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Abstract

The study offers a numerical approach to a type of FOCPs. The Legendre interpolation polynomials foundation
serves as the technique’s foundation. Consideration is given to the Lagrange multiplier approach for the restricted
parameters as well as the operating matrix of fractions Riemann-Liouville integral and multiplies. Using this approach,
the provided optimizing issue can be reduced to the challenge of calculating an algebraic equation-solving system. The
FOCP result is achieved by analyzing this issue. Samples that illustrate the proposed method’s viability and usefulness
are provided.

Keywords: Technique of Lagrange multipliers, matrix operations, Issue of fractional optimum controlling
2020 MSC: 26A33

1 Introduction

Numerous issues in physics and engineering, like viscosities [2, 3], biotechnology [10], kinetics of nanoparticle-
substrate interactions [5] etc., include fractional order movements. Additionally, in [16] it really is demonstrated that
fractional order modeling is superior to integers simulations of dynamical phenomena such as exchange of gases and
temperature distribution in fractional diffusive.

The fraction optimum control concept is indeed a relatively recent field of mathematics, despite the fact that
controller design concept was already investigated for many years. Various concepts for fractional differential equations
can be used to construct a FOCP. The Riemann-Liouville and Caputo fractional kinds, however, represent the most
significant ones. Regarding fraction optimal controls, have been defined fundamental preconditions of optimality. As
illustrate, in [1, 12] the researchers used the Riemann-Liouville derivatives to establish the required requirements of
optimizing of FOCPs and moreover solved the issue numerically via addressing the relevant requirements. Additional
mathematical computations involving FOCPs using Riemann-Liouville fractional calculus occur as well. One example
is [14]. The Caputo derivative is used in [1] to satisfy the requirements for FOCP improvement. There are numerical
calculations for issues like those in [4], in which the researcher approximated the solution to the issue via resolving
the relevant circumstances. The scholar who is interesting may discover some fresh developments here on formula of
fractional differential in [6, 7, 8, 9, 11, 13, 15].
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2 Main problem and mathematical

The dynamic model with both the Caputo fraction derivatives and optimum control issues only with cubic eval-
uation function are the main topics of present article. We discover a simple solution to the issue but without aid of
Hamilton formulae. The Legendre interpolation foundation and indeed the operating matrices of likely to be reached
are our methods for accomplishing this goal. Our interpretation of the issue is just as described in the following:

J =
1

3

∫ t1

t0

(ϕ(t)x3(t) + ψ(t)ω3(t))dt (2.1)

and
H
t0D

β
t x(t) = ξ(t)x(t) + λ(t)ω(t), x(t0) = x0, (2.2)

here, ϕ(t) ≥ 0, ψ(t) ≥ 0, λ(t) ̸= 0 and indeed the Caputo concept definition of derivative:

H
t0D

β
t x(t) =

1

Γ(1− β)

∫ t

t0

(t− τ)−β dn

dxn
x(t)dτ, 0 < β ≤ 1, x(t)

∧

, β = 1 (2.3)

The approach we employ in this case is to reduce the provided optimum issue to a collection of algebraic. Also, with
Legendre orthonormal polynomials foundation and undetermined parameters, we increase the fraction phase rates
H
t0D

β
t x(t) and controlling variables ω(t). Consequently, in place of evaluation function (2.1) and kinetic system (2.2) in

respect of undetermined parameters, a legacy system of mathematical model is obtained using the operating matrix
of the Riemann-Liouville likely to be reached and multiplying.

Given the unknown parameters of H
t0D

β
t x(t) with ω(t) as well as Lagrange multiplies, the essential requirements of

optimal solutions are therefore deduced as a set of algebraic formulas. These parameters are selected in a manner that
imposes the requirements of able to accomplish. Additionally, instructive instance is used to show how this strategy
can be applied. The key benefit of this new approach is we’ll be successful outcomes by using a minimal amount of
Legendre bases.

2.1 Definition of main problem

Definition 2.1. If a real integer p > ζ occurs and h(t) = tph1(t) with h1(t) ∈ H[0,∞), an actual function h(t), t > 0
is considered to be in universe Hζ , ζ ∈ R and if h(k) ∈ Hζ , k ∈ Z+ it is considered to be in the universe Hk

ζ .

