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Abstract

The Zakharov equation is a nonlinear plasma fluid model, used for ion-acoustic waves in a magnetized plasma. In
the present study, Langmuir waves of the dimensionless Zakharov equation are investigated by using the Sardar-
subequation method. The obtained solutions lead to a variety of exact solutions in the form of dark, bright, periodic
singular, singular and combined dark-bright type solutions. These acquired solutions are depicted graphically by the
2D, contour and 3D plots which show the physical behaviour of obtained solutions. All the graphs confirm the validity
of the obtained solutions. These types of solutions have a large range of applications in mathematical and applied
sciences..
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1 Introduction

Non-Linear equations play imperative role in the domain of engineering and sciences such as solid state physics, cell
recognition, fluid mechanics, plasma physics, fiber optics, biology, heat flow occurrence, quantum mechanics, electricity
and condensed matter physics [5, 6, 7, 11, 14, 15, 21, 22, 23, 30]. The applications of soliton solutions of NLEs play
important role in different fields like neutral physics and diffusion process. Traveling wave solution is a wave that
proceed in a specific direction with addition of retaining a fixed shape and plays an important role in physical models.
In this regard, many efficient methods such as the (G

′

G )-expansion technique [4], the sine-cosine technique [34], the
tanh-function technique [20], the first integral technique [13], extended tanh [35, 36], Hirota’s direct [38, 39], functional
variable [8, 12], Exp[−φ(ξ)]-Expansion [31, 33], Jacobi elliptic ansatz [2, 18], sub equation [3, 19] and [9, 22, 29, 32, 41]
have been established .

In this paper, propagation of Langmuir waves for Zakharov equation by using through traveling wave solutions is
investigated. The Langmuir waves is actually the illustration of the electron plasma waves and is used to generate
instabilities during fluctuations of electrons [10]. Zakharov system is introduced by Zakharov [37, 40] and is generalized
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form of Korteweg-de-Vries equation [16]. This equation explains the relation between low frequency acoustic waves
and high frequency Langmuir waves which has many applications in high-energy physical processes, environmental
science, fluid mechanics and electronics [17]. The Zakharov equation is read as [1]

ιχt + χxx + µΠ(|χ|2)χ = χψ,

ψtt − ψxx =
(
|χ|2c

)
xx
, (1.1)

where µ is arbitrary constant, χ = χ(x, t) represents the envelope of the high-frequency electric field and ψ = ψ(x, t)
represents the plasma density. Using following values

Π(|χ|2) = |χ|2, c = 1,

in equation (1), it becomes

ιχt + χxx + µ|χ|2χ = χψ,

ψtt − ψxx = (|χ|2)xx. (1.2)

In this study, we implement the SSM [28] to provide the brief classification of traveling wave solutions for Zakharov
equation. This method has been used to get the solutions in the form of hyperbolic and trigonometric solutions [25, 27].

This paper is organized as follows, in section 2, the Sardar-subequation method is discussed. In section 3, traveling
wave solutions of dimensionless Zakharov Equation are presented. Graphical representation is explained in section 4
and the conclusion is given in section 5. The appendix gives the details of calculations of some lengthy solutions.

2 The Sardar-subequation Method

The Sardar-subequation method [28] is regarded as one of general from which, under specific circumstances, different
techniques can be generated such as the first integral technique and the functional variable method. Consider the
following NLEs for ϕ(x, t)

ℜ(ϕ, ϕt, ϕx, ϕtt, ϕxx, ...) = 0, (2.1)

where ℜ is a polynomial in ϕ and its partial derivatives. Using the following traveling wave transformation

ϕ(x, t) = ϕ(ξ), ξ = x− β1t, (2.2)

in equation (2.1), where β1 ̸= 0 is constant, following ODE w.r.t ξ is generated

Q(ϕ, ϕ
′
, ϕ

′′
, ϕ

′′′
, ...) = 0, (2.3)

where ϕ = ϕ(ξ),ϕ
′
= dϕ

dξ ,ϕ
′′
= d2ϕ

dξ2 , . . .. Solution of equation (2.3) has following form

ϕ(ξ) =

n∑
i=0

ϖiΨ
i(ξ), (2.4)

where coefficients ϖi, (i = 0, 1, · · · , n) to be find out with (ϖn ̸= 0) and Ψ(ξ) is the solution of the equation

