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Abstract

Mathematical models of self-igniting reaction diffusion systems are discussed theoretically. The model comprises a
system of reaction-diffusion equations that are nonlinearly connected. The efficient and easily accessible analytical
technique AGM was used to solve the steady-state non-linear equations for a self-igniting reaction diffusion system.
The proposed method’s efficiency and accuracy will be tested against some of the widely used numerical approaches
found in the literature Herein, we present the generalized approximate analytical solution for the concentration of gas
reactant and temperature for the experimental values of heat of reaction, thermal Thiele modulus and activation energy
parameters. Using the Matlab / Scilab program, we also derive the numerical solution to this problem. Simulated
data and previously published limiting cases are used to validate the new analytical results. A reasonable agreement
is observed.
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1 Introduction

The self-combustion of coal heaps in the absence of natural convection has been studied by Continillo et. al. in
[10] and [11]. Convection, reaction, and diffusion are the three key factors in the coal stock piles; ability to self-ignite.
The observation of steady regimes results from a thorough numerical modelling of coal stockpiles that automatically
ignite. Two streamlined distributed-parameter models that include heat conduction, mass diffusion, and a one-step
Arrhenius exothermic chemical reaction were explored in order to better understand this phenomenon. With simple
finite-difference techniques, both model equations were solved [12]. On the other hand, Continillo et al. [13] studied the
dynamic behavior of at two-dimensional coal pile also by accounting for natural convection. As part of a comprehensive
study of self-heating of coal stockpiles, a simple mathematical model has been developed. A spontaneous combustion
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reaction occurs in a bed of solid fuel, and flow is caused by natural convection caused by the onset of temperature
gradients within the pile. This problem of spontaneous ignition of coal stockpiles is challenging due to the safety
implications and its theoretical complexity. When coal reacts with atmospheric oxygen to produce heat that is not
effectively evacuated to the outside ambient, coal stockpiles self-ignite [16]. The analysis is conducted in a twofold
way. From one side, we characterise the model predictions with a parameter-continuation tool. This approach is
capable of describing most of the details of the bifurcation structure of the model, but some complex situations are
not captured. Therefore, a simulative analysis is conducted to characterise these exotic dynamics. As it will be shown,
also mixed-mode oscillations can arise [9].

Mathematical models that emerge from modern complex nonlinear reaction diffusion systems for which exact
solutions can’t be found, and therefore researchers are opting for approximate numerical or analytical solutions.
Though numerical solutions are relatively easy to obtain, some of their shortcomings cannot be avoided. In particular,
the stability of the approximate numerical solution is not always guaranteed. In addition, with numerical solutions, it is
difficult to adjust the model parameters to mimic the numerical data. With modern computational tools, many reliable
and highly accurate analytical methods, which have been established in recent years, can be used to solve the underlying
nonlinear system of the most common method that has shown remarkable success in solving complex nonlinear systems.
These methods include the variation iteration method [1], homotopy analysis method [20], differential transformation
method [8], Green’s function-fixed point method [3], [4], [2], exp-function method [18], and Taylor series method [17],
[19] and [22]. Using this concept, Felicia et al [15] have previously obtained the semi analytical solution for the self
igniting system using the Modified Adomain Decomposition method. Ananthswamy et al. [6] have derived semi
analytical using Homotopuy perturbation method for self igniting system only for small values of Thiele modulus
and heat of reaction and activation energy. This article employs Akbari-Ganji’s method [5], which is highly accurate,
efficient, and widely accessible to scientists other than mathematicians.

As discussed above, researchers have employed several analytical approaches for self igniting only numerical analysis
and semi analytical analysis. To the best of our knowledge,there is no concise and closed-form analytical equation
provided for concentration of gas reactant and temperature. This study intends to obtain new analytical expressions,
in closed form, for the concentration of the gas reactant and temperature for experimental values of heat of reaction,
thermal Thiele modulus and activation energy parameters.

