On triple θ-centralizers

Bahman Hayati*, Hamid Khodaei

Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Malayer University, Malayer, Iran
(Communicated by Sirous Moradi)

Abstract

In this paper, we introduce triple θ-centralizers and weak triple θ-centralizers on an algebra A, where $\theta: A \rightarrow A$ is a triple homomorphism. Some observations concerning triple θ-centralizers, weak triple θ-centralizers and approximate weak triple θ-centralizers are given.

Keywords: Triple θ-centralizer, Factorizable, Without order, Semisimple 2020 MSC: 16N60, 47B48

1 Introduction

A left (right) centralizer on an algebra A is a mapping T of A into A such that

$$
T(a b)=T(a) b \quad(T(a b)=a T(b))
$$

for all $a, b \in A$. A centralizer is a mapping $T: A \rightarrow A$ such that

$$
T(a) b=a T(b)
$$

for all $a, b \in A$. The notion of left centralizers was introduced by Wendel [24] who used it to investigate group algebras. The general notion of centralizers on commutative Banach algebras was studied by Helgason [10] and Wang [23. Helgason used the term multiplier instead of centralizer. In the non-commutative setting, the notions of left (right) centralizers and centralizers were introduced by Johnson 13 on semigroups, rings, algebras, Banach algebras and topological algebras.

Albas [1] generalized the notion of centralizers and introduced θ-centralizers. For a ring R, if $\theta: R \rightarrow R$ is a homomorphism, then a mapping $T: R \rightarrow R$ is said to be a left (right) θ-centralizer if

$$
T(a b)=T(a) \theta(b) \quad(T(a b)=\theta(a) T(b))
$$

for all $a, b \in R$. Jordan left (right) θ-centralizers are obtained if $b=a$. In special case that $\theta=i d_{A}$, we may see that a left (right) $i d_{A}$-centralizer is a left (right) centralizer. T is said to be a (Jordan) θ-centralizer if it is both (Jordan) left and (Jordan) right θ-centralizer. For a 2-torsion free semiprime ring R (i.e., for $a \in R, 2 a=0$ implies $a=0$, and

[^0]$a R a=\{0\}$ implies $a=0$), Albas [1] proved that every Jordan θ-centralizer of R is a θ-centralizer provided that θ is surjective and $\theta(Z)=Z$, where Z is the center of R. For more properties of θ-centralizers, one can see [1$]$ - $[6]$ and [11, 21].

Let us mention that a Banach algebra A is not without order if there exist nonzero elements a_{0} and b_{0} in A such that $a_{0} A=A b_{0}=\{0\}$; for example, semisimple Banach algebras are without order. Wang [23] (see also [13]) showed that every centralizer on a without order Banach algebra is necessarily continuous and linear. Also, Johnson [15] proved that every left (right) centralizer on a Banach algebra with a bounded left (right) approximate identity is continuous and linear. The same result for θ-centralizers has been obtained in [21].

Miura et al. [20] showed that every approximate centralizer (multiplier) on a Banach algebra can be approximated by a centralizer. They also proved that every approximate centralizer on a without order Banach algebra is an exact centralizer. The same results for approximate θ-centralizers have been obtained in [21].

Let A and B be two algebras. A linear mapping $\theta: A \rightarrow B$ is called a triple homomorphism if

$$
\theta(a b c)=\theta(a) \theta(b) \theta(c)
$$

for all $a, b, c \in A$. It is evident that if $\theta: A \rightarrow B$ is a homomorphism, then θ is a triple homomorphism, but the converse is not true. To see, let $\phi: A \rightarrow A$ be a homomorphism, then one can see that $\theta:=-\phi$ is a triple homomorphism which is not a homomorphism; for more details, see [7, 9, 17, 18, 22].

In this paper, we introduce triple θ-centralizers and weak triple θ-centralizers on an algebra A, where $\theta: A \rightarrow A$ is a triple homomorphism. We will see that the notions of triple θ-centralizers, weak triple θ-centralizers and θ-centralizers are different. We generalize the results of [23, 15, 21] on the linearity and continuity of weak triple θ-centralizers on Banach algebras. We present some observations concerning approximate weak triple θ-centralizers, which improve and extend the same results in [20, 21].

