Int. J. Nonlinear Anal. Appl. 15 (2024) 1, 9–16 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.30207.4365

On triple θ -centralizers

Bahman Hayati*, Hamid Khodaei

Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Malayer University, Malayer, Iran

(Communicated by Sirous Moradi)

Abstract

In this paper, we introduce triple θ -centralizers and weak triple θ -centralizers on an algebra A, where $\theta : A \to A$ is a triple homomorphism. Some observations concerning triple θ -centralizers, weak triple θ -centralizers and approximate weak triple θ -centralizers are given.

Keywords: Triple $\theta\text{-centralizer},$ Factorizable, Without order, Semisimple 2020 MSC: 16N60, 47B48

1 Introduction

A left (right) centralizer on an algebra A is a mapping T of A into A such that

 $T(ab) = T(a)b \quad (T(ab) = aT(b))$

for all $a, b \in A$. A centralizer is a mapping $T: A \to A$ such that

T(a)b = aT(b)

for all $a, b \in A$. The notion of left centralizers was introduced by Wendel [24] who used it to investigate group algebras. The general notion of centralizers on commutative Banach algebras was studied by Helgason [10] and Wang [23]. Helgason used the term *multiplier* instead of *centralizer*. In the non-commutative setting, the notions of left (right) centralizers and centralizers were introduced by Johnson [13] on semigroups, rings, algebras, Banach algebras and topological algebras.

Albas [1] generalized the notion of centralizers and introduced θ -centralizers. For a ring R, if $\theta : R \to R$ is a homomorphism, then a mapping $T : R \to R$ is said to be a left (right) θ -centralizer if

$$T(ab) = T(a)\theta(b)$$
 $(T(ab) = \theta(a)T(b))$

for all $a, b \in R$. Jordan left (right) θ -centralizers are obtained if b = a. In special case that $\theta = id_A$, we may see that a left (right) id_A -centralizer is a left (right) centralizer. T is said to be a (Jordan) θ -centralizer if it is both (Jordan) left and (Jordan) right θ -centralizer. For a 2-torsion free semiprime ring R (i.e., for $a \in R$, 2a = 0 implies a = 0, and

*Corresponding author

Email addresses: hayati@malayeru.ac.ir, bn.hayati@gmail.com (Bahman Hayati), hkhodaei@malayeru.ac.ir, hkhodaei.math@gmail.com (Hamid Khodaei)

 $aRa = \{0\}$ implies a = 0, Albas [1] proved that every Jordan θ -centralizer of R is a θ -centralizer provided that θ is surjective and $\theta(Z) = Z$, where Z is the center of R. For more properties of θ -centralizers, one can see [1]-[6] and [11, 21].

Let us mention that a Banach algebra A is not without order if there exist nonzero elements a_0 and b_0 in A such that $a_0A = Ab_0 = \{0\}$; for example, semisimple Banach algebras are without order. Wang [23] (see also [13]) showed that every centralizer on a without order Banach algebra is necessarily continuous and linear. Also, Johnson [15] proved that every left (right) centralizer on a Banach algebra with a bounded left (right) approximate identity is continuous and linear. The same result for θ -centralizers has been obtained in [21].

Miura et al. [20] showed that every approximate centralizer (multiplier) on a Banach algebra can be approximated by a centralizer. They also proved that every approximate centralizer on a without order Banach algebra is an exact centralizer. The same results for approximate θ -centralizers have been obtained in [21].

Let A and B be two algebras. A linear mapping $\theta: A \to B$ is called a triple homomorphism if

 $\theta(abc) = \theta(a)\theta(b)\theta(c)$

for all $a, b, c \in A$. It is evident that if $\theta : A \to B$ is a homomorphism, then θ is a triple homomorphism, but the converse is not true. To see, let $\phi : A \to A$ be a homomorphism, then one can see that $\theta := -\phi$ is a triple homomorphism which is not a homomorphism; for more details, see [7, 9, 17, 18, 22].

