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Abstract

In this article, we extend some recently fixed point theorems in the setting of G-fuzzy metric spaces. We introduce
some new concepts of contractions called γ-contractions and γ-weak contractions. We prove some fixed point theorems
for mappings providing γ-contractions and γ-weak contractions. On the other hand, we consider a more general class
of auxiliary functions in the contractivity condition.
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1 Introduction

Fixed point theory is a very important concept in mathematics. In 1922, Banach created a famous result called
Banach contraction principle in the concept of the fixed point theory which states sufficient conditions for the existence
and uniqueness of a fixed point[1].

There are two well-known extensions of the notion of metric space in which imprecise models are considered: fuzzy
metric spaces (see [11]) and probabilistic metric spaces [3, 14, 15]. The two concepts are very similar, but they are
different in nature. The concept of a fuzzy metric space was introduced in different ways by some authors (see [2, 4]).
Gregori and Sapena [4] introduced the notion of fuzzy contractive mappings and gave some fixed point theorems
for complete fuzzy metric spaces in the sense of George and Veeramani, and also for Kramosil and Michalek’s fuzzy
metric spaces which are complete in Grabiec’s sense. Mihet [8] developed the class of fuzzy contractive mappings of
Gregori and Sapena, considered these mappings in non-Archimedean fuzzy metric spaces in the sense of Kramosil and
Michalek, and obtained a fixed point theorem for fuzzy contractive mappings. Lots of different types of fixed point
theorems has been presented by many authors by expanding the Banach’s result, simultaneously (see [16, 17]).

In recent times, many fixed point theorems have been presented in the setting of probabilistic metric space (X,F, ∗)
in which F is a distance distribution function. Many of them have been inspired by their corresponding results on
metric spaces. One of the most attractive and effective ways to introduce contractivity conditions in the probabilistic
framework is based on considering some terms like in the following expression:

1

F (x, y, t)
− 1, where x, y ∈ X and t > 0,
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(see [5, 13]). For instance, in [7], Kutbi et al. stated the following result (where Φ and Ψ are appropriate collections
of auxiliary functions that we will describe in Section 3).

Theorem 1.1. (Kutbi et al. [7], Theorem 2.1) Let (X,F, ∗) be a G-complete Menger space and let f : X → X be a
mapping. Assume that there exist a constant c ∈ (0, 1) and two functions ϕ ∈ Φ and ψ ∈ Ψ satisfying the inequality

1

F (fx, fy, ϕ(ct))
− 1 ≤ ψ(

1

F (x, y, ϕ(t))
− 1),

for all x, y ∈ X and all t > 0 such that F (x, y, ϕ(t)) > 0. Then f has a unique fixed point.

In 2005, Z. Mustafa and B. Sims introduced a new class of generalized metric spaces (see [9, 10]), which are called
G-metric spaces as generalization of metric space (X, d), to develop and to introduce a new fixed point theory for a
variety of mappings in this new setting, also to extend known metric space theorems to a more general setting.

In this work, using a mapping γ : [0, 1) → R we introduce some new types of contractions called γ-contractions and
γ-weak contractions. Later, we prove some fixed point theorems for mappings providing γ-contractions and γ-weak
contractions in non-Archimedean G-fuzzy metric spaces. Also, some examples are supplied in order to support the
usability of our results. On the other hand, we consider a more general class of auxiliary functions which generate
some contractive conditions, and we show that the function t→ 1/t− 1 (which appears in many fixed point theorems
in the fuzzy context) can be replaced by more appropriate and general functions.

Before proving our main results, we recall some basic definitions and facts which will be used later in this paper.

Definition 1.2. [14] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (in short,
continuous t-norm) if it satisfies the following conditions:

(TN-1) ∗ is commutative and associative,

(TN-2) ∗ is continuous,

(TN-3) ∗(a, 1) = a for every a ∈ [0, 1],

(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

Definition 1.3. [17] A G-fuzzy metric space is an ordered triple (X,G, ∗) such that X is a nonempty set, ∗ is a
continuous t-norm, and G is a fuzzy set on X3 × (0,∞), satisfying the following conditions, for all s, t > 0:

(GF-1) G(x, x, y, t) < 1 for all x, y ∈ X with x ̸= y,

(GF-2) G(x, x, y, t) ≤ G(x, y, z, t) for all x, y, z ∈ X with y ̸= z,

(GF-3) G(x, y, z, t) = 1, then x = y = z,

(GF-4) G(x, y, z, t) = G(p(x, y, z), t), where p is a permutation function,

(GF-5) G(x, y, z, t+ s) ≥ G(x, a, a, s) ∗G(a, y, z, t) for all x, y, z, a ∈ X,

(GF-6) G(x, y, z, .) : (0,∞) → [0, 1] is continuous.

If, in the above definition, the triangular inequality (GF-5) is replaced by

G(x, y, z,max{s, t}) ≥ G(x, a, a, s) ∗G(a, y, z, t)

for all x, y, z, a ∈ X and s, t > 0, or equivalently,

G(x, y, z, t) ≥ G(x, a, a, t) ∗G(a, y, z, t) (1.1)

the triple (X,G, ∗) is called a non-Archimedean G-fuzzy metric space [6].