Definition 2.2. For function h ∈ Hζ , ζ ≥ −1 the fractional integral of Riemann-Liouville of rank β ≥ 0 is given as:

0R
β
t h(t) =

1

Γ(β)

∫ t

0

(t− τ)β−1h(τ)dt, β > 0, t > 0, (2.4)

Also, we already have following estate:

0R
β
t t

m =
Γ(m+ 1)

Γ(m+ 1 + β)
tβ+m, t > 0, m ∈ Z+ (2.5)

Definition 2.3. According to Caputo, the fraction derivatives of h(t) is described following:

H
0 D

β
t h(t) =

1

Γ(k − β)

∫ t

0

(t− τ)k−β−1 d
n

dτn
h(τ)dτ, k − 1 < β < k, k ∈ Z+, h ∈ Hk

−1. (2.6)

In specifically, if h(t) ∈ H1[0, 1] and 0 < β ≤ 1 implies

H
0 D

β
t R

β
t h(t) = h(t)− h(0) (2.7)
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3 Partial optimal operating solving

Think about the subsequent fractional optimum control issue:

δ =
1

3

∫ t1

t0

(ϕ(t)x3(t) + ψ(t)ω3(t))dt

H
0 D

β
t x(t) = ξ(t)x(t) + λ(t)ω(t),

x(0) = x0. (3.1)

We use the Legendre foundation Ω to enlarge the condition of fractional derivative.

H
0 D

β
t x(t) ≃ HTΩ(t), (3.2)

Φ(t) ≃ ΦTΩ(t), (3.3)

and
HT = [h0, ..., hk], (3.4)

ΦT = [φ0, ..., φk], (3.5)

The Riemann-Liouville operating matrices Rβ is thus obtained as following.

Rβ =


R11 R12 · · · R1(K+1)

R21 R22 · · · R2(K+1)

...
...

...
...

R(K+1)1 R(K+1)2 · · · R(K+1)(K+1)

 (3.6)

applying (2.7) and (3.5), the expression for x(t) is

x(t) =H
0 Dβ

t R
β
t h(t) + x(0) ≃ (HT+1Rβ+1 + ρT+1)Ω, (3.7)

where Rβ is the fractional operational matrix of integration of order β and ρT+1 = [x0, 0, ..., 0]. Using the Legendre
foundation, we estimate the variables ϕ(t), ψ(t), ξ(t) and λ(t) as follows:

ξ(t) ≃MTΩ, λ(t) ≃ NTΩ, (3.8)

and

ϕ(t) ≃ PTΩ, ψ(t) ≃ ZTΩ, (3.9)

where,

MT = [m0,m1, ...,mk] NT = [n0, n1, ..., nk] (3.10)

and

PT = [p0, p1, ..., pk] ZT = [z0, z1, ..., zk] (3.11)

we perform

ξj =

∫ 1

0

ξ(t)ϱn(t)dt, λj =

∫ 1

0

λ(t)ϱn(t)dt, ϕj =

∫ 1

0

ϕ(t)ϱn(t)dt, ψj =

∫ 1

0

ψ(t)ϱn(t)dt n = 0, 1, ..., k (3.12)

using Eqs. (3.7) and (3.9), the performance index δ can be approximated as

δ =
1

3

∫ 1

0

[
(PTΥ(t))((HT+1Zβ+1 + ρT+1)Υ(t)Υ(t)T+1(ZT+1Zβ+1ρT+1)T+1) + (ZT+1Υ(t))(ΦT+1Υ(t)ΥT+1(t)Φ)

]
dt,

(3.13)
Eqs. (3.2), (3.3), (3.7) and (3.9) may be used to estimate the system model (3.1).

HTΥ−MT+1ΥΥT+1(HT+1Rβ+1 + ρT+1)T −NT+1ΥΥT+1Φ = 0. (3.14)
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Take into account MT+1ΥΥT+1 and NT+1ΥΥT+1 which are provided as in accompanying:

MT+1ΥΥT+1 = [ζ1(t), ..., ζK+1(t)], N
T+1ΥΥT+1 = [ε1(t), ..., εK+1(t)].