In this paper, we introduce triple θ -centralizers and weak triple θ -centralizers on an algebra A, where $\theta : A \to A$ is a triple homomorphism. We will see that the notions of triple θ -centralizers, weak triple θ -centralizers and θ -centralizers are different. We generalize the results of [23, 15, 21] on the linearity and continuity of weak triple θ -centralizers on Banach algebras. We present some observations concerning approximate weak triple θ -centralizers, which improve and extend the same results in [20, 21].

2 Triple and weak triple θ -centralizers

Let us start with the following.

Definition 2.1. Let A be an algebra and $\theta : A \to A$ be a triple homomorphism. A mapping $T : A \to A$ is said to be a triple left (right) θ -centralizer if

$$T(abc) = T(a)\theta(b)\theta(c) \quad (T(abc) = \theta(a)\theta(b)T(c))$$

for all $a, b, c \in A$. T is said to be a triple θ -centralizer if it is both triple left and right θ -centralizer.

For the case that $\theta = id_A$, we may see that a triple id_A -centralizer is a triple centralizer. Also, if we set c = a, one can see that a triple centralizer is a Jordan triple centralizer [19, p. 1398].

It is easy to see that every θ -centralizer is also a triple θ -centralizer, but the converse is not true. For illustration, see Example 2.3 (ii).

Definition 2.2. Let A be an algebra and $\theta : A \to A$ be a triple homomorphism. A mapping $T : A \to A$ is said to be a weak triple θ -centralizer if

$$T(a)\theta(b)\theta(c) = \theta(a)\theta(b)T(c)$$

for all $a, b, c \in A$.

We notice that if T is a triple θ -centralizer, then it is a weak triple θ -centralizer, but the converse is not true (see Example 2.3 (i)). However, there exist some conditions under which a weak triple θ -centralizer is a triple θ -centralizer (see Theorem 2.4).

Example 2.3. Let

$$\mathcal{A} = \left\{ \begin{bmatrix} 0 & r_1 & r_2 & r_3 \\ 0 & 0 & r_4 & r_5 \\ 0 & 0 & 0 & r_6 \\ 0 & 0 & 0 & 0 \end{bmatrix} : r_1, \dots, r_6 \in \mathbb{R} \right\}.$$

(i) Define mappings $T, \theta \colon \mathcal{A} \longrightarrow \mathcal{A}$ via

$$T\left(\left[\begin{array}{ccccc} 0 & r_1 & r_2 & r_3\\ 0 & 0 & r_4 & r_5\\ 0 & 0 & 0 & r_6\\ 0 & 0 & 0 & 0\end{array}\right]\right) = \left[\begin{array}{cccccc} 0 & r_1 & r_2 & r_5\\ 0 & 0 & r_4 & r_3\\ 0 & 0 & 0 & r_6\\ 0 & 0 & 0 & 0\end{array}\right], \quad \theta\left(\left[\begin{array}{cccccccc} 0 & r_1 & r_2 & r_3\\ 0 & 0 & r_4 & r_5\\ 0 & 0 & 0 & r_6\\ 0 & 0 & 0 & 0\end{array}\right]\right) = \left[\begin{array}{ccccccccc} 0 & r_1 & r_5 & r_3\\ 0 & 0 & r_4 & r_2\\ 0 & 0 & 0 & r_6\\ 0 & 0 & 0 & 0\end{array}\right].$$

Then θ is a triple homomorphism on \mathcal{A} , but it is not a homomorphism and

where

$$\mathbf{a} = \begin{bmatrix} 0 & r_1 & r_2 & r_3 \\ 0 & 0 & r_4 & r_5 \\ 0 & 0 & 0 & r_6 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 0 & s_1 & s_2 & s_3 \\ 0 & 0 & s_4 & s_5 \\ 0 & 0 & 0 & s_6 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0 & t_1 & t_2 & t_3 \\ 0 & 0 & t_4 & t_5 \\ 0 & 0 & 0 & t_6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

are arbitrary elements of \mathcal{A} . Thus T is a weak triple θ -centralizer, but it is not a triple left (right) θ -centralizer. On the other hand, we have

$$T(\mathbf{ab}) \neq T(\mathbf{a})\theta(\mathbf{b}), \ T(\mathbf{ab}) \neq \theta(\mathbf{a})T(\mathbf{b}), \ \theta(\mathbf{a})T(\mathbf{b}) \neq T(\mathbf{a})\theta(\mathbf{b}),$$

whence T is not a left (right) θ -centralizer.