Example 1.4. Let X be a nonempty set and let G be a G-metric on X. Denote ∗(a, b) = ab for all a, b ∈ [0, 1]. For
each t > 0, G(x, y, z, t) = t/(t+G(x, y, z)) is a G-fuzzy metric on X.

Definition 1.5. Let {xn} be a sequence in a G-fuzzy metric space (X,G, ∗). We will say that:
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� {xn} converges to x if and only if lim
n→∞

G(xn, xn, x, t) = 1; i.e., for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N
such that G(xn, xn, x, t) > 1− λ for all n ≥ n0 (in such a case, we will write {xn} → x);

� {xn} is a Cauchy sequence if and only if for all t > 0 and all λ ∈ (0, 1), there exists n0 ∈ N such that
G(xn, xn, xm, t) > 1 − λ for all n,m ≥ n0. {xn} is a G-Cauchy sequence if and only if for all t > 0 and all
λ ∈ (0, 1), there exists n0 ∈ N such that G(xn, xn, xn+p, t) > 1 − λ for all n ≥ n0 and p > 0; in other words,
lim
n→∞

G(xn, xn, xn+p, t) = 1.

� The G-fuzzy metric space (X,G, ∗) is called complete (G-complete) if every Cauchy (G-Cauchy) sequence is
convergent.

Lemma 1.6. (see [17]) Let (X,G, ∗) be a G-fuzzy metric space. Then, G(x, y, z, t) is nondecreasing with respect to
t for all x, y, z ∈ X.

Lemma 1.7. (see [17]) Let (X,G, ∗) be a G-fuzzy metric space. Then, G is a continuous function on X3 × (0,∞).

It is easy to prove that a G(x, y, z, t) in a non-Archimedean G-fuzzy metric space (X,G, ∗) is also nondecreasing
with respect to t and a continuous function for all x, y, z ∈ X.

2 New types of contractive mappings

Definition 2.1. Let γ : [0, 1) → R be a strictly increasing continuous mapping and for each sequence {an}n∈N of
positive numbers lim

n→∞
an = 1 if and only if lim

n→∞
γ(an) = ∞. Let Γ be the family of all γ functions.

Let (X,G, ∗) be a non-Archimedean G-fuzzy metric space. A mapping T : X → X is said to be a γ-contraction if
there exists a δ > 0 such that

G(Tx, Ty, Tz, t) < 1 ⇒ γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ (2.1)

for all x, y, z ∈ X, t > 0 and γ ∈ Γ.

When we consider in (2.1) the different types of the mapping γ, then we obtain a variety of contractions, some of
them are of a type known in the literature. See the following example:

Example 2.2. The different types of the mapping γ ∈ Γ are as follows:

γ1 =
1

(1− x)
, γ2 = ln

1

(1− x)
, γ3 =

1

(1− x)
+ x, γ4 =

1

(1− x2)
, γ5 =

1√
1− x

.

If γ = ln 1
(1−x) . Then each mapping T : X → X satisfying (2.1) is a γ-contraction such that

G(Tx, Ty, Tz, t) ≥ k(δ)G(x, y, z, t),

for all x, y, z ∈ X, t > 0 and G(Tx, Ty, Tz, t) < 1, in which k(δ) = G(x,y,z,t)−1+eδ

eδG(x,y,z,t)
≥ 1.

Note that from γ and (2.1) it is easy to conclude that every γ-contraction T is a contractive mapping, that is,

G(Tx, Ty, Tz, t) > G(x, y, z, t) (2.2)

for all x, y, z ∈ X, such that Tx ̸= Ty ̸= Tz. Thus every γ-contraction is a continuous mapping. Now we state one of
the main results of the present manuscript.

Theorem 2.3. Let G(X,G, ∗) be a complete non-Archimedean G-fuzzy metric space and let T : X → X be a
γ-contraction. Then T has a unique fixed point in X.
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Proof . Let x0 ∈ X be arbitrary and fixed. Define sequence {xn} by

Txn = xn+1, for all n ∈ N. (2.3)

If xn = xn+1, then xn+1 is the fixed point of T ; then the proof is finished. Suppose that xn ̸= xn+1 for all n ∈ N.
Therefore by (2.1), we get

γ(G(Txn−1, Txn−1, Txn, t)) ≥ γ(G(xn−1, xn−1, xn, t)) + δ. (2.4)

Repeating this process, we have

γ(G(Txn−1, Txn−1, Txn, t)) ≥ γ(G(xn−1, xn−1, xn, t)) + δ

= γ(G(Txn−2, Txn−2, Txn−1, t)) + δ

≥ γ(G(xn−2, xn−2, xn−1, t)) + 2δ...

≥ γ(G(x0, x0, x1, t)) + nδ.