(Ψ′(ξ))2 = ρ+ αΨ2(ξ) + Ψ4(ξ). (2.5)

where ρ and α are the real constants. The solutions of equation (2.5) are given as:

Case I: If ρ = 0 and α > 0, then

Ψ±
1 (ξ) = ±

√
−pqα sechpq(

√
αξ), and Ψ±

2 (ξ) = ±√
pqα cschpq(

√
αξ),

where sechpq(ξ) =
2

peξ+qe−ξ , cschpq(ξ) =
2

peξ−qe−ξ .
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Case II: If ρ = 0 and α < 0, then

Ψ±
3 (ξ) = ±

√
−pqα secpq(

√
−αξ), and Ψ±

4 (ξ) = ±
√
−pqα cscpq(

√
−αξ),

where secpq(ξ) =
2

peιξ+qe−ιξ , cscpq(ξ) =
2ι

peιξ−qe−ιξ .

Case III: If ρ = α2

4 and α < 0, then

Ψ±
5 (ξ) = ±

√
−α
2

tanhpq(

√
−α
2
ξ), Ψ±

6 (ξ) = ±
√

−α
2

cothpq(

√
−α
2
ξ),

Ψ±
7 (ξ) = ±

√
−α
2

(tanhpq(
√
−2αξ)±

√
−pq sechpq(

√
−2αξ)),

Ψ±
8 (ξ) = ±

√
−α
2

(cothpq(
√
−2αξ)±√

pq cschpq(
√
−2αξ)),

Ψ±
9 (ξ) = ±

√
−α
8

(tanhpq(

√
−α
8
ξ) + cothpq(

√
−α
8
ξ)),

where tanhpq(ξ) =
peξ−qe−ξ

peξ+qe−ξ , cothpq(ξ) =
peξ+qe−ξ

peξ−qe−ξ .

Case IV: If ρ = α2

4 and α > 0, then

Ψ±
10(ξ) = ±

√
α

2
tanpq(

√
α

2
ξ),

Ψ±
11(ξ) = ±

√
α

2
cotpq(

√
α

2
ξ),

Ψ±
12(ξ) = ±

√
α

2
(tanpq(

√
2αξ)±√

pq secpq(
√
2αξ)),

Ψ±
13(ξ) = ±

√
α

2
(cotpq(

√
2αξ)±√

pq cscpq(
√
2αξ)),

Ψ±
14(ξ) = ±

√
α

8
(tanpq(

√
α

8
ξ) + cotpq(

√
α

8
ξ)),

where tanpq(ξ) = −ιpe
ιξ−qe−ιξ

peιξ+qe−ιξ , cotpq(ξ) = ι pe
ιξ+qe−ιξ

peιξ−qe−ιξ . This method begins by finding out n with the help of the
balance principle. When n is obtained, the solution which is predicted and it’s necessary derivatives together with
equation (2.5) are placed into equation (2.3). Then by taking all the coefficient of power of Ψ(ξ) equal to zero, a
system of algebraic equations is obtained and solved for α and ϖis. When ϖis and α are find out the solutions are
generated by using these parameters.

3 Traveling Wave Solutions of the Dimensionless Zakharov Equation

In this section, solutions are derived by applying SSM. The obtained solutions are very convenient and by giving
the different conditions of parameters, we get different types of solutions.