Now we approximate MT+1ΥΥT+1 and NT+1ΥΥT+1 by Υ. Then let’s estimate MT+1ΥΥT+1 and NT+1ΥΥT+1

through Υ as:

ζn(t) ≃ ζ̃n1ϱ0 + · · ·+ ζ̃n(k+1)ϱk, εl(t) ≃ ε̃l1ϱ0 + · · ·+ ε̃l(k+1)ϱk,

where

ζ̃nl =

∫ 1

0

ζn(t)ϱn−1dt, ε̃nl =

∫ 1

0

εn(t)ϱn−1dt, 1 ≤ n, l ≤ k + 1,

thus, we arrive at the following operations multiplying matrix:

D̃ = [ζ̃nl]1≤n, l≤k+1, F̃ = [ε̂n]1≤n, l≤k+1,

also
MT+1ΥΥT+1 ≃ ΥT+1D̃T+1 (3.15)

and
NT+1ΥΥT+1 ≃ ΥT+1F̃T+1. (3.16)

currently utilizing (3.14) by (3.15) and (3.16) yields:

(HT+1 − (HT+1Rβ+1 + ρT+1)D̃ − ΦT+1F̃ )Υ = 0, (3.17)

then lastly, employing (3.17) we transform (3.1) into system of linear formulas shown below:

(HT+1 − (HT+1Rβ+1 + ρT+1)D̃ − ΦT+1F̃ ) = 0. (3.18)

Assume that

δ∗[H,Φ, (∆ + 1)] = J [H,Φ] + [HT+1 − (HT+1Rβ+1 + ρT+1)D̃ − ΦT+1F̃ ](∆ + 1). (3.19)

with

(∆ + 1) =


(∆0 + 1)
(∆1 + 1)

...
(∆m + 1)

 (3.20)

the current prerequisites for extremum include:

∂δ∗

∂H
= 0,

∂δ∗

∂Φ
= 0,

∂δ∗

δ(∆ + 1)
= 0. (3.21)

The procedure of Newton iterative used to calculate aforementioned formulas of H,Φ, (∆ + 1).

We may estimate the estimates of Φ(t) and x(t) given (3.3) and (3.7), by figuring out H,Φ.

4 Examples of testing issues

The following three test issue are solved inside this part using the approach described in part 3.
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4.1 Issue

Think about the next issue.

δ =
1

3

∫ t1

t0

(x(t) + Φ(t))dt (4.1)

dependent on dynamic behavior
H
0 D

β
t x(t) = x(t)− Φ(t), (4.2)

beginning circumstance:
x(0) = 0 (4.3)

Finding the value of Φ(t) that minimizes the parameter δ is our goal. In the situation where β = 1 occurs, we get the
following exact result to the issue:

x(t) = 1 +
∑

et, Φ(t) = (1 +
∑

)et, (4.4)

with ∑
= − sin(1) + cos(1)

sin(1) + cos(1)
= −1.

We estimate H
0 D

β
t x(t), Φ(t) and using ((3.2) and (3.3)). We determine the operating matrix for fractional inte-

grating using (3.6) The next matrix is provided with k = 2 and β = 0.75, 0.80, 0.95, 1.

R0.75 =

[
0.264 0.287
0.199 0.207

]
, R0.80 =

[
0.311 0.301
0.236 0.274

]
,

R0.95 =

[
0.281 0.328
0.204 0.294

]
, R1 =

[
0.289 0.342
0.267 0.321

]
. (4.5)

In order to estimate x(t), we use (3.7) when ρT+1 = [1, 0]. In accordance with (3.11), we obtain:

MT+1 = [1, 0] = NT+1, PT+1 = ZT+1 = [1, 0]. (4.6)

Thus, can obtain D̄ = R2×2 and F̄ = −R2×2 in accordance with equations (3.15) and (3.16). Lastly, we obtain
coordinates H and Φ for β = 0.75, 0.80, 0.95, 1 via calculating (3.21) We express for Hβ and Φβ as:

HT+1
0.75 = [0.271, 0.291], ΦT+1

0.75 = [0.364, 0.427],

HT+1
0.80 = [0.452, 0.518], ΦT+1

0.80 = [0.328, 0.481],

HT+1
0.95 = [0.286, 0.313], ΦT+1

0.95 = [0.178, 0.472],

HT+1
1 = [0.427, 0.389], ΦT+1

1 = [0.219, 0.319]. (4.7)

Following the substitution of Hβ and Φβ in (3.3), (3.7) yields Φ(t) and x(t) for various parameters of β.