(2.5)

Letting n→ ∞, from (2.5) we get

lim
n→∞

γ(G(Txn−1, Txn−1, Txn, t)) = +∞. (2.6)

Then, we have
lim

n→∞
G(Txn−1, Txn−1, Txn, t) = 1. (2.7)

With the same process, we have limn→∞G(Txn−1, Txn, Txn, t) = 1. Now, we want to show that {xn} is a Cauchy
sequence. Suppose to the contrary, we assume that {xn} is not a Cauchy sequence. Then there are λ ∈ (0, 1) and
t0 > 0 such that for all k ∈ N there exist n(k),m(k) ∈ N with n(k) > m(k) > k and

G(xn(k), xn(k), xm(k), t0) ≤ 1− λ. (2.8)

Assume that m(k) is the least integer exceeding n(k) satisfying inequality (2.8). Then, we have

G(xn(k), xn(k), xm(k)−1, t0) > 1− λ, (2.9)

and so, for all k ∈ N and from (1.1), we get

1− λ ≥ G(xn(k), xn(k), xm(k), t0)

= G(xm(k), xn(k), xn(k), t0)

≥ G(xm(k), xm(k)−1, xm(k)−1, t0) ∗G(xm(k)−1, xn(k), xn(k), t0)

≥ G(xm(k), xm(k)−1, xm(k)−1, t0) ∗ (1− λ).

(2.10)

Letting k → ∞ in (2.10) and using (2.7), we obtain

lim
k→∞

G(xn(k), xn(k), xm(k), t0) = 1− λ. (2.11)

From (1.1), we get

G(xm(k)+1, xn(k)+1, xn(k)+1, t0) ≥G(xm(k)+1, xm(k), xm(k), t0) ∗G(xm(k), xn(k), xn(k), t0) ∗G(xn(k), xn(k)+1, xn(k)+1, t0),

so, letting k → ∞ and using (2.7), we have

lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+1, t0) ≥ 1− λ. (2.12)

From (2.8), we obtain

1− λ ≥ G(xm(k), xn(k), xn(k), t0)

≥ G(xm(k), xm(k)+1, xm(k)+1, t0) ∗G(xm(k)+1, xn(k)+1, xn(k)+1, t0) ∗G(xn(k)+1, xn(k), xn(k), t0),
(2.13)
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and so by taking the limit as k → ∞ in (2.13) and from (2.7) and (2.12), we have

lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+1, t0) = 1− λ. (2.14)

By applying inequality (2.1) with x = y = xn(k) and z = xm(k)

γ(G(xn(k)+1, xn(k)+1, xm(k)+1, t0)) ≥ γ(G(xn(k), xn(k), xm(k), t0)) + δ. (2.15)

Taking the limit k → ∞ in (2.15), applying (2.1), from (2.11), (2.14), and the continuity of γ, we obtain

γ(1− λ) ≥ γ(1− λ) + δ,

which is a contradiction. Thus {xn} is a Cauchy sequence in X. From the completeness of (X,G, ∗) there exists x ∈ X
such that lim

n→∞
xn = x. Finally, the continuity of T and G yields

G(Tx, Tx, x, t) = lim
n→∞

G(Txn, Txn, xn, t) = lim
n→∞

G(xn+1, xn+1, xn, t) = 1.

Now, we show that T has a unique fixed point. Suppose that x and y are two fixed points of T . Indeed, if for
x, y ∈ X, Tx = x ̸= y = Ty, then we get γ(G(x, x, y, t)) ≥ γ(G(x, x, y, t)) + δ, which is a contradiction. Thus, T has a
unique fixed point. Hence, the proof is completed. □

Example 2.4. Let X = [0, 1), ∗(a, b) = min{a, b}, and

G(x, y, z, t) =

{
1, if x = y = z,

1
1+max{x,y,z} , otherwise.

(2.16)

for all t > 0. Let γ : [0, 1) → R such that γ(x) = 1/1− x for all x ∈ [0, 1) and define T : X → X by T (x) = 2x2/5 for
all x ∈ X. Clearly, (X,G, ∗) is a complete non-Archimedean G-fuzzy metric space.

Case 1. We assume that x, y, z ∈ (0, 1). Since x2 < x, y2 < y and z2 < z, max{x, y, z} > max{Tx, Ty, Tz}. So,
there exists a δ > 0 such that

1

max{Tx, Ty, Tz}
+ 1 ≥ 1

max{x, y, z}
+ 1 + δ.

It is easy to see that
γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z)) + δ.

Case 2. Let x = 0 and y, z ∈ (0, 1). Since x2 = 0, y2 < y and z2 < z, then max{x, y, z} = max{y, z} >
max{Tx, Ty, Tz} = max{Ty, Tz}. Hence, we have

G(Tx, Ty, Tz, t) =
1

1 +max{Tx, Ty, Tz}
>

1

1 + max{x, y, z}
= G(x, y, z, t).

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ.

Case 3. Let x = y = 0 and z ∈ (0, 1), it is easy to see that,

γ(G(Tx, Ty, Tz, t)) ≥ γ(G(x, y, z, t)) + δ.

Therefore, T is a γ-contraction. Then all the conditions of Theorem (2.3) hold and T has the unique fixed point
x = 0.