2 Triple and weak triple $\boldsymbol{\theta}$-centralizers

Let us start with the following.
Definition 2.1. Let A be an algebra and $\theta: A \rightarrow A$ be a triple homomorphism. A mapping $T: A \rightarrow A$ is said to be a triple left (right) θ-centralizer if

$$
T(a b c)=T(a) \theta(b) \theta(c) \quad(T(a b c)=\theta(a) \theta(b) T(c))
$$

for all $a, b, c \in A . T$ is said to be a triple θ-centralizer if it is both triple left and right θ-centralizer.
For the case that $\theta=i d_{A}$, we may see that a triple $i d_{A}$-centralizer is a triple centralizer. Also, if we set $c=a$, one can see that a triple centralizer is a Jordan triple centralizer [19, p. 1398].

It is easy to see that every θ-centralizer is also a triple θ-centralizer, but the converse is not true. For illustration, see Example 2.3 (ii).

Definition 2.2. Let A be an algebra and $\theta: A \rightarrow A$ be a triple homomorphism. A mapping $T: A \rightarrow A$ is said to be a weak triple θ-centralizer if

$$
T(a) \theta(b) \theta(c)=\theta(a) \theta(b) T(c)
$$

for all $a, b, c \in A$.
We notice that if T is a triple θ-centralizer, then it is a weak triple θ-centralizer, but the converse is not true (see Example 2.3 (i)). However, there exist some conditions under which a weak triple θ-centralizer is a triple θ-centralizer (see Theorem 2.4).

Example 2.3. Let

$$
\mathcal{A}=\left\{\left[\begin{array}{cccc}
0 & r_{1} & r_{2} & r_{3} \\
0 & 0 & r_{4} & r_{5} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right]: r_{1}, \ldots, r_{6} \in \mathbb{R}\right\}
$$

(i) Define mappings $T, \theta: \mathcal{A} \longrightarrow \mathcal{A}$ via

$$
T\left(\left[\begin{array}{cccc}
0 & r_{1} & r_{2} & r_{3} \\
0 & 0 & r_{4} & r_{5} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{cccc}
0 & r_{1} & r_{2} & r_{5} \\
0 & 0 & r_{4} & r_{3} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right], \quad \theta\left(\left[\begin{array}{cccc}
0 & r_{1} & r_{2} & r_{3} \\
0 & 0 & r_{4} & r_{5} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{cccc}
0 & r_{1} & r_{5} & r_{3} \\
0 & 0 & r_{4} & r_{2} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Then θ is a triple homomorphism on \mathcal{A}, but it is not a homomorphism and

$$
\begin{gathered}
\theta(\mathbf{a}) \theta(\mathbf{b}) T(\mathbf{c})=\left[\begin{array}{lllc}
0 & 0 & 0 & r_{1} s_{4} t_{6} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=T(\mathbf{a}) \theta(\mathbf{b}) \theta(\mathbf{c}) \\
T(\mathbf{a b c})= \\
{\left[\begin{array}{lllc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{1} s_{4} t_{6} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],}
\end{gathered}
$$

where

$$
\mathbf{a}=\left[\begin{array}{cccc}
0 & r_{1} & r_{2} & r_{3} \\
0 & 0 & r_{4} & r_{5} \\
0 & 0 & 0 & r_{6} \\
0 & 0 & 0 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{cccc}
0 & s_{1} & s_{2} & s_{3} \\
0 & 0 & s_{4} & s_{5} \\
0 & 0 & 0 & s_{6} \\
0 & 0 & 0 & 0
\end{array}\right], \mathbf{c}=\left[\begin{array}{cccc}
0 & t_{1} & t_{2} & t_{3} \\
0 & 0 & t_{4} & t_{5} \\
0 & 0 & 0 & t_{6} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

are arbitrary elements of \mathcal{A}. Thus T is a weak triple θ-centralizer, but it is not a triple left (right) θ-centralizer. On the other hand, we have

$$
T(\mathbf{a b}) \neq T(\mathbf{a}) \theta(\mathbf{b}), \quad T(\mathbf{a b}) \neq \theta(\mathbf{a}) T(\mathbf{b}), \quad \theta(\mathbf{a}) T(\mathbf{b}) \neq T(\mathbf{a}) \theta(\mathbf{b}),
$$

whence T is not a left (right) θ-centralizer.
(ii) Taking θ as the above, we may see that if $S=i d_{\mathcal{A}}$, then