2 Mathematical analysis of the problem

We discuss the issue of self-ignition in a reaction diffusion system in this study. The governing equations are
those of a dynamic model with distributed parameters for heterogeneous reaction in a one-dimensional layer. Through
the reaction media, the gaseous reactant diffuses. An exothermic chemical reaction of first order occurs in one step.
Through the conventional Arrhenius exponential, the reaction rate is temperature dependent. One mass balance
equation for the gas reactant is constructed since consumption of the solid reactant is disregarded. Gas and solid
temperature are equal, thus, only one energy balance equation is written. This equation accounts for heat conduction,
and contains a source term due to the reaction. The steady state governing equation are given by [9]

∂Y

∂t
= Le

∂2Y

∂x2
− ϕ2Y exp(− γ

T
) (2.1)

∂T

∂t
=

∂2T

∂x2
+ βϕ2Y exp(− γ

T
), (2.2)

where Y is the concentration of the gas reactant, T is the temperature, x is the spatial co-ordinates¸ Le (the Lewis
number) is the ratio between mass and heat diffusivities, the parameter β is a dimensionless heat of reaction, the
parameter ϕ2 is the thermal Thiele modulus, and γ is a dimensionless activation energy (refer to notation for more
details). The boundary conditions are

T (0, t) = T (1, t) = 1, Y (0, t) = 1,
∂Y

∂x
|x=1 = 0 for t > 0.

Under steady state condition, equations (2.1) and (2.2) becomes

d2Y

dx2
− ϕ2

Le
Y exp(− γ

T
) = 0, (2.3)

d2T

dx2
+ βϕ2Y exp(− γ

T
) = 0 (2.4)
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with boundary conditions

T = 1, Y = 1, at x = 0 (2.5)

T = 1,
dY

dx
= 0, at x = 1. (2.6)

3 Analytical expression of the concentration of gas reactant and temperature using
Akbari Ganji method

The Akbari-Ganji method (AGM), which was first put forth by M. Akbari and D. Ganji has been successfully
applied to find analytical solutions of nonlinear systems. Berkan et al. [7] investigated the 3D problem of condensation
film on inclined rotating disk electrodes analytically using AGM. Derakhshan et al. [14] used AGM to discuss the
process of heat and mass transfer in steady nano-fluid flow between two parallel plates in the existence of a uniform
magnetic field. Saravanakumar et al. [21] employed the AGM to solve a nonlinear reaction-diffusion equation in an
immobilized enzymes system There are no accurate solutions to the nonlinear systems (2.3)-(2.6). In terms of the
features of the controlling system, it was also suggested that approximate analytical approaches, rather than numerical
ones, are more valuable. Using Akbari-Ganji method, we achieve highly accurate and reliable approximation analytical
results in this part.The approximate solution for the concentration of the gas reactant and temperature is as follows
[Appendix A]:

Y (x) =
cosh(α(x− 1))

cosh(α)
(3.1)

T (x) =
sinh(δ(1− x))

sinh(δ)
+

sinh(δx)

sinh(δ)
. (3.2)

The unknown constant ”δ and α” are obtained using the following equations.

α =

√
ϕ2e−γ

Le
(3.3)

δ =
√
−βϕ2e−γ . (3.4)

4 Numerical Simulation

The function pdex4 in SCILAB software, which solves the boundary value problems for differential equations,
is used to solve equations (2.3)-(2.6). Upon comparison in the figures 1-2, it is evident that both the results give
satisfactory agreement. In Tables (2-4) and Figures 1 and 2, the analytical results for the concentration of the gas
reactant and temperature in the self-igniting reaction diffusion system were compared to simulation data and previously
available analytical results (ADM) and (HPM). The maximum average error between our new analytical result (AGM
method) and simulation result is 0.003% in gas reactant and 0% in temperature. But the previous analytical result
(ADM and HPM method) has a maximum average error of 45% in gas reactant and 18% in temperature.

5 Results and Discussion

To assess the accuracy of the AGM solution with a finite number of terms, the system of differential equations was
numerically solved. Our analytical data are graphically compared with numerical result to demonstrate the efficacy
of the present method. Equations (2.3)-(2.6) give a simple and innovative analytical expression of concentration of
gas reactant and temperature in the self igniting reaction diffusion system, respectively. From the figure1-2, it is
evident that as thermal thiele modulus ϕ increases Y decreases and as activation energy γ increases gas reactant Y
also increases. Further as thermal thiele modulus ϕ increases temperature T also increases while as activation energy
γ increases temperature T decreases. Concentration of gas reactant and temperature are affected by the parameters
ϕ2 and β . The Thiele modulus ϕ2 can be varied by altering the torus doubling sequences and of period-adding
bifurcation sequences. The parameter β is affected by the temperature as well as the thermal Thiele modulus and
activation energy parameters.
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Figure 1: Comparison Analysis of Akbari Ganji method are in solid agreement with the numerical results obtained
by Maple RK45 procedure (Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant) for various
values of the experimental parameters [6].