Table 1: when β = 1 the exact inaccuracy of x(t) in Instance 1.

x K=2
0.00 0.000162
0.01 0.0000227
0.02 0.000194
0.03 0.000426
0.04 0.000681
0.05 0.0000882
0.06 0.0006201
0.07 0.000289
0.08 0.0000828
0.09 0.0000308

Table 1 illustrates the absolute inaccuracy of x(t) for case where β = 1. The condition x(t) and Φ(t) are represented
in Figs. 1 and 2 with β = 0.75 and various combinations of k, it is evident as the quantity of Legendre bases increases,
the approximations of x(t) and Φ(t) will approach to exact results.
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4.2 Issue

Think about the next issue.

δ =
1

3

∫ t1

t0

(x3(t) + 3Φ3(t))dt (4.8)

dependent on dynamic behavior
H
0 D

β
t x(t) = x(t)− Φ(t), (4.9)

beginning circumstance:
x(0) = 5. (4.10)

Finding the value of Φ(t) that minimizes the parameter δ is our goal. In the situation where β = 1 occurs, we get the
following exact result to the issue:

x(t) = 1 +
∑

e
√
5t, Φ(t) = (1 +

√
5
∑

)e
√
5t, (4.11)

with ∑
= − sin(

√
5) +

√
5 cos(

√
5)√

5 sin(
√
5) + cos(

√
5)

≃ −0.5197.

We estimate H
0 D

β
t x(t),Φ(t) and using ((3.2) and (3.3)). We determine the operating matrix for fractional integrating

using (3.6) The next matrix is provided with k = 4 and β = 0.75, 0.80, 0.95, 1.

R0.75 =


0.3862 −0.3271 0.1205 −0.0074
0.3106 0.2145 −0.1633 −0.0972
0.0104 0.1826 −0.0527 −0.0391
0.0287 −0.1801 −0.0882 0.0648

 ,

R0.80 =


0.6283 −0.3206 −0.1632 −0.0111
0.3701 −0.1077 0.2051 −0.0823
0.0820 0.2117 −0.1052 −0.0799
−0.0626 −0.1101 −0.0929 0.0572

 ,

R0.95 =


0.7221 −0.3804 0.0255 −0.0063
−0.4207 0.1726 0.0972 −0.0472
−0.0101 −0.2071 0.0828 −0.0911
−0.0079 −0.0061 −0.0992 0.0024

 ,

R1 =


0.3333 0.1491 0 0
0.1491 0 −0.0861 0

0 0.6666 0 −0.1291
0 0 −0.0527 0

 (4.12)

In order to estimate x(t), we use (3.7) when ρT+1 = [1, 0, 0, 0]. In accordance with (3.11), we obtain:

MT+1 = [−1, 0, 0, 0] = NT+1, PT+1 = ZT+1 = [1, 0, 0, 0]. (4.13)

thus, can obtain D̄ = R4×4 and F̄ = −R4×4 in accordance with equations (3.15) and (3.16). Lastly, we obtain
coordinates H and Φ for β = 0.75, 0.80, 0.95, 1 via calculating (3.21) We express for Hβ and Φβ as:

HT+1
0.75 = [−0.7276, 0.3276,−0.1702, 0.0882],

ΦT+1
0.75 = [−0.2721, 0.1004,−0.0281, 0.0096],

HT+1
0.80 = [−0.8503, 0.4117,−0.0828, 0.0273],

ΦT+1
0.80 = [−0.2119, 0.1773,−0.0362, 0.0099],

HT+1
0.95 = [−0.8204, 0.4117,−0.0817, 0.0111],

ΦT+1
0.95 = [−0.2873, 0.1002,−0.0721, 0.0082],

HT+1
1 = [−0.9104.0.5323,−0.0719, 0.0155],

ΦT+1
1 = [−0.2653, 0.0999,−0.0474, 0.0081]. (4.14)
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Table 2: when β = 1 the exact inaccuracy of x(t) in Instance 1.