(ii) Taking θ as the above, we may see that if $S = id_{\mathcal{A}}$, then

$$S(\mathbf{abc}) = S(\mathbf{a})\theta(\mathbf{b})\theta(\mathbf{c}) = \theta(\mathbf{a})\theta(\mathbf{b})S(\mathbf{c})$$

for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{A}$. Hence S is a triple θ -centralizer. On the other hand, we have

$$S(\mathbf{ab}) \neq S(\mathbf{a})\theta(\mathbf{b}), \quad S(\mathbf{ab}) \neq \theta(\mathbf{a})S(\mathbf{b}),$$

whence S is not a left (right) θ -centralizer.

Let us mention that an algebra A is factorizable if for each a in A, there exist a_1 and a_2 in A such that $a = a_1a_2$. By a classical theorem due to Cohen [4], Banach algebras with a bounded approximate identity are factorizable.

Theorem 2.4. Let A be a without order factorizable algebra and $\theta : A \to A$ be a surjective triple homomorphism. If $T : A \to A$ is a weak triple θ -centralizer, then T is a linear triple θ -centralizer.

Proof. Let a, b, c be arbitrary elements of A. Take x in A, since A is facotizable there exist x_1 and x_2 in A such that $x = x_1x_2$. On the other hand, θ is surjective, so there exist y_1 and y_2 in A such that $\theta(y_1) = x_1$ and $\theta(y_2) = x_2$. We have

$$\begin{aligned} xT(abc) &= \theta(y_1)\theta(y_2)T(abc) \\ &= T(y_1)\theta(y_2)\theta(abc) \\ &= (T(y_1)\theta(y_2)\theta(a))\theta(b)\theta(c) \\ &= (\theta(y_1)\theta(y_2)T(a))\theta(b)\theta(c)) \\ &= \theta(y_1)\theta(y_2)((T(a)\theta(b)\theta(c))) \\ &= x(\theta(a)\theta(b)T(c)). \end{aligned}$$

Hence,

 $x(T(abc) - \theta(a)\theta(b)T(c)) = 0,$

and this is true for each $x \in A$. Since A is without order, so

$$T(abc) - \theta(a)\theta(b)T(c) = 0.$$

Thus, T is a triple right θ -centralizer. Similarly, it is proved that T is a triple left θ -centralizer. Thus T is a triple θ -centralizer.

To see that T is linear, let $\lambda \in \mathbb{C}$, $a, b \in A$ and

$$\Lambda := T(\lambda a + b) - \lambda T(a) - T(b).$$

Let $x \in A$ be arbitrary, since again A is factorizable and θ is surjective, there exists $x_1, x_2, y_1, y_2 \in A$ such that $x = x_1x_2$ and $x_1 = \theta(y_1), x_2 = \theta(y_2)$. Now we can see that

$$x\Lambda = \theta(y_1)\theta(y_2)[T(\lambda a + b) - \lambda T(a) - T(b)]$$

= $\theta(y_1)\theta(y_2)T(\lambda a + b) - \theta(y_1)\theta(y_2)\lambda T(a) - \theta(y_1)\theta(y_2)T(b)$
= $T(y_1)\theta(y_2)\theta(\lambda a + b) - \lambda T(y_1)\theta(y_2)\theta(a) - T(y_1)\theta(y_2)\theta(b)$
= $T(y_1)\theta(y_2)[\theta(\lambda a + b) - \lambda\theta(a) - \theta(b)]$
= 0.

