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Abstract

The most recent performances in fixed point theory related to the fixed point, coincidence point, and coupled co-
incidence point involving mappings in ordered metric spaces are the result of concentrated overwork ordered metric
space. Its conclusion was expansive and generalized to well-known oral literature results. A few fixed point outcomes
were discovered to be sophisticated self-mappings. Anything that satisfies a generalized week contraction was partially
ordered as m-metric space (mms). The specific results also include two self-mappings for coupling coincidence points,
coupled common fixed points, and coincidence points in the same qualification. An example is offered to support the
findings.
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1 Introduction and Preliminaries

Based on functional analysis, fixed point theory is an useful and important category. It offers a pioneering framework
for resolving issues in many mathematical analysis extensions. It’s indeed uniqueness, integral solution, and differential
equations agreement. Mathematician Banach [7] permits the contraction in 1922, establishing it one of the most well-
known and significant examples of practical mathematics. There are essentially two main approaches to employ the
generalized Banach contraction principle : either to modify the metric space or to revise the contraction condition.
Several contractions in fixed theory, defined in metric spaces, include Boyd and Wong’s nonlinear contraction principle
[8], Suzuki Contraction [27], Kannan Contraction [13], Cirić Generalized Contraction [10], Ciric’s Quasi Contraction
[11], Weak Contraction [23], Chatterjea Contraction [9], Zamfirescu Contraction [29] and many more [6, 20].

Wardowski [28] introduced innovative contraction being real-valued mappings in 2012, defined positive real num-
bers, and obtained fixed point theory. In various metric space, authors have worked on F-contraction mapping. Piri
and Kumam [21] worked in 2014 and Minak et al. [18] expanded results and applied weaker condition self mappings.
For generalized F-contractions counting Ciric type generic F-contraction and almost F-contraction in complete metric
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space, Piri et al. [22] achieved results in 2014. In order to extend several results, Piri and Kumam tried to introduced
F-contraction setting in the context of complete asymmetric metric space in 2017. Regarding F-contraction in b-metric
space, Kadelburg and Radenovic [16] achieved results in 2018. In 2019 saw the introduction of fixed point theory for
F-contraction in partial metric space by Luambano [17], and he attained a number of findings that are good examples,
see [25, 24].

Asadi et al. [1] provided m-metric Space in 2014, extending the p-metric space presented in [2] and demonstrating
the Banach contraction principle. In metric space, several authors were engaged [2, 19]. According to Shukla [26],
p-metric space is a generalization of rectangular metric space. In 2019, Asim et al. [3, 4, 5] extended rectangular
metric space and generalized rectangular m-metric space as rectangular Mb-metric space. See [12, 14, 15] for more
related results.

In this article, we introduce generalized weak contraction condition watching over altering distance functions ϕ ∈ Φ,
ψ ∈ Ψ below acquire fixed point of mapping A : Ŵ → Ŵ in M−metric space.

(1) ϕ (M(A,Aκ2)) ≤ ϕ(Ç(κ1, κ2))− ψ(D(κ1, κ2)) for any κ1, κ2 ∈ Ŵ ,

with κ1 ≤ κ2 and where

Ç(κ1, κ2) = max

{
M(κ2,Aκ2)[1+M(κ1,Aκ1)]

1+M(κ1,κ2)
, M(κ1,Aκ1)M(κ2,Aκ2)

1+M(κ1,κ2)
,

M(κ2, Aκ2),M(κ1, Aκ1),M(κ1, κ2)

}
,

and

D(κ1, κ2) = max

{
M(κ2, Aκ2)[1 +M(κ1, Aκ1)]

1 +M(κ1, κ2)
,M(κ1, κ2)

}
.

We utilize the following conditions for adjusting distance functions: Φ = {ϕ/ϕ continuous, non-decreasing self
mapping on [0,+∞)} ϕ(υ) = 0 if and only if υ = 0, for υ ∈ [0,+∞)} and Ψ = {ψ/ψ lower semi-continuous self
mapping on [0,+∞) such that ψ(υ) = 0 if and only if υ = 0, where υ ∈ [0,+∞)}.

Notation: mx,y := min{m(x, x),m(y, y)}; Mx,y := max{m(x, x),m(y, y)}

Definition 1.1. [28] For a given non empty set Ŵ , we say that a function M : Ŵ × Ŵ → [0, 1) is an M−metric if

(m1) M(κ1, κ1) =M(κ2, κ2) =M(κ1, κ2) if and only if κ1 = κ2,

(m2) mκ1,κ2
≤M(κ1, κ2),

(m3) M(κ1, κ2) =M(κ2, κ1),

(m4) (M(κ1, κ2)−Mκ1,κ2) ≤ (M(κ1, z)−Mκ1,z) + (M(z, κ2)−Mz,κ2).

then, pair (κ1,M) is called M−metric space.

Example 1.2. [28] Let M be M−metric space. Put

(1) ϖž
m(κ1, κ2) =M(κ1, κ2)− 2mκ1,κ2 +Mκ1,κ2 ,

(2) ϖŝ
m(κ1, κ2) =M(κ1, κ2)−mκ1,κ2

if κ1 ̸= κ2, and ϖ
ŝ
m(κ1, κ2) = 0 if κ1 = κ2.

Then ϖž
m and ϖŝ

m ordinary metrics.