Definition 2.5. Let (X,G, ∗) be a non-Archimedean G-fuzzy metric space. A mapping T : X → X is said to be a
γ-weak contraction if there exists a δ > 0 such that G(Tx, Ty, Tz, t) < 1 implies that

γ(G(Tx, Ty, Tz, t)) ≥γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ, (2.17)

for all x, y, z ∈ X and γ ∈ Γ. Note that every γ-contraction is a γ-weak contraction. But the converse is not true.
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Example 2.6. Let X = A ∪ B, where A = {1/10, 1/2, 1, 2, 3}, B = [4, 5]. ∗(a, b) = min{a, b} and G(x, y, x, t) =
min{x, y, z}/max{x, y, z} for all t > 0. Clearly, (X,G, ∗) is a complete non-Archimedean G-fuzzy metric space. Let
γ : [0, 1) → R such that γ(x) = 1/

√
1− x for all x ∈ [0, 1) and define T : X → X by{

1
10 , if x ∈ A,
1
2 , if x ∈ B.

Since T is not continuous, T is not γ-contraction by (2.2). Now, we show that T is a γ-weak contraction for all
x ∈ X.

Case 1. Let x = 1 and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

1

10
= min

{
1

max{y, z}
,
1

10
,
1

2y
,
1

2z

}
=min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥ γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

Case 2. Let x ∈ {2, 3} and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

1

10x
= min

{
x

max{y, z}
,

1

10x
,
1

2y
,
1

2z

}
=min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥ γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

Case 3. Let x ∈ {1/10, 1/2} and y, z ∈ B,

G(Tx, Ty, Tx, t) =
1

5
>

x

max{y, z}
= min

{
x

max{y, z}
,
1

10
,
1

2y
,
1

2z

}
=min{G(x, y, x, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}.

So, there exists a δ > 0 such that

γ(G(Tx, Ty, Tz, t)) ≥ γ(min{G(x, y, z, t), G(x, x, Tx, t), G(y, y, Ty, t), G(z, z, Tz, t)}) + δ.

By proving the rest of cases, we get T is a γ-weak contraction.

Theorem 2.7. Let (X,G, ∗) be a complete non-Archimedean G-fuzzy metric space and let T : X → X be a γ-weak
contraction. Then T has a unique fixed point in X.

Proof . Let x0 ∈ X be arbitrary and fixed. Define sequence {xn} by

Txn = xn+1, for all n ∈ N.

If xn = xn+1, then xn+1 is the fixed point of T ; then the proof is finished. Suppose that xn ̸= xn+1 for all n ∈ N.
Therefore by (2.17), we have

γ(G(Txn−1, Txn−1, Txn, t)) ≥ γ(min{G(xn−1, xn−1, xn, t), G(xn−1, xn−1, Txn−1, t), G(xn, xn, Txn, t)}) + δ

=γ(min{G(xn−1, xn−1, xn, t), G(n−1, xn−1, xn, t), G(xn, xn, xn+1, t)}) + δ

=γ(min{G(xn−1, xn−1, xn, t), G(xn, xn, xn+1, t)}) + δ. (2.18)
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If there exists n ∈ N such that

min{G(xn−1, xn−1, xn, t), G(xn, xn, xn+1, t)} = G(xn, xn, xn+1, t),

it follows from (2.18) that

γ(G(Txn−1, Txn−1, Txn, t)) = γ(G(xn, xn, xn+1, t))

≥ γ(G(xn, xn, xn+1, t)) + δ

> γ(G(xn, xn, xn+1, t)),

which is a contradiction, therefore,

min{G(xn−1, xn−1, xn, t), G(xn, xn, xn+1, t)} = G(xn−1, xn−1, xn, t), (2.19)

for all n ∈ N. That is, from (2.18) and (2.19) and the property of γ, we obtain

γ(G(xn, xn, xn+1, t)) ≥ γ(G(xn−1, xn−1, xn, t)) + δ,

for all n ∈ N. It implies that
γ(G(xn, xn, xn+1, t)) ≥ γ(G(x0, x0, x1, t)) + nδ.

By taking n→ ∞ we get,
lim
n→∞

γ(G(xn, xn, xn+1, t)) = +∞.

Then, we have
lim
n→∞

G(xn, xn, xn+1, t) = 1.

So, by the same argument as in the proof of Theorem (2.3), we get {xn} is a Cauchy sequence. From the com-
pleteness of (X,G, ∗) there exists x such that lim

n→∞
xn = x. Now, we show that x is the fixed point of T . Since γ is

continuous, there are two cases.

Case 1. For each n ∈ N, there exists in ≥ n such that xin+1 = Tx and in > in−1, where i0 = 1. Then, we get

x = lim
n→∞

xin+1 = lim
n→∞

Tx = Tx.

This proves that x is the fixed point of T .

Case 2. There exists n0 ∈ N such that xn+1 ̸= Tx for all n ≥ n0. That is, Txn = xn+1 ̸= Tx and so,
G(Txn, Txn, Tx, t) < 1 for all n ≥ n0. It follows from (2.17),

γ(G(xn+1, xn+1, Tx, t)) = γ(G(Txn, Txn, Tx, t)) ≥γ(min{G(xn, xn, x, t), G(xn, xn, Txn, t), G(x, x, Tx, t)}) + δ

=γ(min{G(xn, xn, x, t), G(xn, xn, xn+1, t), G(x, x, Tx, t)}) + δ.