Using these transformation χ = ϕeιθ, ϕ = ϕ(ξ), ξ = x − β1t, θ = −β2x + β3t + β4 in equation (1.2) where
βi (i = 1, 2, 3, 4) are fixed arbitrary constants, it becomes

(ιβ1ϕ
′ − β3ϕ+ ϕ′′ − 2ιβ2ϕ

′ − β2
2ϕ+ µϕ3 − ϕψ)eιθ = 0,

(β2
1 − 1)ψ′′ − (ϕ2)′′ = 0. (3.1)

For β1 + 2β2 = 0, integrating the second equation in equation (3.1) twice, assuming constant of integration zero
then utilizing the result in first equation of the same system, the following equation is generated

ϕ′′ − (β3 + β2
2)ϕ+ (µ− 1

β2
1 − 1

)ϕ3 = 0. (3.2)
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Equating the highest nonlinear order with the highest order derivative [ϕ′′ : ϕ3] in equation (3.2), we obtain n = 1
and the equation (6) will become

ϕ(ξ) = ϖ0 +ϖ1Ψ
1(ξ). (3.3)

Substituting equation (3.3) into equation (3.2) with equation (2.5) and equating all the coefficient of Ψ(ξ) to zero,
the following system of algebraic equations is obtained

− ϖ3
0

β2
1−1

− β2
2ϖ0 − β3ϖ0 + µϖ3

0 = 0, αϖ1 − β2
2ϖ1 − β3ϖ1 − 3ϖ2

0ϖ1

β2
1−1

+ 3µϖ2
0ϖ1 = 0,

3µϖ0ϖ
2
1 −

3ϖ0ϖ
2
1

β2
1−1

= 0, − ϖ3
1

β2
1−1

+ µϖ3
1 + 2ϖ1 = 0.

Solving this system of algebraic equations, we get

ϖ0 = 0, ϖ1 = ±
√
2
√
1− β2

1√
β2
1µ− µ− 1

, α = β2
2 + β3. (3.4)

Some of the traveling wave solution are given as

Case I: If β2
2 + β3 > 0 and ρ = 0 then

χ1(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
(β2

2 + β3) (−p)q
)
sechpq

(√
β2
2 + β3ξ

)
, (3.5)

χ2(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
(β2

2 + β3) pq

)
cschpq

(√
β2
2 + β3ξ

)
. (3.6)

Case II: If β2
2 + β3 < 0 and ρ = 0 then

χ3(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
(β2

2 + β3) (−p)q
)
secpq

(√
−β2

2 − β3ξ

)
, (3.7)

χ4(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
(β2

2 + β3) (−p)q
)
cscpq

(√
−β2

2 − β3ξ

)
. (3.8)

Case III: If β2
2 + β3 < 0 and ρ =

(β2
2+β3)

2

4 then

χ5(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)
tanhpq

(√
−β2

2 − β3ξ√
2

)
, (3.9)

χ6(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)
cothpq

(√
−β2

2 − β3ξ√
2

)
. (3.10)

Case IV: If β2
2 + β3 > 0 and ρ =

(β2
2+β3)

2

4 then

χ10(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)
tanpq

(√
β2
2 + β3ξ√
2

)
, (3.11)

χ11(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)
cotpq

(√
β2
2 + β3ξ√
2

)
. (3.12)
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4 Graphical Representation

This section contains some graphs of solutions obtained by SSM using Maple 18. The 3d, contour and 2d plot of
traveling wave solutions χ1(x, t), χ3(x, t), χ5(x, t), χ6(x, t), χ7(x, t), χ14(x, t) are shown in figure 1-5. It is noted that
the SSM method has ability to develop different types of soliton solutions such as bright, periodic, dark, singular,
combined dark-bright, combined dark-singular soliton solutions. The physical interpretation of sketched solutions are
as follow:

• The figure 1 presents the bright soliton solutions of Eq.(3.5) in 3d, contour and 2d plots with the parameters
β1 = 2, β2 = 0.5, β3 = 1, β4 = 0.75, µ = 0.05, p = 0.8, q = 0.98.

• Figure 2 represents the periodic wave solutions of Eq. (3.7) under the parameters β1 = 2, β2 = 0.5, β3 = −1, β4 =
0.75, µ = 0.05, p = 0.8, q = 0.98. in 3d, contour and 2d plots.

• The dark soliton solution for Eq. (3.9) is depicted in figure 3 along parameters β1 = 2, β2 = 0.5, β3 = −1, β4 =
0.75, µ = 0.05, p = 0.8, q = 0.98.

• The 3d, contour and 2d view of Eq. (3.10) is given in figure 4 which exhbits the singular soliton for the values
of β1 = 2, β2 = 0.5, β3 = −1, β4 = 0.75, µ = 0.05, p = 0.8, q = 0.98.