$$
S(\mathbf{a b c})=S(\mathbf{a}) \theta(\mathbf{b}) \theta(\mathbf{c})=\theta(\mathbf{a}) \theta(\mathbf{b}) S(\mathbf{c})
$$

for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{A}$. Hence S is a triple θ-centralizer. On the other hand, we have

$$
S(\mathbf{a b}) \neq S(\mathbf{a}) \theta(\mathbf{b}), \quad S(\mathbf{a b}) \neq \theta(\mathbf{a}) S(\mathbf{b})
$$

whence S is not a left (right) θ-centralizer.
Let us mention that an algebra A is factorizable if for each a in A, there exist a_{1} and a_{2} in A such that $a=a_{1} a_{2}$. By a classical theorem due to Cohen 4], Banach algebras with a bounded approximate identity are factorizable.

Theorem 2.4. Let A be a without order factorizable algebra and $\theta: A \rightarrow A$ be a surjective triple homomorphism. If $T: A \rightarrow A$ is a weak triple θ-centralizer, then T is a linear triple θ-centralizer.

Proof . Let a, b, c be arbitrary elements of A. Take x in A, since A is facotizable there exist x_{1} and x_{2} in A such that $x=x_{1} x_{2}$. On the other hand, θ is surjective, so there exist y_{1} and y_{2} in A such that $\theta\left(y_{1}\right)=x_{1}$ and $\theta\left(y_{2}\right)=x_{2}$. We have

$$
\begin{aligned}
x T(a b c) & =\theta\left(y_{1}\right) \theta\left(y_{2}\right) T(a b c) \\
& =T\left(y_{1}\right) \theta\left(y_{2}\right) \theta(a b c) \\
& =\left(T\left(y_{1}\right) \theta\left(y_{2}\right) \theta(a)\right) \theta(b) \theta(c) \\
& \left.=\left(\theta\left(y_{1}\right) \theta\left(y_{2}\right) T(a)\right) \theta(b) \theta(c)\right) \\
& =\theta\left(y_{1}\right) \theta\left(y_{2}\right)((T(a) \theta(b) \theta(c)) \\
& =x(\theta(a) \theta(b) T(c)) .
\end{aligned}
$$

Hence,

$$
x(T(a b c)-\theta(a) \theta(b) T(c))=0
$$

and this is true for each $x \in A$. Since A is without order, so

$$
T(a b c)-\theta(a) \theta(b) T(c)=0
$$

Thus, T is a triple right θ-centralizer. Similarly, it is proved that T is a triple left θ-centralizer. Thus T is a triple θ-centralizer.

To see that T is linear, let $\lambda \in \mathbb{C}, a, b \in A$ and

$$
\Lambda:=T(\lambda a+b)-\lambda T(a)-T(b)
$$

Let $x \in A$ be arbitrary, since again A is factorizable and θ is surjective, there exists $x_{1}, x_{2}, y_{1}, y_{2} \in A$ such that $x=x_{1} x_{2}$ and $x_{1}=\theta\left(y_{1}\right), x_{2}=\theta\left(y_{2}\right)$. Now we can see that

$$
\begin{aligned}
x \Lambda & =\theta\left(y_{1}\right) \theta\left(y_{2}\right)[T(\lambda a+b)-\lambda T(a)-T(b)] \\
& =\theta\left(y_{1}\right) \theta\left(y_{2}\right) T(\lambda a+b)-\theta\left(y_{1}\right) \theta\left(y_{2}\right) \lambda T(a)-\theta\left(y_{1}\right) \theta\left(y_{2}\right) T(b) \\
& =T\left(y_{1}\right) \theta\left(y_{2}\right) \theta(\lambda a+b)-\lambda T\left(y_{1}\right) \theta\left(y_{2}\right) \theta(a)-T\left(y_{1}\right) \theta\left(y_{2}\right) \theta(b) \\
& =T\left(y_{1}\right) \theta\left(y_{2}\right)[\theta(\lambda a+b)-\lambda \theta(a)-\theta(b)] \\
& =0 .
\end{aligned}
$$

This is true for each $x \in A$. Since A is without order, so $\Lambda=0$ for all $a, b \in A$ and $\lambda \in \mathbb{C}$; that is, T is linear.
Remark 2.5. Let A be a factorizable algebra and $\theta: A \rightarrow A$ be a homomorphism. If $T: A \rightarrow A$ is a triple θ-centralizer, then T is a θ-centralizer.