(2.20)

Since lim
n→∞

G(xn, xn, x, t) = 1 and lim
n→∞

G(xn, xn, xn+1, t) = 1, if G(x, x, Tx, t) < 1, there exists n1 ∈ N such that

for all n ≥ n1, we get

min{G(xn, xn, x, t), G(xn, xn, xn+1, t), G(x, x, Tx, t)} = G(x, x, Tx, t).

From (2.20), we have
γ(G(xn+1, xn+1, Tx, t)) ≥ γ(G(x, x, Tx, t)) + δ,

for all n ≥ max{n0, n1}. Since γ is continuous, taking the limit as n→ ∞, we obtain

γ(G(x, x,Tx, t)) ≥ γ(G(x, x, Tx, t)) + δ,

which is a contradiction. Therefore, G(x, x, Tx, t) = 1; that is, x is the fixed point of T . Now, we prove that the fixed
point of T is unique. Let x1 and x2 be two fixed points of T . Suppose that x1 ̸= x2; then we have Tx1 ̸= Tx2. From
(2.17) we obtain

γ(G(x1, x1, x2, t)) = γ(G(Tx1, Tx1, Tx2, t)) ≥γ(min{G(x1, x1, x2, t), G(x1, x1, Tx1, t), G(x2, x2, Tx2, t)}) + δ

=γ(G(x1, x1, x2, t)) + δ > γ(G(x1, x1, x2, t),

which is a contradiction. Then, G(x1, x1, x2, t) = 1, that is, x1 = x2. Therefore, the fixed point of T is unique. □
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Example 2.8. Let (X,G, ∗) be the non-Archimedean G-fuzzy metric space and let T be considered in Example (2.6).
Let γ : [0, 1) → R such that γ(x) = 1/(1 − x2) for all x ∈ [0, 1). So, T is a γ-weak contraction. Therefore, Theorem
(2.7) can be applicable to T and the unique fixed point of T is 1/10.

3 General contractivity conditions

In this section, we present an extension of Theorem (1.1) in several ways: the metric space is more general, the
contractivity condition is better and the involved auxiliary functions form a wider class. The following families of
auxiliary functions were considered in [7].

Definition 3.1. Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) satisfying:

(1) ϕ(t) = 0 if and only if t = 0,

(2) lim
t→∞

ϕ(t) = ∞,

(3) ϕ is continuous at t = 0.

Definition 3.2. Let Ψ be the class of all functions ψ : [0,∞) → [0,∞) satisfying:

(1) ψ is nondecreasing

(2) ψ(0) = 0,

(3) if {an} ⊂ [0,∞) is a sequence such that {an} → 0, then {ψn(an)} → 0 (where ψn denotes the nth-iterate of
ψ).

We shall remind that ψ is continuous at t = 0 for functions in Ψ.(Proposition 7 [12])

Definition 3.3. We shall denote by H the family of all functions h : (0, 1] → [0,∞) satisfying:

(H1) if {an} ⊂ (0, 1], then {an} → 1 if and only if {h(an)} → 0;

(H2) if {an} ⊂ (0, 1], then {an} → 0 if and only if {h(an)} → ∞.

The previous conditions are guaranteed when h : (0, 1] → [0,∞) is a strictly decreasing bijection between (0, 1]
and [0,∞) such that h and h−1 are continuous (in a broad sense, it is sufficient to assume the continuities of h and
h−1 on the extremes of the respective domains). For instance, this is the case of the function h(t) = 1/t − 1 for all
t ∈ (0, 1]. However, the functions in H need not be continuous nor monotone.

Proposition 3.4. [12] If h ∈ H, then h(1) = 0. Furthermore, h(t) = 0 if and only if t = 1.

The other main result of the article is the following one.

Theorem 3.5. Let (X,G, ∗) be a G-complete non-Archimedean G-fuzzy metric space and let T : X → X be a
mapping. Suppose that there exist c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H such that

h(G(Tx, Ty, Tz, ϕ(ct))) ≤ ψ(h(G(x, y, z, ϕ(t)))) (3.1)

for all x, y, z ∈ X and all t > 0 for which G(x, y, z, ϕ(t)) > 0. If there exists x0 ∈ X such that lim
t→∞

G(x0, x0, Tx0, t) = 1,

then T has at least one fixed point. Additionally, assume that for all x, y, z ∈ Fix(T ) with x ̸= y ̸= z, we have
lim
t→∞

G(x, y, z, t) = 1. Then T has a unique fixed point.

Proof . Notice that condition (3.1) implies that ifG(x, y, z, ϕ(t)) > 0, then hmust be applicable toG(Tx, Ty, Tz, ϕ(ct)).
Hence G(Tx, Ty, Tz, ϕ(ct)) ∈ dom h = (0, 1], which means that

G(x, y, z, ϕ(t)) > 0 ⇒ G(Tx, Ty, Tz, ϕ(ct)) > 0. (3.2)
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By setting x1 = Tx0, define sequnece {xn} by xn+1 = Txn for all n ∈ N. If there exists some n0 ∈ N such that
xn0

= xn0+1, then xn0
is the fixed point of T , and the existence part of the proof is finished.