This is true for each $x \in A$. Since A is without order, so $\Lambda = 0$ for all $a, b \in A$ and $\lambda \in \mathbb{C}$; that is, T is linear. \Box

Remark 2.5. Let A be a factorizable algebra and $\theta : A \to A$ be a homomorphism. If $T : A \to A$ is a triple θ -centralizer, then T is a θ -centralizer.

To see, let a, b be arbitrary elements of A. Since A is factorizable, there exist $b_1, b_2 \in A$ such that $b = b_1b_2$. Since T is a triple left θ -centralizer, so

$$T(ab) = T(ab_1b_2) = T(a)\theta(b_1)\theta(b_2) = T(a)\theta(b_1b_2) = T(a)\theta(b).$$

Thus T is a left θ - centralizer. Similarly, one can see that T is a right θ -centralizer and so T is a θ -centralizer.

Corollary 2.6. Let A be a without order factorizable algebra and $\theta : A \to A$ be a surjective homomorphism. If $T : A \to A$ is a weak triple θ -centralizer, then T is a linear θ -centralizer.

Proof. By Theorem 2.4, T is a linear triple θ -centralizer. Thus, by Remark 2.5, T is a linear θ -centralizer. \Box

We introduce a useful result that can be easily derived from Eshaghi et al. [7, Theorem 2.4].

Lemma 2.7. Let A be a semisimple Banach algebra. Then every surjective triple homomorphism $\theta : A \to A$ is continuous.

Theorem 2.8. Let A be a semisimple Banach algebra with a bounded left approximate identity and $\theta : A \to A$ be a surjective triple homomorphism. Then every weak triple θ -centralizer $T : A \to A$ is linear and continuous.

Proof. Let $a_m \to 0$ in A, by Johnson's theorem there exist $c \in A$ and a sequence $(b_m) \in A$ such that $b_m \to 0$ and $a_m = cb_m$ for each m, see [15]. On the other hand, by Cohen's factorization theorem, there exist $c_1, c_2 \in A$ such that $c = c_1c_2$. By assumptions and Theorem 2.4, T is a linear triple left θ -centralizer, so we have

$$T(a_m) = T(cb_m) = T(c_1c_2b_m) = T(c_1)\theta(c_2)\theta(b_m).$$

By Lemma 2.7, θ is a continuous map. It forces the last sentence approaches to zero whenever $m \to \infty$; that is, T is continuous. \Box

Corollary 2.9. Let A be a C*-algebra and $\theta : A \to A$ be a surjective triple homomorphism. Then every weak triple θ -centralizer $T : A \to A$ is linear and continuous.

3 Approximate weak triple θ -centralizers

Here, we give some sufficient conditions under which every approximate weak triple θ -centralizer is a linear triple θ -centralizer.

Theorem 3.1. Let A be a without order factorizable Banach algebra, $\theta : A \to A$ be a surjective triple homomorphism and $\ell \in \{-1, 1\}$ be fixed. Let $T : A \to A$ be a mapping satisfy

$$\|\theta(a)\theta(b)T(c) - T(a)\theta(b)\theta(c)\| \le \phi(a, b, c),$$

where $\phi: A^3 \to [0,\infty)$ is a mapping such that

$$\lim_{k \to \infty} \frac{\phi(2^{\ell k} a, b, c)}{2^{\ell k}} = 0$$
(3.1)

for all $a, b, c \in A$. Then T is a linear triple θ -centralizer.

