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Abstract

Recently fractional cable equation has been investigated by many authors who have applied it in various areas. Here
we introduce and investigate a generalized space-time fractional cable equation associated with Riemann-Liouville
and Hilfer fractional derivatives. By mainly applying both Laplace and Fourier transforms, we express the solution
of the proposed generalized fractional cable equation as H-functions. The main results here are general enough to be
specialized to yield many new and known results, only several of which are demonstrated in corollaries. Finally, we
consider the moment of the Green function with its several asymptotic formulas.
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1 Introduction and Preliminaries

Fractional calculus has had a large spectrum of possible applications in different experimental scenarios with the
aid of extensive developments of its theories. Many existing works show the modelling potentiality of the fractional
calculus as well as a vision of the associated many open fractional questions deserving deeper investigations. In
recent years fractional cable equation has attracted many authors who have applied in such various areas as models
for spiny dendrites [8] and models for anomalous electro-diffusion in nerve cells [17]. Time-space fractional cable
equation that describes the anomalous transport of electro-diffusion in nerve cells has also been investigated (see, e.g.,
[22]). For many other studies of fractional cable equation, one may be referred, for example, to the recent works
[1, 7, 8, 21, 23, 25, 32, 38, 40].

The left-sided and right-sided Riemann-Liouville fractional integrals Iαa+f and Iαb−f of order α ∈ C with ℜ(α) > 0
of a function f defined, respectively, by (see, e.g., [24, 25, 32])

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt (x > a) (1.1)

and

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)

(t− x)1−α
dt (x < b), (1.2)
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whenever each of the right sides exists. Here Γ(α) is the familiar Gamma function (see, e.g., [35, Section 1.1]). Here
and in the following, let C, R, R+, and N be sets of complex numbers, real numbers, positive real numbers, and
positive integers, and let N0 := N ∪ {0}.

The left-sided and right-sided Riemann-Liouville fractional derivatives of order α ∈ C with ℜ(α) ≥ 0 of a function
f(x) are defined, respectively, by

Dα
a+f(x) =

1

Γ (n− α)

dn

dxn

∫ x

a

f(t)

(x− t)
α−n+1 dt

=
dn

dxn
In−α
a+ f(x) (n = [ℜ(α)] + 1, x > a)

(1.3)

and

Dα
b−f(x) =

1

Γ (n− α)

dn

dxn

∫ b

x

f(t)

(t− x)
α−n+1 dt

=
dn

dxn
In−α
b− f(x) (n = [ℜ(α)] + 1, x < b)

(1.4)

whenever each of the right sides exists and where [ℜ(α)] denotes the greatest integer less than or equal to ℜ(α). In
particular, we find (see [24, 28])

D1−δ
0+ f(x) =

1

Γ (δ)

d

dx

∫ x

0

f(u)

(x− u)
1−δ

du (0 < δ < 1, x > 0) . (1.5)

The Caputo fractional derivative of order α of a function f(t) is defined and denoted by (see, e.g., [4, 11, 31])

C
0 D

α
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ (1.6)

(ℜ(α) > 0, ℜ(α) /∈ N; m = [ℜ(α)] + 1; t > 0)

and
C
0 D

α
t f(t) =

dmf(t)

dtm
(α = m ∈ N). (1.7)

The Laplace transform of Caputo derivative is given as follows (see [24, 28]):

L
{
C
0 D

α
t f(t)

}
= sαf∼(s)−

m−1∑
r=0

sα−r−1f (r)(0+) (1.8)

(m ∈ N, m− 1 < α ≤ m),

where f∼(s) is the Laplace transform of f(t) (see also, [33, 36]).

The (left-sided) fractional derivative Dµ,ν
a+ of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 of a function f is defined as

follows (see [9, 10, 37])

Dµ,ν
a+ f(x) = I

ν(1−µ)
a+

d

dx
I
(1−ν)(1−µ)
a+ f(x), (1.9)

whenever the right side exists. Obviously Dµ,0
a+ f(x) = Dµ

a+f(x). The operator (1.9) is often called Hilfer fractional
derivative. The Hilfer operator in (1.9) is rewritten in a more general form (see [10]):

D µ,ν
a+ f(x) = I

ν(n−µ)
a+

dn

dxn
I
(1−ν)(n−µ)
a+ f(x) = I

ν(n−µ)
a+ Dµ+νn−µν

a+ f(x) (1.10)

(0 ≤ ν ≤ 1; n ∈ N, n− 1 < µ ≤ n).