On the contrary case, assume that xn ̸= xn+1 for all n ∈ N.
Since lim

t→∞
G(x0, x0, Tx0, t) = 1, there exists t0 > 0 such that G(x0, x0, x1, t0) = G(x0, x0, Tx0, t0) > 0. Moreover, as

lim
t→∞

ϕ(t) = ∞, it follows that there exists s0 ∈ [0,∞) (we can suppose, without loss of generality, that s0 ≥ t0) such

that ϕ(s0) ≥ t0. Hence
G(x0, x0, x1, ϕ(s0)) ≥ G(x0, x0, x1, t0) > 0.

It follows from (3.2) that
G(x1, x1, x2, ϕ(cs0)) = G(Tx0, Tx0, Tx1, t0) > 0,

and, by induction, it can be proved that for G(xn, xn, xn+1, ϕ(c
ns0)) > 0 for all n ∈ N. If n,m, r ∈ N and r ≤ n, then

cns0 ≤ crs0 ≤ s0 ≤ s0/c
m. Since ϕ and G(xn, xn, xn+1, .) are nondecreasing functions, it follows that if n,m, r ∈ N

and r ≤ n, then

0 < G(xn, xn, xn+1, ϕ(c
ns0)) ≤ G(xn, xn, xn+1, ϕ(c

rs0))

≤ G(xn, xn, xn+1, ϕ(s0)) ≤ G(xn, xn, xn+1, ϕ(
s0
cm

)).
(3.3)

We claim that
lim

n→∞
G(xn, xn, xn+1, s) = 1 for all s > 0. (3.4)

To prove it, let s > 0 be arbitrary. As lim
r→∞

(crs0) = 0 and ϕ is continuous at t = 0, then lim
r→∞

ϕ(crs0) = ϕ(0) = 0.

Since s > 0, there exists r ∈ N such that ϕ(crs0) ≤ s. Let n ∈ N be such that n > r. Applying the contractivity
condition (3.1) to x = y = xn and z = xn+1, it follows that

h(G(xn, xn, xn+1, ϕ(c
rs0))) = h(G(Txn−1, Txn−1, Txn, ϕ(c

rs0)))

≤ ψ(h(G(xn−1, xn−1, xn, ϕ(c
r−1s0)))),

(3.5)

where we have used G(xn−1, xn−1, xn, ϕ(c
r−1s0)) > 0 by (3.3). Repeating this argument, we find that

h(G(xn−1, xn−1, xn, ϕ(c
r−1s0))) = h(G(Txn−2, Txn−2, Txn−1, ϕ(c

r−1s0)))

≤ ψ(h(G(xn−2, xn−2, xn−1, ϕ(c
r−2s0)))),

where we have used G(xn−2, xn−2, xn−1, ϕ(c
r−2s0)) > 0 by (3.3). As ψ is nondecreasing, then

ψ(h(G(xn−1, xn−1,xn, ϕ(c
r−1s0)))) ≤

ψ2(h(G(xn−2, xn−2, xn−1, ϕ(c
r−2s0)))). (3.6)

Combining inequalities (3.5) and (3.6), we deduce that

h(G(xn, xn, xn+1, ϕ(c
rs0))) ≤ ψ(h(G(xn−1, xn−1, xn, ϕ(c

r−1s0))))

≤ ψ2(h(G(xn−2, xn−2, xn−1, ϕ(c
r−2s0)))).

Inequality (3.3) permits us to repeat this argument n times, and it follows that

h(G(xn, xn, xn+1, ϕ(c
rs0))) ≤ ψn(h(G(x0, x0, x1, ϕ(c

r−2s0))))

= ψn(h(G(x0, x0, x1, ϕ(
s0
cn−r

)))),
(3.7)

for all n > r. As a consequence, limn→∞
s0

cn−r = ∞. Then we have, limn→∞ ϕ( s0
cn−r ) = ∞. Thus,

lim
n→∞

G(x0, x0, x1, ϕ(
s0
cn−r

) = 1

and this implies that limn→∞ h(G(x0, x0, x1, ϕ(
s0

cn−r )) = 0. As the sequence {an = h(G(x0, x0, x1, ϕ(
s0

cn−r ))} → 0 and
h ∈ H, we have {ψn(an)} → 0. By (3.7), we deduce that

lim
n→∞

h(G(xn, xn, xn+1, ϕ(c
rs0))) = 0.
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In particular, as h ∈ H, condition (H1) implies that

lim
n→∞

G(xn, xn, xn+1, ϕ(c
rs0)) = 1.

Because ϕ(crs0)) < s, and G(x, y, z, t) is a nondecreasing function with respect to t, so we have

G(xn, xn, xn+1, ϕ(c
rs0)) ≤ G(xn, xn, xn+1, s) ≤ 1. (3.8)

Taking into account (3.8), we observe that, lim
n→∞

G(xn, xn, xn+1, s) = 1 for all s > 0, which means that (3.4) holds.