To see, let a, b be arbitrary elements of A. Since A is factorizable, there exist $b_{1}, b_{2} \in A$ such that $b=b_{1} b_{2}$. Since T is a triple left θ-centralizer, so

$$
T(a b)=T\left(a b_{1} b_{2}\right)=T(a) \theta\left(b_{1}\right) \theta\left(b_{2}\right)=T(a) \theta\left(b_{1} b_{2}\right)=T(a) \theta(b)
$$

Thus T is a left θ - centralizer. Similarly, one can see that T is a right θ-centralizer and so T is a θ-centralizer.
Corollary 2.6. Let A be a without order factorizable algebra and $\theta: A \rightarrow A$ be a surjective homomorphism. If $T: A \rightarrow A$ is a weak triple θ-centralizer, then T is a linear θ-centralizer.

Proof. By Theorem 2.4, T is a linear triple θ-centralizer. Thus, by Remark 2.5, T is a linear θ-centralizer.
We introduce a useful result that can be easily derived from Eshaghi et al. [7, Theorem 2.4] .
Lemma 2.7. Let A be a semisimple Banach algebra. Then every surjective triple homomorphism $\theta: A \rightarrow A$ is continuous.

Theorem 2.8. Let A be a semisimple Banach algebra with a bounded left approximate identity and $\theta: A \rightarrow A$ be a surjective triple homomorphism. Then every weak triple θ-centralizer $T: A \rightarrow A$ is linear and continuous.

Proof . Let $a_{m} \rightarrow 0$ in A, by Johnson's theorem there exist $c \in A$ and a sequence $\left(b_{m}\right) \in A$ such that $b_{m} \rightarrow 0$ and $a_{m}=c b_{m}$ for each m, see [15. On the other hand, by Cohen's factorization theorem, there exist $c_{1}, c_{2} \in A$ such that $c=c_{1} c_{2}$. By assumptions and Theorem 2.4, T is a linear triple left θ-centralizer, so we have

$$
T\left(a_{m}\right)=T\left(c b_{m}\right)=T\left(c_{1} c_{2} b_{m}\right)=T\left(c_{1}\right) \theta\left(c_{2}\right) \theta\left(b_{m}\right)
$$

By Lemma 2.7, θ is a continuous map. It forces the last sentence approaches to zero whenever $m \rightarrow \infty$; that is, T is continuous.

Corollary 2.9. Let A be a C^{*}-algebra and $\theta: A \rightarrow A$ be a surjective triple homomorphism. Then every weak triple θ-centralizer $T: A \rightarrow A$ is linear and continuous.

3 Approximate weak triple $\boldsymbol{\theta}$-centralizers

Here, we give some sufficient conditions under which every approximate weak triple θ-centralizer is a linear triple θ-centralizer.

Theorem 3.1. Let A be a without order factorizable Banach algebra, $\theta: A \rightarrow A$ be a surjective triple homomorphism and $\ell \in\{-1,1\}$ be fixed. Let $T: A \rightarrow A$ be a mapping satisfy

$$
\|\theta(a) \theta(b) T(c)-T(a) \theta(b) \theta(c)\| \leq \phi(a, b, c)
$$

where $\phi: A^{3} \rightarrow[0, \infty)$ is a mapping such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\phi\left(2^{\ell k} a, b, c\right)}{2^{\ell k}}=0 \tag{3.1}
\end{equation*}
$$

for all $a, b, c \in A$. Then T is a linear triple θ-centralizer.