The Laplace transform of the above operator in (1.10) is given in the following form (see, Tomovski [37, eqn. (7.1),
p. 3380]):

L
{
D µ,ν

0+ f(x); s
}

= sµ f∼(s)−
n−1∑
k=0

sn−k−ν(n−µ)−1

{
dk

dxk
I
(1−ν)(n−µ)
0+ f(x)

}
(0+)

(1.11)
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(0 ≤ ν ≤ 1; n ∈ N, n− 1 < µ ≤ n),

where {
dk

dxk
I
(1−ν)(n−µ)
0+ f(x)

}
(0+) = lim

x→0+

dk

dxk
I
(1−ν)(n−µ)
0+ f(x).

The classical cable equation which models the membrane potential V = V (x, t) along the axial x-direction of a
dendrite with diameter d, relative to the resting membrane potential Vrest, is given by (see [34])

V − Vrest

rm
− rm ie (x, t) + cmrm

∂V (x, t)

∂t
=

d rm
4 rL

∂2V (x, t)

∂x2
, (1.12)

where rm denotes the specific membrane resistance, rL is the longitudinal resistivity, cm denotes the membrane
capacitance per unit area, and ie is the external injected current per unit area. The product τ = cmrm is the time
constant for the dendrite.

The macroscopic model (1.12) can be obtained by combining the standard current continuity equation

cm
∂V (x, t)

∂t
= −d

4

∂IL (x, t)

∂x
− im (x, t) + ie (x, t) , (1.13)

im (x, t) and ie (x, t) being, respectively, the total ionic trans membrane current density and the injected current
density, and the constitutive equation

IL (x, t) =
1

rL

∂V (x, t)

∂x
im (x, t) =

V − Vrest

rm
(1.14)

occurring from the temporal memory and spatial and nonlocal effects. The Ohm’s law [8] is therefore modified as
generalized fractional Ohm’s law [21]:

IL (x, t) =
1

rL (α, µ)

d1−α

dt1−α

(
∆µ−1V (x, t)

)
, (1.15)

where rL (α, µ) is a parameter depending on α and µ. Here ∆µ is the Riesz fractional operator defined by (see [11, 31])

∆µ = − 1

2 cos
(
πµ
2

) (Dµ
−∞ +Dµ

∞
)

(1 < µ ≤ 2), (1.16)

where the left-sided and right-sided Riemann-Liouville fractional derivatives are given in (1.3) and (1.4). The ∆µ in
(1.16) is the nonlocal operator in the fractional flux of cells (1.15) and related to the Lévy flights [2, 5].

Remark 1.1. The case ν = 0 of the Hilfer fractional derivative (1.9) reduces to the left-sided Riemann-Liouville
fractional derivative (1.3):

Dµ,0
a+ f(x) =

d

dx
I1−µ
a+ f(x) = Dµ

a+f(x) (0 < µ < 1). (1.17)

The case ν = 1 of the Hilfer fractional derivative (1.9) reduces to the Caputo fractional derivative (1.6):

Dµ,1
0+ f(x) = I1−µ

0+ f ′(x) = CD1−µ
x f(x) (0 < µ < 1). (1.18)

For clarity and simplicity, we also use the following notations:

Dα
xf(x) := Dα

0+f(x);
CDα

xf(x) =
C
0 D

α
xf(x); D µ,ν

x f(x) := D µ,ν
0+ f(x). (1.19)

A generalization of the Mittag-Leffler function (see [6, 26, 27]):

Eα(z) :=

∞∑
n=0

zn

Γ(nα+ 1)
(α ∈ C, ℜ(α) > 0) (1.20)

was introduced by Wiman [39] in the following form:

Eα,β(z) :=

∞∑
n=0

zn

Γ(nα+ β)
(α, β ∈ C, ℜ(α) > 0). (1.21)
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For more results involving the functions in (1.20) and (1.21), one may be referred, for example, to [6, Section 18.1].