6 Conclusion

This paper gives a detailed theoretical analysis of self igniting reaction diffusion system using modelling. A non-
linear time-independent differential equation has been solved using the Akbari-Ganji method. Approximate analytical
expressions for the concentration of gas reactant and temperature have been derived. These derived approximate
analytic results concurred with MATLAB-generated numerical results. Moreover, the simplicity and reliability of the
proposed approaches, as well as their accessibility, would make them usable for determining the approximate amounts
of gas reactant and temperature. The concentrations were approximated using this method for the first time. The re-
sultant approximation expressions of the concentration were highly accurate compared to this multiplicity of dynamic
steady states has different and new characteristics with respect to the sequence of alternating mixed-mode oscillations
and chaos often reported in the literature for chemical reactors.
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Figure 2: Comparison Analysis of Akbari Ganji method are in solid agreement with the numerical results obtained
by Maple RK45 procedure (Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant) for various
values of the experimental parameters [6].
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Appendix A

The solution of equations (2.3)-(2.6) is using Akbari Ganji method The approximate analytical solutions for the
equation (2.3) and (2.4) are considered as follows:

u(x) = A1 cos(αx) +B1 sin(αx) (A.1)

v(x) = A2 cos(δx) +B2 sin(δx) (A.2)

Using the boundary conditions (2.5) and (2.6), the constants becomes A1 = 1, B1 = − tanhα and A2 = 1, B2 =
1−cosh(δ)
sinh(δ) . Then the equations (A.1) and (A.2) becomes

Y (x) =
cosh(α(x− 1))

coshα
(A.3)

T (x) =
sinh(δ(1− x))

sinh(δ)
+

sinh(δx)

sinh(δ)
(A.4)

The unknown constant δ and α are obtained using the following equations. Substituting Eqs. (A.3) and (A.4) in (2.3)
& (2.4), we get

α2 cosh(α(x− 1))

cos(α)
− ϕ2

Le

cosh(α(x− 1))

cos(α)
exp

(
−γ

sinh(δ(1−x))
sinh(δ) + sinh(δx)

sinh(δ)

)
, (A.5)

δ2 sinh(δ(1− x))

sinh(δ)
+

δ2 sinh(δx)

sinh(δ)
+ βϕ2 cosh(α(x− 1))

cosh(α)
exp

(
−γ

sinh(δ(1−x))
sinh(δ) + sinh(δx)

sinh(δ)

)
. (A.6)

Solving (A.5) and (A.6), we get the values of δ and α.

α =

√
ϕ2e−γ

Le
(A.7)

δ =
√
−βϕ2e−γ . (A.8)

Appendix B

MATLAB Code for Numerical Solution of the Non-linear equations (2.3)-(2.6)
function pdex4
m = 0;
x = linspace(0,1);
t = linspace(0,1000000);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
figure
plot(x,u1(end,:))
title(’u1(x,t)’)
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xlabel(’Distance x’)
ylabel(’u1(x,2)’)
figure
plot(x,u2(end,:))
title(’u2(x,t)’)
xlabel(’Distance x’)
ylabel(’u2(x,2)’)
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [1; 1] .* DuDx;
l = 10;
p =100;
b =1;
g =10;
F = -p*u(1)*exp(-g/u(2))/l;
F1 = b*p*u(1)*exp(-g/u(2));
s=[F; F1];
function u0 = pdex4ic(x);
u0 = [1; 1];
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [ul(1)-1; ul(2)-1];
ql = [0; 0];
pr = [0;ur(2)-1];
qr = [1; 0];

Table 1: Nomenclature

S. No Symbol Description

1. c0 Concentration of the free stream

2. cp Specific heat

3. D Mass diffusivity

4. E Activation energy

5. K0 Pre exponential factor

6. L Layer thickness

7. Le Lewis number, (D/α)

8. R Gas reactant

9. T Dimensionless temperature (T̄ /T̄0)

10. T̄ Temperature

11. T̄0 Free stream temperature

12. t Dimensionless time t̄α/L2

13. t̄ Time

14. Y Dimensionless concentration c/c0

Greek Letters

15. α Thermal diffusivity

16. β Dimensionless heat reaction
(
−∆Hc0/ρcpT̄0

)
17. γ Dimensionless activation energy E/RT̄0

18. ∆H Enthalpy of reaction

19. ρ Density

20. ϕ Thiele number,
√
k0L2/α

Table 2: Various approximate analytical expression concentrations of gas reactant and temperature
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Felicia work [6] limiting cases
S. No. Concentration of the gas reactant Concentration of the temperature