Lemma 15 [12] guarantees that {xn} is a G-Cauchy sequence in (X,G, ∗). As it is G-complete, there exists x ∈ X
such that {xn} → x. We claim that x is the fixed point of T . To prove it, from (1.1) observe that for all t > 0 and all
n ∈ N,

G(x, x, Tx, t) = G(Tx, x, x, t) ≥ G(Tx, xn+1, xn+1, t) ∗G(xn+1, x, x, t)

= G(Tx, xn+1, xn+1, t) ∗G(Txn, x, x, t).
(3.9)

By lemma (1.7),
lim

n→∞
G(x, x, xn+1, t) = 1. (3.10)

Let us show that the first factor in (3.9) also converges to 1 when n tends to ∞. Taking into account that ϕ is
continuous at t = 0, we have lim

s→0
ϕ(s) = ϕ(0) = 0. Since t > 0, there exists δ > 0 such that ϕ(δ) < t. Since δ/c >

0, ϕ(δ/c) > 0. So, lim
n→∞

G(x, xn+1, xn+1, ϕ(
δ

c
)) = 1. Hence, there exists n0 ∈ N such that G(x, xn+1, xn+1, ϕ(

δ
c )) > 0

for all n ≥ n0. Applying the contractivity condition (3.1) to x = x and y = z = xn+1 for n ≥ n0, we obtain

h(G(Tx, xn+1, xn+1, ϕ(δ))) = h(G(Tx, Txn, Txn, ϕ(δ)))

≤ ψ(G(x, xn, xn, ϕ(
δ

c
))).

Therefore, limn→∞G(x, xn+1, xn+1, ϕ(
δ
c )) = 1. This implies that limn→∞ h(G(x, xn+1, xn+1, ϕ(

δ
c ))) = 0 and so

limn→∞ ψ(h(G(x, xn+1, xn+1, ϕ(
δ
c )))) = 0. Then, we have, limn→∞ h(G(Tx, xn+1, xn+1, ϕ(δ))) = 0 and this implies

that limn→∞G(Tx, xn+1, xn+1, ϕ(δ)) = 1. Taking into account that G(Tx, xn+1, xn+1, ϕ(δ)) ≤ G(Tx, xn+1, xn+1, t) ≤
1, we deduce that

lim
n→∞

G(Tx, Txn, Txn, t) = G(Tx, xn+1, xn+1, t) = 1. (3.11)

Letting n→ ∞ in (3.9) and using (3.10) and (3.11), we obtain

G(Tx, x, x, t) ≥ lim
n→∞

[G(Tx, Txn, Txn, t) ∗G(Txn, x, x, t)][ lim
n→∞

G(Tx, Txn, Txn, t)] ∗ [ lim
n→∞

G(Txn, x, x, t)] = 1 ∗ 1 = 1.

We have just proved that G(Tx, x, x, t) = 1 for all t > 0, and the axiom (GF-3) guarantees that Tx = x, that is,
x is the fixed point of T . Next, we study the uniqueness of the fixed point of T . Assume that T has two different
fixed points x and y, and we obtain the contradiction x = y. By hypothesis, lim

t→∞
G(x, y, y, t) = 1. Then there exists

t0 > 0 such that G(x, y, y, t0) > 0. Moreover, there exists s0 > 0 such that ϕ(s0) > t0. Consequently, as ϕ and
G(x, y, z, t) are nondecreasing function with respect to t, G(x, y, z, ϕ(s0)) ≥ G(x, y, z, t0) > 0. From (3.2), we have
G(x, y, y, ϕ(s0)) = G(Tx, Ty, Ty, ϕ(cs0)) > 0. By induction, G(x, y, y, ϕ(cns0)) > 0 for all n ∈ N. We claim that

G(x, y, y, ϕ(crs0)) = 1 for all r ∈ N. (3.12)

To prove it, let r ∈ N be arbitrary and let n,m ∈ N be such that n > r. As cns0 ≤ crs0 ≤ s0 ≤ s0/c
m, and ϕ and

G(x, y, z, t) are nondecreasing function with respect to t, it follows that if n,m ∈ N and r ≤ n, then

0 < G(x, y, y, ϕ(cns0)) ≤G(x, y, y, ϕ(crs0)) ≤ G(x, y, y, ϕ(s0)) ≤ G(x, y, y, ϕ(
s0
cm

)). (3.13)

Applying the contractivity condition (3.1) to x and y, it follows that

h(G(x, y, y, ϕ(crs0))) = h(G(Tx, Ty, Ty, ϕ(crs0)))

≤ ψ(h(G(x, y, y, ϕ(cr−1s0)))),
(3.14)
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where we have used G(x, y, y, ϕ(cr−1s0)) > 0 by (3.13). Repeating this argument, we find that

h(G(x, y, y, ϕ(cr−1s0))) = h(G(Tx, Ty, Ty, ϕ(cr−1s0)))

≤ ψ(h(G(x, y, y, ϕ(cr−2s0)))),

where we have used G(x, y, y, ϕ(cr−2s0)) > 0 by (3.13). As ψ is nondecreasing, we have

ψ(h(G(Tx, Ty, Ty, ϕ(cr−1s0)))) ≤ ψ2(h(G(x, y, y, ϕ(cr−2s0)))). (3.15)

Combining inequalities (3.14) and (3.15), we obtain

h(G(x, y, y, ϕ(crs0))) ≤ ψ(h(G(Tx, Ty, Ty, ϕ(cr−1s0))))

≤ ψ2(h(G(x, y, y, ϕ(cr−2s0)))).