Proof . Let $\mu \in \mathbb{C}$ and $a \in A$ be arbitrary, we show that $T(\mu a)=\mu T(a)$. Take $x \in A$, since A is factorizable and θ is surjective, there exist x_{1}, x_{2} and y_{1}, y_{2} in A such that $x=x_{1} x_{2}, \theta\left(y_{1}\right)=x_{1}, \theta\left(y_{2}\right)=x_{2}$. Then

$$
\begin{aligned}
\left\|2^{\ell k} x[T(\mu a)-\mu T(a)]\right\|= & \left\|\theta\left(2^{\ell k} y_{1}\right) \theta\left(y_{2}\right)[T(\mu a)-\mu T(a)]\right\| \\
\leq & \left\|\theta\left(2^{\ell k} y_{1}\right) \theta\left(y_{2}\right) T(\mu a)-T\left(2^{\ell k} y_{1}\right) \theta\left(y_{2}\right) \theta(\mu a)\right\| \\
& +\left\|T\left(2^{\ell k} y_{1}\right) \theta\left(y_{2}\right) \theta(\mu a)-\theta\left(2^{2 k} y_{1}\right) \theta\left(y_{2}\right)(\mu T(a))\right\| \\
\leq & \phi\left(2^{\ell k} y_{1}, y_{2}, a\right)+|\mu| \phi\left(2^{\ell k} y_{1}, y_{2}, a\right) .
\end{aligned}
$$

So we have

$$
\|x[T(\mu a)-\mu T(a)]\| \leq \frac{1}{2^{\ell k}}\left[\phi\left(2^{\ell k} b, c, a\right)+|\mu| \phi\left(2^{\ell k} b, c, a\right)\right] .
$$

By letting $k \rightarrow \infty$, we get

$$
x[T(\mu a)-\mu T(a)]=0 .
$$

Since A is without order and this is true for each $x \in A, T(\mu a)-\mu T(a)=0$ for all $a \in A$ and $\lambda \in \mathbb{C}$.
In spacial case that $\mu=2^{\ell k}$, we get $T(a)=\frac{1}{2^{\ell k}} T\left(2^{\ell k} a\right)$. Thus for each $a, b, c \in A$, we have

$$
\begin{aligned}
\|\theta(a) \theta(b) T(c)-T(a) \theta(b) \theta(c)\| & \left.=\frac{1}{2^{\ell k}} \| 2^{\ell k} \theta(a) \theta(b) T(c)-2^{\ell k} T(a) \theta(b) \theta(c)\right) \| \\
& =\frac{1}{2^{\ell k}}\left\|\theta\left(2^{\ell k} a\right) \theta(b) T(c)-T\left(2^{\ell k} a\right) \theta(b) \theta(c)\right\| \\
& \leq \frac{1}{2^{\ell k}} \phi\left(2^{\ell k} a, b c\right) .
\end{aligned}
$$

By taking limit whenever $k \rightarrow \infty$, the last sentence approaches to zero; that is, T is a weak triple θ-centralizer. By Theorem 2.4, T is a linear triple θ-centralizer.

Corollary 3.2. Let A be a without order factorizable Banach algebra, $\theta: A \rightarrow A$ be a surjective triple homomorphism, $\ell \in\{-1,1\}$ be fixed and ϵ, r be positive real numbers with $\ell r<\ell$. If $T: A \rightarrow A$ is a mapping such that

$$
\|\theta(a) \theta(b) T(c)-T(a) \theta(b) \theta(c)\| \leq \epsilon\|a\|^{r}\|b\|^{r}\|c\|^{r}
$$

for all $a, b, c \in A$, then T is a linear triple θ-centralizer.

Proof . Set $\phi(a, b, c):=\epsilon\|a\|^{r}\|b\|^{r}\|c\|^{r}$ and use Theorem 3.1.

Theorem 3.3. Let A be a Banach algebra (need not be without order), $\theta: A \rightarrow A$ be a triple homomorphism (need not be surjective), $\ell \in\{-1,1\}$ be fixed and $\varphi: A^{2} \rightarrow[0, \infty)$ and $\phi: A^{3} \rightarrow[0, \infty)$ be mappings such that

$$
\sigma(a, b):=\sum_{i=\frac{1-\ell}{2}}^{\infty} \frac{\varphi\left(2^{\ell i} a, 2^{\ell i} b\right)}{2^{\ell i}}<\infty, \quad \lim _{k \rightarrow \infty} \frac{\phi\left(2^{\ell k} a, b, 2^{\ell k} c\right)}{4^{\ell k}}=0
$$

for all $a, b, c \in A$. If $f: A \rightarrow A$ is a mapping satisfying

$$
\|f(a+b)-f(a)-f(b)\| \leq \varphi(a, b), \quad\|\theta(a) \theta(b) f(c)-f(a) \theta(b) \theta(c)\| \leq \phi(a, b, c)
$$