By considering the generalized fractional Ohm’s law (1.15) and spatial non-local effects, Li and Deng [18] introduced
and investigated the following space-time fractional cable equation

∂

∂t
V (x, t) = D1−α

t (∆µV (x, t))− λ2 D1−β
t V (x, t) + u (x, t) (1.22)

(x ∈ R, 0 < α ≤ 1, 0 < β ≤ 1) ,

where x and t are dimensionless parameters, λ =
√

d rm
4 rL

is the space dendrite for the dendrite (the cable), u (x, t) is

the external source (external injected current) given by

u (x, t) = λ2 D1−β
t (Vrest + rm ie(x, t)) ,

D1−ν
t and ∆µ are defined, respectively, in (1.5) and (1.16). Saxena et al. [34] generalized the space-time fractional

cable equation (1.22) to investigate the following equation

τγ
CDγ

t V (x, t) = D1−α
t (∆µV (x, t))− λ2 D1−β

t V (x, t) + u (x, t) , (1.23)

where CDγ
t is the Caputo fractional derivative in (1.6) and τγ is a time parameter introduced for dimensional purpose.

Without loss of generality, one may set τγ = 1.

In this paper, instead of the Caputo fractional derivative in (1.23), we consider the following generalized space-time
fractional cable equation

Dγ,δ
t V (x, t) = D1−α

t (∆µV (x, t))− λ2 D1−β
t V (x, t) + u (x, t) , (1.24)

where the notations and conditions are the same in (1.22). Then we aim to derive the fundamental solution (Green
function) as well as an analytic solution of the generalized fractional space-time cable equation in (1.24), by mainly
using Laplace transform and Fourier transform. The complete solution of the equation (1.24) is expressed in terms
of an infinite series of the H-functions (see [24]). The main results here are general enough to be specialized to yield
many new and known results, only several of which are demonstrated in corollaries. Finally we also consider the
moment of the Green function with its several asymptotic formulas.

2 Generalized fractional space-time cable equation

Here our first main result is given in the following theorem.

Theorem 2.1. Let t ∈ R+ and x ∈ R. Also let α, β, γ, δ, and µ be real parameters such that

0 < α ≤ 1, 0 < β ≤ 1, 0 < γ < 1, 0 ≤ δ ≤ 1, 1 < µ ≤ 2. (2.1)

Then the fundamental solution (Green function) G(x, t) of the generalized fractional cable equation (1.24) with the
initial conditions

lim
|x|→∞

V (x, t) = 0 and V (x, 0) = g(x), (2.2)

and without the external injected current, that is, u(x, t) = 0 is given by

G(x, t) =
1

µ|x|
√
π

∞∑
n=0

(−λ2tβ)nt(γ−1)n+ δ(1−γ)+γ−1

n!
(2.3)

×H2,1
2,3

 |x|
2t(α+γ−1)/µ

∣∣∣∣∣∣
(
1, 1

µ

)
,
(
δ (1− γ)− n+ βn+ γ + γn, γ+α−1

µ

)
(
1
2 ,

1
2

)
,
(
1 + n, 1

µ

)
,
(
1, 1

2

)
 ,

where ℜ (µ) > 0 and Hm,n
p,q

[
z
∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function (see also, [24, 30]).
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Proof . Firstly, we will derive the Green function of the equation (1.24) without external injected current, that is,
u (x, t) = 0. If we apply the Laplace transform with respect to the time derivative t and use the initial conditions (2.2)
and the following formula for the Laplace transform of the Riemann-Liouville fractional derivative (see [24, 28]):

L{D1−ν
t V (x, t) ; s} = s1−νV ∼ (x, s)−

[
D1−ν

t V (x, t)
]
t=0

,

with another condition: [
D1−ν

t V (x, t)
]
t=0

= 0 (ν = α or β), (2.4)

we obtain
sγV ∼ (x, s)− s−δ(1−γ)g (x) = −s1−α (∆µV ∼ (x, s))− λ2s1−βV ∼ (x, s) . (2.5)

Taking the Fourier transform (denoted by ⊛) on the above equation with respect to the space variable x, we have

sγV ∼⊛ (k, s)− s−δ(1−γ)g⊛ (k) = −s1−α|k|µ V ∼⊛ (k, s)− λ2s1−β V ∼⊛ (k, s) . (2.6)

Solving (2.6) for V ∼⊛ (k, s), we get

V ∼⊛ (k, s) =
s−δ(1−γ)g⊛ (k)

sγ + s1−α|k|µ + λ2s1−β
:= G∼⊛ (k, s) g⊛ (k) , (2.7)

where

G∼⊛ (k, s) :=
s−δ(1−γ)+α−1

sγ+α−1 + |k|µ + λ2sα−β
. (2.8)

Expanding the right hand side of (2.8) in a power series gives

G∼⊛ (k, s) =

∞∑
n=0

(−λ2)nsα−δ(1−γ)+(α−β)n−1

(sγ+α−1 + |k|µ)n+1
. (2.9)

Using the following known formula for the Laplace transform of the derivative of the Mittag-Leffler function in (1.21)
(see also, [15, 16, 28]):

L
{
tγ

n+δ−1E
(n)
γ,δ (−atγ) : s

}
=

n!sγ−δ

(sγ + a)n+1

(
ℜ(s) > |a|1/γ

)
(2.10)

and taking the inverse Laplace transform on (2.9), we obtain

G⊛ (k, t) =

∞∑
n=0

(−λ
2
tβ)ntnγ−n+δ(1−γ)+γ−1

n!