Inequality (3.13) permits us to repeat this argument n times, and it follows that

h(G(x, y, y, ϕ(crs0))) ≤ ψn(h(G(x, y, y, ϕ(cr−ns0))))

= ψn(h(G(x, y, y, ϕ(
s0
cn−1

)))),
(3.16)

for all n > r. As a consequence, limn→∞
s0

cn−r implies that limn→∞ ϕ( s0
cn−r ) = ∞. This means that

lim
n→∞

G(x, y, y, ϕ(
s0
cn−r

)) = 1

and so, we have limn→∞ h(G(x, y, t, ϕ( s0
cn−r ))) = 0. As the sequence {an = h(G(x, y, y, ϕ( s0

cn−r )))} → 0 and h ∈ H,
we have {ψn(an)} → 0. By (3.16), we deduce that h(G(x, y, y, ϕ(crs0))) = 0. In particular, as h ∈ H, Proposition
(3.4) implies that G(x, y, y, ϕ(crs0))) = 1, which means that (3.12) holds. Next, let us show that G(x, y, y, t) = 1 for
all t > 0. Let t > 0 arbitrary. Since lim

n→∞
(cns0) = 0 and lim

n→∞
ϕ((cns0)) = ϕ(0) = 0, there exists r ∈ N such that

ϕ(crs0) < t. Hence 1 = G(x, y, y, ϕ(crs0)) ≤ G(x, y, y, t) = 1, so G(x, y, y, t) = 1. Varying t > 0, we conclude that
x = y by virtue of (GF-3), which contradicts the fact that x ̸= y. As a result, T can only have a unique fixed point. □

Corollary 3.6. Let (X,G, ∗) be a G-complete non-Archimedean G-fuzzy metric space verifying lim
t→∞

G(x, y, z, t) = ∞
and let T : X → X be a mapping. Suppose that there exist c ∈ (0, 1), ϕ ∈ Φ, ψ ∈ Ψ, and h ∈ H such that

h(G(Tx, Ty, Tz, ϕ(ct))) ≤ ψ(h(G(x, y, z, ϕ(t)))),

for all x, y, z ∈ X and all t > 0 for which G(x, y, z, ϕ(t)) > 0. If there exists x0 ∈ X such that lim
t→∞

G(x0, x0, Tx0, t) = 1,

then T has a unique fixed point.

Note that every non-Archimedean G-fuzzy metric space with condition lim
t→∞

G(x, y, z, t) = ∞ is a G-Menger

probabilistic metric space and so, by setting F (x, y, t) := G(x, x, y, t), it is a Menger probabilistic metric. So, the
following statement trivially follows from Theorem (3.5) by using h(t) = 1/t− 1 for all t ∈ (0, 1].

Corollary 3.7. Theorem (1.1) immediately follows from Theorem (3.5).

Example 3.8. Let (X,G, ∗) be the non-Archimedean G-fuzzy metric space introduced in Example (2.4) and let
T : X → X be the self-mapping defined by T (x) = x/2 for all x ∈ X. Assume that ψ(t) = ϕ(t) = t for all t ∈ [0,∞),
and let h : (0, 1] → [0,∞) be an arbitrary strictly decreasing bijection between (0, 1] and [0,∞) such that h and h−1

are continuous (for instance, h(t) = 1/t − 1 for all (0, 1], but any other function verifying these properties yields the
same result). In this context, the contractivity condition (3.1) is equivalent to

h(G(Tx, Ty, Tz, ϕ(ct))) ≤ ψ(h(G(x, y, z, ϕ(t)))) if and only if h(G(Tx, Ty, Tz, ct)) ≤ h(G(x, y, z, t))

if and only if G(Tx, Ty, Tz, ct) ≥ G(x, y, z, t).

For all c ∈ (0, 1), x, y, z ∈ X, such that x ̸= y ̸= z and for all t > 0,

G(Tx, Ty, Tz, ct) = G(
x

2
,
y

2
,
z

2
, ct)

=
1

1 +max{x
2 ,

y
2 ,

z
2}

≥ 1

1 + max{x, y, z}
.
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Also, if x = y = z, it is clear. As a result, the contractivity condition is verified. Hence, Theorem 3.5 guarantees
that T has a unique fixed point (which is x = 0).

4 Conclusion

In this paper, we proved some fixed point results in non-Archimedean G-fuzzy metric spaces for self-mappings
providing γ-contractions and γ-weak contractions. We also presented a more general class of auxiliary functions in
the contractivity condition. On the other hand, our results can be extended to other spaces.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits etleur application aux équations intégrales, Fund. Math.
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