for all $a, b, c \in A$, then there exists a unique additive weak triple θ-centralizer $T: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(a)-T(a)\| \leq \frac{\sigma(a, a)}{2} \tag{3.2}
\end{equation*}
$$

for all $a \in A$.
Proof . By [8] and [16, Corollary 2.19], there exists a unique additive mapping $T: A \rightarrow A$ such that (3.2) holds for all $a \in A$. The mapping T is given by

$$
T(a):=\lim _{k \rightarrow \infty} \frac{1}{2^{\ell k}} f\left(2^{\ell k} a\right)
$$

for all $a \in A$. On the other hand, by the homogeneity of θ, we have

$$
\begin{aligned}
& \left\|\theta(a) \theta(b) \frac{1}{2^{\ell k}} f\left(2^{\ell k} c\right)-\frac{1}{2^{\ell k}} f\left(2^{\ell k} a\right) \theta(b) \theta(c)\right\| \\
& \quad=\frac{1}{4^{\ell k}}\left\|\theta\left(2^{\ell k} a\right) \theta(b) f\left(2^{\ell k} c\right)-f\left(2^{\ell k} a\right) \theta(b) \theta\left(2^{\ell k} c\right)\right\| \\
& \quad \leq \frac{1}{4^{\ell k}} \phi\left(2^{\ell k} a, b, 2^{\ell k} c\right)
\end{aligned}
$$

for all $a, b, c \in A$. The last sentence approaches to zero whenever $k \rightarrow \infty$; that is,

$$
\theta(a) \theta(b) T(c)=T(a) \theta(b) \theta(c)
$$

for all $a, b, c \in A$. So T is an additive weak triple θ-centralizer.
Corollary 3.4. Let A be a Banach algebra (need not be without order), $\theta: A \rightarrow A$ be a triple homomorphism (need not be surjective), $\ell \in\{-1,1\}$ be fixed and ϵ, p, r be positive real numbers with $\ell p, \ell r<\ell$. If $f: A \rightarrow A$ is a mapping such that

$$
\|f(a+b)-f(a)-f(b)\| \leq \epsilon\left(\|a\|^{p}+\|b\|^{p}\right), \quad\|\theta(a) \theta(b) f(c)-f(a) \theta(b) \theta(c)\| \leq \epsilon\|a\|^{r}\|b\|^{r}\|c\|^{r}
$$

for all $a, b, c \in A$, then there exists a unique additive weak triple θ-centralizer $T: A \rightarrow A$ such that

$$
\|f(a)-T(a)\| \leq \frac{\ell \epsilon}{1-2^{p-1}}\|a\|^{p}
$$

for all $a \in A$.
Proof. Set $\varphi(a, b):=\epsilon\left(\|a\|^{p}+\|b\|^{p}\right), \phi(a, b, c):=\epsilon\|a\|^{r}\|b\|^{r}\|c\|^{r}$ and use Theorem 3.3.

Let A and B be Banach algebras. A linear mapping $T: A \rightarrow B$ is said to be an almost homomorphism (or almost multiplicative linear mapping) if there exists $\epsilon \geq 0$ such that

$$
\|T(a b)-T(a) T(b)\| \leq \epsilon\|a\|\|b\|
$$

for all $a, b \in A$ (see, e.g., [12, 14]). Also, a linear mapping $T: A \rightarrow B$ is said to be an almost triple homomorphism if there exists $\epsilon \geq 0$ such that

$$
\|T(a b c)-T(a) T(b) T(c)\| \leq \epsilon\|a\|\|b\|\|c\|
$$

for all $a, b, c \in A$ (see, e.g., 17).

Theorem 3.5. Let A be a semisimple Banach algebra with a bounded left approximate identity and $\theta: A \rightarrow A$ be a surjective triple homomorphism. If $T: A \rightarrow A$ is a weak triple θ-centralizer, then T is a continuous almost triple homomorphism.