× E
(n)
γ+α−1,δ(1−γ)+(β−α)n+γ

(
−a|k|µtγ+α−1

)
.

(2.11)

Here the mth derivative of the Mittag-Leffler function is given as follows (see [20]):

E(m)
ρ,σ (z) =

dm

dzm
[Eρ,σ (z)] =

∞∑
n=0

(m+ n)!zn

n! Γ (ρ (m+ n) + σ)
(m ∈ N0) . (2.12)

Using the following known relation between the derivative of the Mittag-Leffler function and the H-function (see [34]):

E(m)
ρ,σ (z) = H1,1

1,2

[
−z

∣∣∣∣ (−m, 1)
(0, 1) , (1− (ρm+ σ) , ρ)

]
(m ∈ N0) (2.13)

in (2.11), we obtain

G⊛ (k, t) =

∞∑
n=0

(−λ2tβ)nt(γ−1)n+δ(1−γ)+γ−1

n!

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1− (γ − 1)n+ δ (1− γ) + βn+ γ, γ + α− 1)

]
. (2.14)
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Taking the inverse Fourier transform on the expression (2.14) yields (see [14])

G(x, t) =
1

π

∞∑
n=0

(−λ2tβ)nt(γ−1)n+δ(1−γ)+γ−1

n!

∫ ∞

−∞
exp(−ikx)

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1 + n+ βn− γn+ δ (1− γ) + γ, γ + α− 1)

]
dk. (2.15)

Making use of the cosine transform of the H-function (see [24]):∫ ∞

0

tρ−1 cos(kt) Hm,n
p,q

[
atµ

⌊
(ap, Ap)
(bq, Bq)

]
dt

=
2ρ−1√π

kρ
Hm,n+1

p+2,q

[
a (2/k)µ

∣∣∣∣ ( 2−ρ
2 , µ

2

)
, (ap, Ap) , ( 1−ρ

2 , µ
2 )

(bq, Bq)

]
(2.16)

(
ℜ (ρ) + µ min

1≤j≤m
ℜ
[
bj
Bj

]
> 0, ρ = µ max

1≤j≤n
ℜ
[
aj − 1

Aj

]
< 0,

Ω :=

n∑
j=1

Aj −
p∑

j=n+1

Aj +

m∑
j=1

Bj −
q∑

j=m+1

Bj > 0, |arg a| < πΩ

2

)
,

we find

G(x, t) =
1

π

∞∑
n=0

(−λ2tβ)nt(γ−1)n+δ(1−γ)+γ−1

n!|x|

×H1,2
3,2

[
tγ+α−1 (2/|x|)µ

∣∣∣∣ (
1
2 ,

µ
2

)
, (−n, 1) , (0, µ

2 )
(0, 1) , ( 1− (γ − 1)n+ δ (1− γ) + βn+ γ, γ + α− 1)

]
. (2.17)

If we use the following property of the H-function (see [24, p. 12]):

Hm,n
p,q

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
=

1

σ
Hm,n

p,q

[
z1/σ

∣∣∣∣ (ap, Ap/σ)
(bq, Bq/σ)

]
(σ > 0) (2.18)

in (2.17), we get

G(x, t) =
1

µ|x|
√
π

∞∑
n=0

(−λ2tβ)nt(γ−1)n+δ(1−γ)+γ−1

n!|x|

×H1,2
3,2

 2t(α+γ−1)/µ

|x|

∣∣∣∣∣∣
(
1
2 ,

1
2

)
,
(
−n, 1

µ

)
, (0, 1

2 )(
0, 1

µ

)
, (1 + n− γn+ δ (1− γ) + βn+ γ, γ+α−1

µ )

 . (2.19)

Finally applying the following transformation formula for the H-function (see [24, p. 11]):

Hm,n
p,q

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= Hn,m

q,p

[
1

z

∣∣∣∣ (1− bq, Bq)
(1− ap, Ap)

]
(2.20)

to the expression (2.19) is seen to yield the desired result (2.3). □

Setting γ = δ = 1 in the result given in Theorem 2.1, we obtain a known result due to Li and Deng [18], which is
given by Corollary 2.2.