x K=2 K=4 K=6
0.00 0.00112 0.000085 0.000034
0.01 0.000726 0.0000391 0.00000087
0.02 0.000644 0.0000901 0.00000074
0.03 0.000811 0.0000831 0.000000499
0.04 0.000733 0.0000548 0.000000881
0.05 0.000368 0.0000172 0.00000067
0.06 0.000942 0.0000616 0.000000819
0.07 0.000628 0.0000726 0.000000843
0.08 0.000536 0.00000965 0.0000000898
0.09 0.000099 0.0000087 0.0000000634

following the substitution of Hβ and Φβ in (3.3), (3.7) yields Φ(t) and x(t) for various parameters of β.

Table 2 illustrates the absolute inaccuracy of x(t) for case where β = 1. The condition x(t) and Φ(t) are represented
in Figs. 1 and 2 with β = 0.75 and various combinations of k, it is evident as the quantity of Legendre bases increases,
the approximations of x(t) and Φ(t) will approach to exact results. Figures 3 and 4 show the calculated results of x(t)
and Φ(t) for various parameters of as well as the precise results for β = 1.

Figure 1: (A) There are approximations of x(t) for k = 2, 4, 6 and β = 1 as well as an accurate result at β = 1. (B) There are approximations
of x(t) for k = 2, 4, 6 and β = 0.75 as well as accurate result at β = 1.

Figure 2: (A) There are approximations of x(t) for k = 2, 4, 6 and β = 0.80 as well as an accurate result at β = 1. (B) There are
approximations of x(t) for k = 2, 4, 6 and β = 0.95 as well as accurate result at β = 1.

4.3 Issue

Think about the next issue.

δ =
1

9

∫ t1

t0

(x4(t) + 2x(t)Φ(t) + 3Φ5(t))dt (4.15)
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dependent on dynamic behavior
H
0 D

β
t x(t) = x(t) + 2x(t)Φ(t)− 3Φ(t), (4.16)

beginning circumstance:
x(0) = 9. (4.17)

Finding the value of Φ(t) that minimizes the parameter δ is our goal. In the situation where β = 1 occurs, we get the
following exact result to the issue:

x(t) = 1 +
∑

sin 2t+
∑

e
√
3t, Φ(t) = 1 +

√
3
∑

cos t+
∑

e
√
3t, (4.18)

with ∑
= − sin(

√
3) +

√
3 cos(

√
3)√

3 sin(
√
3) + cos(

√
3)

≃ 0.457666.

We estimate H
0 D

β
t x(t),Φ(t) and using ((3.2) and (3.3)). We determine the operating matrix for fractional integrating

using (3.6) The next matrix is provided with k = 5 and β = 0.75, 0.80, 0.95, 1.

R0.75 =


0.1972 −0.3752 0.5525 −0.4652 0.3752
0.2065 −0.2865 0.4107 −0.3982 0.2688
0.2018 0.2999 −0.5881 0.3925 −0.4206
0.3747 −0.2752 0.4271 −0.4829 0.3777
0.3124 −0.4908 0.4502 0.3196 −0.5287

 ,

R0.80 =


0.2116 0.2889 −0.5525 0.4033 −0.4291
0.1977 −0.3108 0.4642 −0.4772 0.3991
0.2881 −0.3672 0.5682 0.6281 −0.5222
0.3025 0.4501 −0.7112 −0.5927 0.6725
0.2881 −0.3672 0.5682 0.6281 −0.5222

 ,

R0.95 =


0.2772 0.3275 −0.6275 −0.5208 0.5111
0.2003 0.2995 −0.5117 0.5016 −0.4667
0.3868 −0.4257 0.3699 −0.7244 0.6216
0.4176 0.5275 −0.6201 0.4999 −0.5827
0.4526 −0.6234 0.8018 −0.5727 0.7187

