant A, will be the best answer so far. When it comes time for the following
iteration, the pheromone chosen is,

τ
(t)
ij = ρτ

(t−1)
ij +

NA∑
A=1

∆τ
A(t)

IJ (3.5)

In order to eliminate poor decisions, the ant population and evaporation rate are both counted as NA and.

Ant colony optimization (ACO) was utilized to tune the PID. For minimizing a multi-objective function, it beat
genetic algorithms and the Ziegler Nichols technique, although [3].
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3.5 Fuzzy Based Optimization

Traditional designs formulate the optimization issue in exact language. Real-world issues, on the other hand,
frequently include design data, goal function, and constraint formulations that are both ambiguous and linguistic in
nature. PID controller settings may be dynamically modified in real-time in response to signal error and error using
the Fuzzy logic controller (FLC). For each plant and each PID controller parameter range with which the FLC is to
be utilized, the FLC’s design characteristics change. There are no major changes to the controller’s basic structure.
In Fig. 3, we see the FLC, which is a frequent component in PID tuning [3].

Figure 3: Basic block diagram for fuzzy ”control”

The mistake and its derivatives are displayed in Fig. 3 as inputs to the fuzzy interface, as illustrated. Most often, in
fuzzy interfaces, the Mamdani model, as described in [10], is utilized. process may be broken down into four sections:

1. Creating a fuzzy variable for each of the crisp inputs.

2. To determine the output for each rule, you must know its fuzzy predecessors.

3. Making an overall assessment of all ambiguous rules.

4. Mapping ambiguous output to clear ones (defuzzification).

It is the sort of controller and real-world experience that decide the fuzzy rules for a certain plant. According to
Jantzen, it may be difficult to build integral rule bases. PD fuzzy systems with integrated error control, then, are the
optimum choice. It’s also possible to combine two fuzzy controllers in order to have the effect of a PID controller [3].

3.6 Neural-Network-Based Methods

The nervous system’s enormous parallel processing capacity has been connected to its ability to handle perception
difficulties in the midst of enormous volumes of sensory input. Optimization issues are increasingly being solved using
neural computing techniques. In a massively parallel network of connected basic processors, the inputs are passed
from one neuron to the next, and the computed output is sent on to the output nodes (neurons). There are several
ways to describe a neural network, including describing each neuron as an individual, as well as the network as a
whole.

PID controllers are not widely utilized because of the intrinsic limitations of neural network theory, such as the
difficulty in determining the number of layers and the number of neurons per layer. ANN may, however, describe even
extremely nonlinear systems. Using SVMs to create self-tuning controllers is more straightforward. Self-tuning PID
controllers make up the majority of neural network work. Figure 4 depicts the flow chart utilized in [21] for self-tuning
PID control with GA and ANN.

Figure 4: Flowchart of neural network based ”controller”
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3.7 Crow Search Algorithm

It’s been recommended that CSA be used to improve swarm intelligence through simulation of crows’ clever
behavior when it comes to hiding and recovering food. There are minimal control parameters, and the method is easy
to implement.

In the past, birds have been recorded monitoring each other and taking each other’s food after the owner has gone
away. If a crow has been robbed before, it will take additional care to avoid being a victim again, such as moving its
hiding location. In reality, they can forecast a pilferer’s conduct based on their own stealing experience and select the
best line of action to secure their stockpiles [2].

Based on this hybrid technique, the PID controller and the Crow search algorithm (CSA) are combined to provide
an internal function within the PID controller of the DC motor that may be utilized to develop good PID control
settings. The selection of PID parameters is viewed as a problem of search space.

When searching for the high-correlated parameters vector, meta-heuristic techniques are acceptable since this
results in disturbances that have no impact on DC motor performance [1].

Major sections of the framework may be broken down into two. A random set of parameters is used by the CSA
algorithm to estimate the global optimum, after which the cost value for each individual is calculated and the best
parameters are assigned to the DC motor’s PID Controller system. Search space domain influences the design of each
candidate vector. It is the number of PID parameters that determines the length of the vector. Each cell in the vector
is determined by a parameter value. For the purpose of evaluating parameter subsets, the error performance indicators
are used to produce the cost function, which is specified by the following equations, and is used to repeatedly adjust
these parameters until a minimal cost function (desired response) has been achieved,

U(t) = Kpe(t) +

∫
e(t)dt+ Td

de(t)

dt
(3.6)

The disparity between predicted and actual input values is known as ”monitoring error” (e(t)). In order to calculate
the derivative and integral of the error signal, a PID controller receives this signal and performs these calculations.
Proportional gain (KP ) multiplied by error magnitude multiplied by the error’s integral gain (Ki) and derivative gain
(Kd) multiplied by error’s derivative are now equal to controller’s signal U(t) The performance index is a metric used
in the development of PID controllers, as can be seen in the example above (3.6).

The performance of a system controlled by a PID controller. To match a given specification, the set of PID
parameters for the system may be tweaked using this approach to find a ”optimal system”. A final comparison is
made between the empirical findings and the four suggested PIDCSA variants (ISE, IAE, ITAE, and ITSE) depending
on the kind of error indicator functions and additional methods like the ZN method and PSO algorithm [1].