Proof. Let $\mu \in \mathbb{C}$ and $a \in A$ be arbitrary, we show that $T(\mu a) = \mu T(a)$. Take $x \in A$, since A is factorizable and θ is surjective, there exist x_1, x_2 and y_1, y_2 in A such that $x = x_1 x_2$, $\theta(y_1) = x_1$, $\theta(y_2) = x_2$. Then

$$\begin{aligned} \|2^{\ell k} x[T(\mu a) - \mu T(a)]\| &= \|\theta(2^{\ell k} y_1) \theta(y_2)[T(\mu a) - \mu T(a)]\| \\ &\leq \|\theta(2^{\ell k} y_1) \theta(y_2) T(\mu a) - T(2^{\ell k} y_1) \theta(y_2) \theta(\mu a)\| \\ &+ \|T(2^{\ell k} y_1) \theta(y_2) \theta(\mu a) - \theta(2^{\ell k} y_1) \theta(y_2)(\mu T(a))\| \\ &\leq \phi(2^{\ell k} y_1, y_2, a) + |\mu| \phi(2^{\ell k} y_1, y_2, a). \end{aligned}$$

So we have

$$\|x[T(\mu a) - \mu T(a)]\| \le \frac{1}{2^{\ell k}} [\phi(2^{\ell k}b, c, a) + |\mu|\phi(2^{\ell k}b, c, a)].$$

By letting $k \to \infty$, we get

$$x[T(\mu a) - \mu T(a)] = 0.$$

Since A is without order and this is true for each $x \in A$, $T(\mu a) - \mu T(a) = 0$ for all $a \in A$ and $\lambda \in \mathbb{C}$. In spacial case that $\mu = 2^{\ell k}$, we get $T(a) = \frac{1}{2^{\ell k}}T(2^{\ell k}a)$. Thus for each $a, b, c \in A$, we have

$$\begin{split} \|\theta(a)\theta(b)T(c) - T(a)\theta(b)\theta(c)\| &= \frac{1}{2^{\ell k}} \|2^{\ell k}\theta(a)\theta(b)T(c) - 2^{\ell k}T(a)\theta(b)\theta(c))\| \\ &= \frac{1}{2^{\ell k}} \|\theta(2^{\ell k}a)\theta(b)T(c) - T(2^{\ell k}a)\theta(b)\theta(c)\| \\ &\leq \frac{1}{2^{\ell k}}\phi(2^{\ell k}a, b\, c). \end{split}$$

By taking limit whenever $k \to \infty$, the last sentence approaches to zero; that is, T is a weak triple θ -centralizer. By Theorem 2.4, T is a linear triple θ -centralizer. \Box

Corollary 3.2. Let A be a without order factorizable Banach algebra, $\theta : A \to A$ be a surjective triple homomorphism, $\ell \in \{-1, 1\}$ be fixed and ϵ, r be positive real numbers with $\ell r < \ell$. If $T : A \to A$ is a mapping such that

$$\|\theta(a)\theta(b)T(c) - T(a)\theta(b)\theta(c)\| \le \epsilon \|a\|^r \|b\|^r \|c\|^r$$

for all $a, b, c \in A$, then T is a linear triple θ -centralizer.

Proof. Set $\phi(a, b, c) := \epsilon ||a||^r ||b||^r ||c||^r$ and use Theorem 3.1. \Box

Theorem 3.3. Let A be a Banach algebra (need not be without order), $\theta : A \to A$ be a triple homomorphism (need not be surjective), $\ell \in \{-1, 1\}$ be fixed and $\varphi : A^2 \to [0, \infty)$ and $\phi : A^3 \to [0, \infty)$ be mappings such that

$$\sigma\left(a,b\right) := \sum_{i=\frac{1-\ell}{2}}^{\infty} \frac{\varphi\left(2^{\ell i}a, 2^{\ell i}b\right)}{2^{\ell i}} < \infty, \quad \lim_{k \to \infty} \frac{\phi\left(2^{\ell k}a, b, 2^{\ell k}c\right)}{4^{\ell k}} = 0$$

for all $a, b, c \in A$. If $f : A \to A$ is a mapping satisfying

$$\|f(a+b) - f(a) - f(b)\| \le \varphi(a,b), \quad \|\theta(a)\theta(b)f(c) - f(a)\theta(b)\theta(c)\| \le \phi(a,b,c)$$

for all $a, b, c \in A$, then there exists a unique additive weak triple θ -centralizer $T: A \to A$ such that

$$||f(a) - T(a)|| \le \frac{\sigma(a, a)}{2}$$
(3.2)

for all $a \in A$.