Corollary 2.2. Let t ∈ R+ and x ∈ R. Also let α, β, γ, δ, and µ be real parameters such that

0 < α ≤ 1, 0 < β ≤ 1, 1 < µ ≤ 2.

Then the fundamental solution (Green function) of the following one-dimensional fractional reaction-diffusion equation
of fractional order

∂

∂t
V (x, t) = D1−α

t (∆µV (x, t))− λ2 D1−β
t V (x, t) + u (x, t) (2.21)
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lim
|x|→∞

V (x, t) = 0 and V (x, 0) = g(x),

and without the external injected current, that is, u(x, t) = 0 is given by

G(x, t) =
1

µ|x|
√
π

∞∑
n=0

(−λ2tβ)n

n!

×H2,1
2,3

 |x|
2tα/µ

∣∣∣∣∣∣
(
1, 1

µ

)
,
(
1 + βn, α

µ

)
(
1
2 ,

1
2

)
,
(
1 + n, 1

µ

)
,
(
1, 1

2

)
 , (2.22)

where Hm,n
p,q

[
z
∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function (see [24]).

The second main result is given in the following theorem.

Theorem 2.3. Let t ∈ R+ and x ∈ R. Also let α, β, γ, δ, and µ be real parameters such that

0 < α ≤ 1, 0 < β ≤ 1, 0 < γ < 1, 0 ≤ δ ≤ 1, 1 < µ ≤ 2. (2.23)

Then the fundamental solution (Green function) of the generalized fractional cable equation (1.24) with the initial
conditions

lim
|x|→∞

V (x, t) = 0 and V (x, 0) = g(x) (2.24)

is given by

V (x, t) =
1

2π

∞∑
n=0

(−λ2tβ)n g⊛ (k) exp(−ikx)

n!

×H1,1
1,2

[
|k|µ tγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1 + γ + (β − γ)n+ n+ δ(1− γ), γ + α− 1)

]
dk

+
1

2π

∞∑
n=0

ξγ−1

n!

∫ t

0

(−λ2ξβ+γ−1)n
∫ ∞

−∞
U⊛ (k, t− ξ) exp (−ikx)

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1− γ − n (β + γ − 1) , γ + α− 1)

]
dkdξ, (2.25)

where Hm,n
p,q

[
z
∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function (see [24]).

Proof . A similar argument as in the proof of Theorem 2.1 will establish the desired result. We omit the details.

□

Among many special cases of the result in Theorem 2.3, we consider only two cases, which are given in Corollaries
2.4 and 2.5.

The case δ = 0 of Hilfer fractional derivative Dγ,δ
t in (1.9) is seen to reduce to the Riemann-Liouville fractional

derivative Dγ
t . So, setting δ = 0 in Theorem 2.3 gives the following result in Corollary 2.4.

Corollary 2.4. Let t ∈ R+ and x ∈ R. Also let α, β, γ, and µ be real parameters such that

0 < α ≤ 1, 0 < β ≤ 1, 0 < γ < 1, 1 < µ ≤ 2.

Then the solution of the following generalized fractional cable equation

Dγ
t V (x, t) = D1−α

t (∆µV (x, t))− λ2 D1−β
t V (x, t) + U (x, t) (2.26)
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with the initial conditions
lim

|x|→∞
V (x, t) = 0 and V (x, 0) = g(x) (2.27)

is given by

V (x, t) =
1

2π

∞∑
n=0

(−λ2tβ)ng⊛ (k) exp(−ikx)

n!

× H1,1
1,2

[
|k|µ tγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1 + γ + (β − γ)n+ n, γ + α− 1)

]
dk

+
1

2π

∞∑
n=0

ξγ−1

n!

∫ t

0

(−λ2ξβ+γ−1)n
∫ ∞

−∞
U⊛ (k, t− ξ) exp (−ikx)

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1− γ − n (β + γ − 1) , γ + α− 1)

]
dk dξ (2.28)

where ℜ(µ) > 0 and Hm,n
p,q

[
z
∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function (see [24]).

The case δ = 1 of the Hilfer fractional derivative Dγ,δ
t reduces to the Caputo fractional derivative CDγ

t . Setting
δ = 1 in Theorem 2.3 yields the following result in Corollary 2.5.