1. Y (x) = 1 + ϕ2

Le
e−γ

(
x2

2 − x
)
+ ϕ4

Le
e−2γ T (x) = 1− βϕ2e−γ

(
x2

2 − x
2

)
−[

1
Le

(
x4

24 − x3

6 + x
3

)
− γβ

2

(
x4

12 − x3

6 + x
6

)]
βϕ4e−2γ

[
1
Le

(
x4

24 − x3

6 + x
8

)
− γβ

2

(
x4

12 − x3

6 + x
12

)]
Ananthaswamy et al. [5] limiting cases

2. Y (x) =
[e2(x−1)

√
ϕ2e−γ

Le
+1]e

(2−x)

√
ϕ2e−γ

Le

e2
√

ϕ2e−γ

Le
+1

T (x) = − 1

e2
√

ϕ2e−γ

Le
+1

e−(x−1)
√

ϕ2e−γ

Le
+ 1
[
βLee

(2x−1)
√

ϕ2e−γ

Le

+(−1 + Le(x− 1)β)e(x−1)
√

ϕ2e−γ

Le +(−1+ ϕ2e−γ

Le
)Le(x− 1)β)

×e(x−1)
√

ϕ2e−γ

Le + (−1 + Le(x− 1)βe(1+x)
√

ϕ2e−γ

Le )

−2Leβ
(
xe

√
ϕ2e−γ

Le
x − e

√
ϕ2e−γ

Le

2

)]
This work all values of parameters

3. cosh(α(x−1))
cosh(α) , where α =

√
ϕ2e−γ

Le

sinh(δ(1−x))+sinh(δx)
sinh(β) , where δ =

√
−βϕ2e−γ

Table 3: Comparison of Analytical result with numerical result and various analytical results for
concentration of gas reactant Y (x) for various of parameter Le = 10, γ = 5, β = 1

Case I: ϕ2 = 100

x Numerical This work Rajendran Anathaswamy Error for Error for Rajend Error for Anatha
Simulation et al. [5] et al. [6] this work ran et al. [5] swamy et al. [6]

0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.2 0.9881 0.9881 0.9844 0.9845 0.0000 0.3745 0.3643
0.4 0.9788 0.9788 0.9722 0.9721 0.0000 0.6743 0.6845
0.6 0.9723 0.9723 0.9638 0.9639 0.0000 0.8742 0.8639
0.8 0.9685 0.9684 0.9591 0.9590 0.0103 0.9706 0.9809
1.0 0.9673 0.9672 0.9578 0.9579 0.0103 0.9821 0.9718

Average Error 0.0034 0.6459 0.6442

Case II: ϕ2 = 1000

x Numerical This work Rajendran Anathaswamy Error for Error for Rajend Error for Anatha
Simulation et al. [5] et al. [6] this work ran et al. [5] swamy et al. [6]

0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.2 0.9012 0.9012 0.5395 0.5395 0.0000 40.1354 40.1353
0.4 0.8273 0.8273 0.4747 0.4747 0.0000 42.6206 42.6205
0.6 0.7763 0.7762 0.3602 0.3602 0.0128 53.6004 53.6004
0.8 0.7466 0.7465 0.2678 0.2678 0.0134 64.1307 64.1307
1.0 0.7378 0.7373 0.1881 0.1881 0.0677 74.5052 74.5053

Average Error 0.0156 45.8320 45.8320
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Table 4: Comparison of Analytical result with numerical result and various analytical results for
temperature T (x) for various of parameter ϕ2 = 100, γ = 5, Le = 1

Case I: β = 10

x Numerical This work Rajendran Anathaswamy Error for Error for Rajend Error for Anatha
Simulation et al. [5] et al. [6] this work ran et al. [5] swamy et al. [6]

0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.2 2.3010 2.3010 2.8345 2.8340 0.0000 23.1855 23.1638
0.4 3.4980 3.4980 4.4132 4.4135 0.0000 26.1635 26.1720
0.6 3.5460 3.5460 4.3410 4.3411 0.0000 22.4196 22.4224
0.8 2.6920 2.6920 3.3289 3.3289 0.0000 0.0000 0.0000
1.0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Average Error 0.0000 15.9046 15.9028

Case II: β = 5

x Numerical This work Rajendran Anathaswamy Error for Error for Rajend Error for Anatha
Simulation et al. [5] et al. [6] this work ran et al. [5] swamy et al. [6]

0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.2 1.4131 1.4130 1.6512 1.6510 0.0070 16.8494 16.8353
0.4 1.5921 1.5921 2.1131 2.1131 0.0000 32.7240 32.7240
0.6 1.6132 1.6132 2.2521 2.2522 0.0000 39.7240 32.7240
0.8 1.4155 1.4156 1.7321 1.7320 0.0070 22.3666 22.3595
1.0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Average Error 1.99976E-06 18.5907 18.5882
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