Proof. By [8] and [16, Corollary 2.19], there exists a unique additive mapping $T: A \to A$ such that (3.2) holds for all $a \in A$. The mapping T is given by

$$T(a) := \lim_{k \to \infty} \frac{1}{2^{\ell k}} f\left(2^{\ell k} a\right)$$

for all $a \in A$. On the other hand, by the homogeneity of θ , we have

$$\begin{aligned} \left\| \theta(a)\theta(b)\frac{1}{2^{\ell k}}f\left(2^{\ell k}c\right) - \frac{1}{2^{\ell k}}f\left(2^{\ell k}a\right)\theta(b)\theta(c) \right\| \\ &= \frac{1}{4^{\ell k}} \left\| \theta(2^{\ell k}a)\theta(b)f\left(2^{\ell k}c\right) - f\left(2^{\ell k}a\right)\theta(b)\theta(2^{\ell k}c) \right\| \\ &\leq \frac{1}{4^{\ell k}}\phi\left(2^{\ell k}a,b,2^{\ell k}c\right) \end{aligned}$$

for all $a, b, c \in A$. The last sentence approaches to zero whenever $k \to \infty$; that is,

$$\theta(a)\theta(b)T(c) = T(a)\theta(b)\theta(c)$$

for all $a, b, c \in A$. So T is an additive weak triple θ -centralizer. \Box

Corollary 3.4. Let A be a Banach algebra (need not be without order), $\theta : A \to A$ be a triple homomorphism (need not be surjective), $\ell \in \{-1, 1\}$ be fixed and ϵ, p, r be positive real numbers with $\ell p, \ell r < \ell$. If $f : A \to A$ is a mapping such that

$$\|f(a+b) - f(a) - f(b)\| \le \epsilon \left(\|a\|^p + \|b\|^p\right), \quad \|\theta(a)\theta(b)f(c) - f(a)\theta(b)\theta(c)\| \le \epsilon \|a\|^r \|b\|^r \|c\|^r$$

for all $a, b, c \in A$, then there exists a unique additive weak triple θ -centralizer $T: A \to A$ such that

$$||f(a) - T(a)|| \le \frac{\ell\epsilon}{1 - 2^{p-1}} ||a||^p$$

for all $a \in A$.

Proof. Set $\varphi(a, b) := \epsilon (||a||^p + ||b||^p), \ \phi(a, b, c) := \epsilon ||a||^r ||b||^r ||c||^r$ and use Theorem 3.3. \Box

Let A and B be Banach algebras. A linear mapping $T: A \to B$ is said to be an almost homomorphism (or almost multiplicative linear mapping) if there exists $\epsilon \ge 0$ such that

$$||T(ab) - T(a)T(b)|| \le \epsilon ||a|| ||b||$$

for all $a, b \in A$ (see, e.g., [12, 14]). Also, a linear mapping $T : A \to B$ is said to be an almost triple homomorphism if there exists $\epsilon \ge 0$ such that

$$||T(abc) - T(a)T(b)T(c)|| \le \epsilon ||a|| ||b|| ||c||$$

for all $a, b, c \in A$ (see, e.g., [17]).

Theorem 3.5. Let A be a semisimple Banach algebra with a bounded left approximate identity and $\theta : A \to A$ be a surjective triple homomorphism. If $T : A \to A$ is a weak triple θ -centralizer, then T is a continuous almost triple homomorphism.