Corollary 2.5. Let t ∈ R+ and x ∈ R. Also let α, β, γ, and µ be real parameters such that

0 < α ≤ 1, 0 < β ≤ 1, 0 < γ < 1, 1 < µ ≤ 2. (2.29)

Then the solution of the following generalized fractional cable equation

CDγ
t V (x, t) = D1−α

t (∆µV (x, t))− λ2 D1−β
t V (x, t) + u (x, t) (2.30)

with the initial conditions
lim

|x|→∞
V (x, t) = 0 and V (x, 0) = g(x) (2.31)

is given by

V (x, t) =
1

2π

∞∑
n=0

(−λ2tβ)ng⊛ (k) exp(−ikx)

n!

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (2 + γ + (β − γ)n+ n, γ + α− 1)

]
dk

+
1

2π

∞∑
n=0

ξγ−1

n!

∫ t

0

(−λ2ξβ+γ−1)n
∫ ∞

−∞
U⊛ (k, t− ξ) exp (−ikx)

×H1,1
1,2

[
|k|µtγ+α−1

∣∣∣∣ (−n, 1)
(0, 1) , (1− γ − n (β + γ − 1) , γ + α− 1)

]
dk dξ, (2.32)

where Hm,n
p,q

[
z
∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function (see [24]).

3 Moments of the Green Function

The moment of the Green function G(x, t) in (2.3) is defined as follows (see [25]):

< xσ (t) >:= 2

∫ ∞

0

|x|σ G(x, t)dx. (3.1)

Using the Mellin transform (see [24, 25, 31]):

M{u(x);σ} =

∫ ∞

0

xσ−1u (x) dx, (3.2)
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we find that, for 0 < σ < µ,

< xσ (t) >=

∞∑
n=0

(−λ2tβ)n

n!

2σ+1tγn−n+δ(1−γ)+γ−1+
σ(α+γ−1)

µ

µ
√
π

×
Γ
(
−σ

µ

)
Γ
(

1
2 + σ

µ

)
Γ(1 + n+ σ

µ )

Γ
(
γn− n+ δ (1− γ) + βn+ γ + σ(α+γ−1)

µ

)
Γ(−σ

2 )
.

(3.3)

Here consider certain asymptotic behavior of the moment in (3.3).

Example 1. Setting µ = 2 in (3.3) and recalling the following asymptotic formula:

1

Γ (z)
∼ z (z ≪ 1), (3.4)

we obtain
lim
σ→0

< xσ (t) >= tδ(1−γ)+γ−1Eβ+γ−1,δ(1−γ)+γ(−λ2tβ+γ−1) (3.5)

= tδ(1−γ)+γ−1 H1,1
1,2

[
−λ2tβ+γ−1

∣∣∣∣ (0, 1)
(0, 1) , (1− γ − δ(1− γ), β + γ − 1)

]
. (3.6)

Example 2. Using the asymptotic formula of the Mittag-Leffler function (see [24, 28, 29]): For ω > 0 and ρ < 1,

Eτ,ρ (−ωtτ ) ∼ t−τ

ωΓ (ρ− τ)
(t → ∞), (3.7)

we get

lim
σ→0

< xσ (t) >∼ tδ(1−γ)−β−(β+γ−1)

λ2Γ (δ (1− γ)− β + 1)
(t → ∞). (3.8)

Example 3. Taking the limits σ → 2 and µ → 2 in (3.3) gives the temporal behavior of the mean-square
displacement:

lim
σ→2,µ→2

< xσ (t) >= tα+γ−1
∞∑

n=0

(n+ 1)!
(
−λ2tβ+γ−1

)n
n! Γ ((γ + β − 1)n+ γ + α)

,

which can also be expressed in terms of the first derivative of the generalized Mittag-Leffler function as follows (see
[26, 27, 39]):

lim
σ→2,µ→2

< xσ (t) >= tα+γ−1E
(1)
γ+α−1,α−β+1

(
−λ2t

β+γ−1
)
. (3.9)

4 Concluding Remarks

Here, the generalization of the space-time fractional cable equation, as a presumably new mathematical model,
takes into account the temporal memory effects and spatial non-locality. By applying both Laplace and Fourier
transforms, we expressed the Green function of the generalized space-time fractional cable equation as an infinite
series of H-functions. It is also shown that the main results are general enough to be specialized to yield many known
or new results.
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