Proof . By Theorems 2.4 and 2.8, T is a continuous linear triple left θ-centralizer. Also θ is a continuous linear map, so

$$
\|\theta(a)\| \leq\|\theta\|\|a\|, \quad \quad\|T(a)\| \leq\|T\|\|a\|
$$

for all $a \in A$. Thus

$$
\begin{aligned}
\|T(a b c)-T(a) T(b) T(c)\| & =\|T(a) \theta(b) \theta(c)-T(a) T(b) T(c)\| \\
& \leq\|T(a)\|\|\theta(b) \theta(c)-T(b) T(c)\| \\
& \leq\|T(a)\|(\|\theta(b)\|\|\theta(c)\|+\|T(b)\|\|T(c)\|) \\
& \leq\|T\|\|a\|\left(\|\theta\|^{2}\|b\|\|c\|+\|T\|^{2}\|b\|\|c\|\right) \\
& =\|T\|\|\theta\|^{2}\|a\|\|b\|\|c\|+\|T\|^{3}\|a\|\|b\|\|c\| \\
& =\|T\|\left(\|\theta\|^{2}+\|T\|^{2}\right)\|a\|\|b\|\|c\|
\end{aligned}
$$

for all $a, b, c \in A$. By taking $\epsilon=\|T\|\left(\|\theta\|^{2}+\|T\|^{2}\right)$, we see that T is almost triple homomorphism.
Corollary 3.6. Let A be a C^{*}-algebra and $\theta: A \rightarrow A$ be a surjective triple homomorphism. If $T: A \rightarrow A$ is a weak triple θ-centralizer, then T is a continuous almost triple homomorphism.

References

[1] E. Albas, On τ-centralizers of semiprime rings, Sib. Math. J. 48 (2007), 191-196.
[2] S. Ali and C. Haeitinger, Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Math. 26 (2008), 71-80.
[3] S. Ali and S. Huang, On left α-multipliers and commutativity of semiprime rings, Commun. Korean Math. Soc. 27 (2012), 69-76.
[4] P.J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205.
[5] W. Cortis and C. Haetinger, On Lie ideals and left Jordan σ-centralizers of 2-torsion free rings, Math. J. Okayama Univ. 51 (2009), 111-119.
[6] M.N. Daif, M.S.T. Al-Sayiad and N.M. Muthana, An identity on θ-centralizers of semiprime rings, Int. Math. Forum 3 (2008), 937-944.
[7] M. Eshaghi Gordji, A. Jabbari and E. Karapinar, Automatic continuity of surjective n-homomorphisms on Banach algebras. Bull. Iran. Math. Soc. 41 (2015), 1207-1211.
[8] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] S. Hejazian, M. Mirzavaziri and M.S. Moslehian, n-Homomorphisms, Bull. Iranian. Math. Soc. 31 (2005), 13-23.
[10] S. Helgason, Multipliers of Banach algebras, Ann. Math. 64 (1956), 240-254.
[11] S. Huang and C. Haetinger, On θ-centralizers of semiprime rings, Demonst. Math. 45 (2012), 29-34.
[12] K. Jarosz, Perturbations of Banach algebras, Lecture Notes in Math. 1120, Springer-Verlag, Berlin, 1985.
[13] B.E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299-320.
[14] B.E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), 294-316.
[15] B.E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640.
[16] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48. Springer, New York, 2011.
[17] A.Z. Kazempour, Automatic continuity of almost 3-homomorphisms and almost 3-Jordan homomorphisms, Adv. Oper. Theory 5 (2020), 1340-1349.
[18] H. Khodaei, Asymptotic behavior of n-Jordan homomorphisms, Mediterr. J. Math. 17 (2020), Art. 143, 1-9.
[19] C.K. Liu and W.K. Shiue, Generalized Jordan triple (θ, ϕ)-Derivations on semiprime rings, Taiwane J. Math. 11 (2007), 1397-1406.
[20] T. Miura, G. Hirasawa and S.E. Takahasi, Stability of multipliers on Banach algebras, Internat. J. Math. Math. Sci. 45 (2004), 2377-2381.
[21] I. Nikoufar and Th.M. Rassias, On θ-centralizers of semiprime Banach *-algebras, Ukranian Math. J. 66 (2014), 300-310.
[22] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc. 361 (2009), 1949-1961.
[23] J.K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math., 11 (1961), 1131-1149.
[24] J.G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261.

[^0]: *Corresponding author
 Email addresses: hayati@malayeru.ac.ir, bn.hayati@gmail.com (Bahman Hayati), hkhodaei@malayeru.ac.ir, hkhodaei.math@gmail.com (Hamid Khodaei)

 Received: August 2022 Accepted: March 2023