Proof. By Theorems 2.4 and 2.8, T is a continuous linear triple left θ -centralizer. Also θ is a continuous linear map, so

 $\|\theta(a)\| \le \|\theta\| \|a\|, \qquad \|T(a)\| \le \|T\| \|a\|$

for all $a \in A$. Thus

$$\begin{aligned} \|T(abc) - T(a)T(b)T(c)\| &= \|T(a)\theta(b)\theta(c) - T(a)T(b)T(c)\| \\ &\leq \|T(a)\| \|\theta(b)\theta(c) - T(b)T(c)\| \\ &\leq \|T(a)\| (\|\theta(b)\| \|\theta(c)\| + \|T(b)\| \|T(c)\|) \\ &\leq \|T\| \|a\| (\|\theta\|^2 \|b\| \|c\| + \|T\|^2 \|b\| \|c\|) \\ &= \|T\| \|\theta\|^2 \|a\| \|b\| \|c\| + \|T\|^3 \|a\| \|b\| \|c\| \\ &= \|T\| (\|\theta\|^2 + \|T\|^2) \|a\| \|b\| \|c\| \end{aligned}$$

for all $a, b, c \in A$. By taking $\epsilon = ||T||(||\theta||^2 + ||T||^2)$, we see that T is almost triple homomorphism. \Box

Corollary 3.6. Let A be a C*-algebra and $\theta : A \to A$ be a surjective triple homomorphism. If $T : A \to A$ is a weak triple θ -centralizer, then T is a continuous almost triple homomorphism.

References

- [1] E. Albas, On τ -centralizers of semiprime rings, Sib. Math. J. 48 (2007), 191–196.
- [2] S. Ali and C. Haeitinger, Jordan α -centralizers in rings and some applications, Bol. Soc. Paran. Math. 26 (2008), 71–80.
- [3] S. Ali and S. Huang, On left α-multipliers and commutativity of semiprime rings, Commun. Korean Math. Soc. 27 (2012), 69–76.
- [4] P.J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205.
- [5] W. Cortis and C. Haetinger, On Lie ideals and left Jordan σ-centralizers of 2-torsion free rings, Math. J. Okayama Univ. 51 (2009), 111–119.
- [6] M.N. Daif, M.S.T. Al-Sayiad and N.M. Muthana, An identity on θ-centralizers of semiprime rings, Int. Math. Forum 3 (2008), 937–944.
- M. Eshaghi Gordji, A. Jabbari and E. Karapinar, Automatic continuity of surjective n-homomorphisms on Banach algebras. Bull. Iran. Math. Soc. 41 (2015), 1207–1211.
- [8] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping, J. Math. Anal. Appl. 184 (1994), 431–436.
- [9] S. Hejazian, M. Mirzavaziri and M.S. Moslehian, *n-Homomorphisms*, Bull. Iranian. Math. Soc. **31** (2005), 13–23.
- [10] S. Helgason, Multipliers of Banach algebras, Ann. Math. 64 (1956), 240-254.
- [11] S. Huang and C. Haetinger, On θ -centralizers of semiprime rings, Demonst. Math. 45 (2012), 29–34.
- [12] K. Jarosz, Perturbations of Banach algebras, Lecture Notes in Math. 1120, Springer-Verlag, Berlin, 1985.
- [13] B.E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299–320.
- B.E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), 294–316.
- [15] B.E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639–640.
- [16] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48. Springer, New York, 2011.

- [17] A.Z. Kazempour, Automatic continuity of almost 3-homomorphisms and almost 3-Jordan homomorphisms, Adv. Oper. Theory 5 (2020), 1340–1349.
- [18] H. Khodaei, Asymptotic behavior of n-Jordan homomorphisms, Mediterr. J. Math. 17 (2020), Art. 143, 1–9.
- [19] C.K. Liu and W.K. Shiue, Generalized Jordan triple (θ, ϕ) -Derivations on semiprime rings, Taiwane J. Math. 11 (2007), 1397–1406.
- [20] T. Miura, G. Hirasawa and S.E. Takahasi, Stability of multipliers on Banach algebras, Internat. J. Math. Math. Sci. 45 (2004), 2377–2381.
- [21] I. Nikoufar and Th.M. Rassias, On θ-centralizers of semiprime Banach *-algebras, Ukranian Math. J. 66 (2014), 300–310.
- [22] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc. 361 (2009), 1949–1961.
- [23] J.K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math., 11 (1961), 1131–1149.
- [24] J.G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251–261.