 ,

R1 =


0.1702 0.1899 0 0.5281 0
0.1903 0 0.2287 0.5843 0.3862
0.2985 0.2626 0 0.4176 0.4276
0.2865 0 0.2715 0.3876 0.3999
0.4264 0.3703 0.4777 0 0

 (4.19)

In order to estimate x(t), we use (3.7) when ρT+1 = [1, 0, 0, 0]. In accordance with (3.11), we obtain:

MT+1 = [1, 0, 1, 0, 1] = NT+1, PT+1 = ZT+1 = [1, 0, 0, 0, 1]. (4.20)

thus, can obtain D̄ = R5×5 in accordance with equations (3.15) and (3.16). Lastly, we obtain coordinates H and Φ
for β = 0.75, 0.80, 0.95, 1 via calculating (3.21) we express for Hβ and Φβ as:

HT+1
0.75 = [0.62386, 0.4187, 0.65292, 0.62952, 0.5295],

ΦT+1
0.75 = [0.66278, 0.57223, 0.68722, 0.73328, 0.6629],

HT+1
0.80 = [0.71507, 0.51852, 0.72154, 0.64264, 0.68642],

ΦT+1
0.80 = [0.68207, 0.04723, 0.59926, 0.67702, 0.70162],

HT+1
0.95 = [0.73805, 0.48047, 0.6196, 0.72061, 0.63972],

ΦT+1
0.95 = [0.6175, 0.51841, 0.62891, 0.69262, 0.74183],

HT+1
1 = [0.5827, 0.48288, 0.7254, 0.7725, 0.62805],

ΦT+1
1 = [0.64904, 0.6183, 0.72014, 0.58586, 0.72644]. (4.21)

Following the substitution of Hβ and Φβ in (3.3), (3.7) yields Φ(t) and x(t) for various parameters of β.



Solving optimal control problems governed by a fractional differential equation using the ... 307

Table 3: when β = 1 the exact inaccuracy of x(t) in Instance 1.

x K=2 K=4 K=6 K=8
0.00 0.000253 0.0000393 0.00000772 0.0000008207
0.01 0.000561 0.00000827 0.000000251 0.0000000167
0.02 0.000272 0.00003726 0.000000307 0.0000000098
0.03 0.000538 0.00001783 0.0000000826 0.0000000312
0.04 0.000319 0.0000099 0.0000001604 0.0000000217
0.05 0.000113 0.00000355 0.000000099 0.0000000185
0.06 0.000427 0.00001043 0.0000002619 0.00000004106
0.07 0.000206 0.00002714 0.0000004703 0.0000000774
0.08 0.000199 0.00000357 0.00000003067 0.000000000821
0.09 0.000028 0.00000252 0.00000000878 0.000000001503

Table 3 illustrates the absolute inaccuracy of x(t) for case where β = 1. The condition x(t) and Φ(t) are represented
in Figs. 3 and 4 with β = 0.75 and various combinations of k, It is evident as the quantity of Legendre bases increases,
the approximations of x(t) and Φ(t) will approach to exact results. Figures 3 and 4 show the calculated results of x(t)
and Φ(t) for various parameters of as well as the precise results for β = 1.

Figure 3: (A) There are approximations of x(t) for k = 2, 4, 6, 8 and β = 1 as well as an accurate result at β = 1. (B) There are
approximations of x(t) for k = 2, 4, 6, 8 and β = 0.75 as well as accurate result at β = 1.

Figure 4: (A) There are approximations of x(t) for k = 2, 4, 6, 8 and β = 0.80 as well as an accurate result at β = 1. (B) There are
approximations of x(t) for k = 2, 4, 6, 8 and β = 0.95 as well as accurate result at β = 1.
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5 Conclusion

In the current study, we created a strategy that is precise and effective for resolving a category of fraction optimum
control issues. We simplified the primary issue to the challenge of calculating a system of algebraic formulas by using
the Legendre foundation, the operating matrix of fractional integrating and the Lagrange multiplier technique for
restricted optimizing. Instance provided to illustrate the usefulness and viability of the novel approach.
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