3.8 Artificial bee colony

For the artificial bee colony algorithm, Karaboga came up with the idea in 2005, and it is still in its infancy. In
the same vein as previous approaches of swarm intelligence, this population-based evolutionary algorithm has been
proved to be an effective and efficient solution for addressing the optimization issue [5].

The food source is a potential solution to the ABC algorithm’s difficulty. The amount of nectar in a food source
tells you a lot about the quality of that item. Employed bees, onlookers, and scout bees are all charged with discovering
the greatest food sources, which are chosen at random [7].

Iteratively, the ABC computation connects each honey bee to a wide range of nutrient sources. Every cycle, a
worker honey bee chooses a nearby food source and measures its nectar yield or overall health using the current
environmental conditions.

Vnj = Xnj +Ψ∗
nj(Xnj +Xmj) (3.7)

a creative sustenance asset, means a discretionary quantity between +1 and designate the inconsistently selected
sustenance asset. Bees will migrate if the creative nutrition asset’s health is superior to the previous one; else, they
will stick with the old one. When honey bees finish their hunt, they pass on information about their food supplies to
other honey bees. If all the utilised honey bee hives are providing nectar, a passing honey bee will weigh their chances
of finding food in relation to the health of their food sources, which will be decided by their current state (3.8),

Pn =
fitn∑k
n=1 fitn

(3.8)
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Now, the estimation of the health of the clarify is based on the nectar quantity of the area’s nourishment asset and
the number of honey bees that are utilized. In the event that the honey bee colony is deprived of a source of nutrition,
the used honey bees become scouts.

This is where scouts bring out the creative side of themselves through the use of conjecture (3.9),

Xj
n = Xj

min + rand(0, 1)(Xmax
j −Xmin

j ); j = 1, 2, ..., D (3.9)

ABC was used to alter the PID for the DC engine’s speed control. According to this source, a DC engine may be used
to replace an unanticipated switch to a PID controller and an ABC calculation can be built up during the subsequent
adjustment process [8].

3.9 Grey Wolf Optimizer Algorithm

Mirjalili et al. invented GWO, which is currently widely used across a wide range of scientific and industrial fields,
including astronomy and physics. This algorithm depicts the social structure and hunting prowess of grey wolves. The
GWO algorithm is always being tweaked in response to new applications and variants that are being developed. The
typical GWO algorithm might be renamed as follows: (IGWO) [20].

A grey wolf’s hunting strategy is broken down into three stages, each of which is addressed by the GWO algorithm.
After following the prey at a distance, pursuing it for a brief period of time, then encircling it, the hunting process
is complete The target is harassed and encircled until it halts and remains still. Finally, wolves assault the prey.
Mathematically, Mirjalili et al [14] construct and characterize the hunting processes of grey wolves in accordance
with their social order. Here is a basic introduction to the mathematical model: Grey wolf circling behavior may be
described mathematically as follows: −→

D = |
−→
C
−→
XP (iter)−

−→
X (iter)| (3.10)

−→
X (iter + 1) =

−→
XP (t)−

−→
A
−→
D (3.11)

−→
XP and

−→
X are represents position vector of prey and grey wolf, respectively. Iter is the current iteration. The

−→
A and−→

C are coefficient vectors, they are calculated as,

−→
A = 2−→a −→r1 −−→a (3.12)

−→
C = 2−→r2 (3.13)

−→r1 and −→r2 has the range [0,1] for random vectors. The number of components of a decreases linearly from 2 to 0.
Mathematically, the hunt for grey wolves is modelled as:

−→
Dα = |

−→
C1

−→
Xα −

−→
X |

−→
Dβ = |

−→
C2

−→
Xβ −

−→
X |

−→
Dδ = |

−→
C3

−→
Xδ −

−→
X | (3.14)

−→
X1 =

−→
Xα −

−→
A1(

−→
Dα)

−→
X2 =

−→
Xβ −

−→
A2(

−→
Dβ)

−→
X3 = |

−→
Xδ −

−→
A3(

−→
Dδ)| (3.15)

−→
X (iter + 1) = (

−→
X1 +

−→
X2 +

−→
X3)/3 (3.16)

At the beginning of the search, no previous information of the ideal parameters or their position in the search
region is available. A better understanding of where the prey is located is expected to come from the first three best
options (α β δ) e.g.

α β and δ make educated guesses about the victim’s location and keep track of its distance during the iteration
process. Following this, all other agents have to adjust their positions accordingly [18].

4 Conclusions

Our literature analysis led us to the conclusion that PID controllers are the most often used due to their easy
structure and implementation. Automated tuning features have made PID control much easier to utilize. Numerous
methods for improving PID control have been researched. A complete analysis of all the approaches that were
concurrently tried under varied settings was carried out. In addition, because of its ability to enable automated
tuning, PID has drawn increased interest from industrial uses. PID controller tuning would be a significant research
topic.
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