• The graph of Eq. (3.12) shows combined dark-bright soliton solutions for the values of β1 = 2, β2 = 0.5, β3 =
−1, β4 = 0.75, µ = 0.05, p = 0.8, q = 0.98 as shown in 3d, contour and 2d plot of figure 5.

Figure 1: Dynamical behaviors of solution (3.5) (a) 3D graph with t ≤ 5,−5 ≤ x.(b) Contour graph with t ≤ 5,−5 ≤
x.(c) 2D graph with t = 0 and − 5 ≤ x ≤ 5.
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Figure 2: Dynamical behaviors of solution (3.7) (a) 3D graph with t ≤ 5,−5 ≤ x.(b) Contour graph with t ≤ 5,−5 ≤
x.(c) 2D graph with t = 0 and − 5 ≤ x ≤ 5.

Figure 3: Dynamical behaviors of solution (3.9) (a) 3D graph with t ≤ 5,−5 ≤ x.(b) Contour graph with t ≤ 5,−5 ≤
x.(c) 2D graph with t = 0 and − 5 ≤ x ≤ 5.
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Figure 4: Dynamical behaviors of solution (3.10) (a) 3D graph with t ≤ 5,−5 ≤ x.(b) Contour graph with t ≤ 5,−5 ≤
x.(c) 2D graph with t = 0 and − 5 ≤ x ≤ 5.

Figure 5: Dynamical behaviors of solution (3.11) (a) 3D graph with −10 ≤ x ≤ 10,−10 ≤ t ≤ 10.(b) Contour graph
with −10 ≤ x ≤ 10,−10 ≤ t ≤ 1−.(c) 2D graph with t = 0 and − 40 ≤ x ≤ 40.
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5 Conclusion

Sardar subequation method (SSM) which is one of the powerful and effective technique is used to analyze the
relation between (low and high) frequency and Langmuir waves of Zakharov equation in plasma. In dimensionless
Zakharov equation, dark, bright, periodic singular, singular, combined dark-bright and combined dark-singular solu-
tions are derived. To add more physical meaning of these solutions some 2D, 3D and contour graphs are presented.
It has been observed that the method is powerful, easy and effective in finding the solutions of nonlinear PDEs. The
conclusions of the present work provide much support to future work.

Appendix

Case III: If β2
2 + β3 < 0 and ρ =

(β2
2+β3)

2

4 then

χ7(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)(
tanhpq

(√
2
√

−β2
2 − β3ξ

))

±eιθ
(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)(√
−pqsechpq

(√
2
√

−β2
2 − β3ξ

))
, (5.1)

χ8(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)(
cothpq

(√
2
√

−β2
2 − β3ξ

))

±eιθ
(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3√
2

)(√
−pqcschpq

(√
2
√

−β2
2 − β3ξ

))
, (5.2)

χ9(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
−β2

2 − β3

2
√
2

)(
cothpq

(√
−β2

2 − β3ξ

2
√
2

)
+ tanhpq

(√
−β2

2 − β3ξ

2
√
2

))
. (5.3)

Case IV: If β2
2 + β3 > 0 and ρ =

(β2
2+β3)

2

4 then

χ11(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)
cotpq

(√
β2
2 + β3ξ√
2

)
, (5.4)

χ12(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)(
tanpq

(√
2
√
β2
2 + β3ξ

))

±eιθ
(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)(
√
pqsecpq

(√
2
√
β2
2 + β3ξ

))
, (5.5)

χ13(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)(
cotpq

(√
2
√
β2
2 + β3ξ

))

±eιθ
(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3√
2

)(
√
pqcscpq

(√
2
√
β2
2 + β3ξ

))
, (5.6)

χ14(x, t) = eιθ

(
±

√
2
√
1− β2

1√
β2
1µ− µ− 1

)(√
β2
2 + β3

2
√
2

)(
cotpq

(√
β2
2 + β3ξ

2
√
2

)
+ tanpq

(√
β2
2 + β3ξ

2
√
2

))
. (5.7)
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