As mentioned [28], each M -metric on Ŵ generates To topology τM on Ŵ . Then set

{BM (κ1, ε) : κ1 ∈ Ŵ , ε > 0}

where
BM (κ1, ε) : {κ2 ∈ Ŵ ,M(κ1, κ2) < ϖmκ1,κ2

+ ε}

for all κ1 ∈ Ŵ and ε > 0, forms basis of τM .

Remark 1.3. [28] For every κ1, κ2 ∈ Ŵ
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1. 0 ≤Mκ1,κ2
+mκ1,κ2

=M(κ1, κ1) +M(κ2, κ2),

2. 0 ≤Mκ1,κ2
−mκ1,κ2

= |M(κ1, κ1) +M(κ2, κ2)| ,
3. Mκ1,κ2 −mκ1,κ2 ≤ (Mκ1,z −mz,κ2) + (Mz,κ2 +mz,κ2).

Definition 1.4. [28] Let (Ŵ ,M) be M -metric space. Then:

1. A sequence {κ1n} in M -metric space (Ŵ ,M) converges to κ1 ∈ Ŵ if and only if

lim
n→∞

(M(κ1n, κ1)−Mκ1n,κ1
) = 0.

2. A {κ1n} in M -metric space (Ŵ ,M) is called M -Cauchy sequence if

lim
n→∞

(M(κ1n, κ1m)−Mκ1n,κ1m
), lim

n→∞
(Mκ1n,κ1m

−mκ1n,κ1m
),

exist (and are finite).

3. An M -metric space (Ŵ ,M) is said complete if every M -Cauchy sequence {κ1n} in Ŵ converges, with respect
to τM , to κ1 ∈ Ŵ such that

lim
n→∞

(M(κ1n, κ1)−Mκ1n,κ1
) = 0 and lim

n→∞
(Mκ1n,κ1

−mκ1n,κ1
) = 0.

Lemma 1. [21] If {κ1n}n∈N and {κ2n}n∈N are two sequences such that κ1n → κ1 and κ2n → κ2 as n → ∞ in
M−metric space (Ŵ ,M), then

lim
n→∞

(M(κ1n, κ2n)−mκ1n,k2n) =M(κ1, κ2)−mκ1,κ2).

Lemma 2. [21] If {κ1n}n∈N is sequence such that κ1n → κ1 as n→ ∞ in M−metric space (Ŵ ,M), then

lim
n→∞

(M(κ1n, κ2)−mκ1n,κ2
) =M(κ1, κ2)−mκ1,κ2

),

for all κ1, κ2 ∈ Ŵ . Moreover, M(κ1, κ2) = mκ1,κ2
. Further if M(κ1, κ1) =M(κ2, κ2), then κ1 = κ2.

Lemma 3. [21] Let (Ŵ ,M) be M -metric space & self mapping A, consider sequence {κ1n}n∈N defined by
κ1n+1 = Aκ1n. If κ1n → ũ as n→ ∞, then Aκ1n → Aũ as n→ ∞.

Lemma 4. [28] Let {κ1n} be sequence inM -metric space (Ŵ ,M) such that there exist r ∈ [0, 1) andM(κ1n+1, κ1n) ≤
rM(κ1n, κ1n−1), for all n ∈ N . Then

A1) limn→∞M(κ1n, κ1n−1) = 0,

A2) limn→∞M(κ1n, κ1n) = 0,

A3) limϖm,n→∞mκm,κ1n
= 0,

A4) {κ1n} is an M -cauchy sequence.

Definition 2.1 [24] Let f and g two self−mappings on Ŵ . If ω = fκ1 = gκ1 for κ1 ∈ Ŵ , then κ1 is called
coincidence point of f and g, where ω is called point of coincidence of f & g.

Definition 2.2 [24] Let f and g two self−mappings defined on Ŵ . Then f and g said to weakly compatible if
they commute every coincidence point, i.e., if fκ1 = gκ1 for some κ1 ∈ Ŵ , then fgκ1 = gfκ1.

Let denote set of φ : [Ŵ ,+∞) → [Ŵ ,+∞) satisfying:

(1) φ continuous and non−decreasing;

(2) φ(υ) = 0 if and only if υ = 0.

2 Main results

In this section, we derived several fixed point result in the context of complete partially ordered M -metric space.
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Theorem 2.1. Suppose (Ŵ ,M,⪯) be complete partially orderedM−metric space. Consider continuous A : Ŵ → Ŵ
non−decreasing with respect to ⪯ and satisfies (1). If some κ1 ∈ Ŵ such that κ1 ⪯ Aκ1, then A has a fixed point in
Ŵ .

Proof . Consider Aκ0 = κ0, for some κ0 ∈ Ŵ . assume not then κ0 ≺ Aκ0. Now sequence {κ1n} ⊂ Ŵ defined by
κ1n+1 = Aκ1n, for n ≥ 0. Since A non−decreasing,

(2) κ0 ≺ Aκ0 = κ11 ⪯ · · · ⪯ κ1n ⪯ Aκ1n = κ1n+1 ⪯ · · · .

If as some n0 ∈ N , κ1n0
= κ1n0+1 ,then from (4.2), A has fixed point κ1n0

. Assume κ1n ̸= κ1n+1 ∀ n ≥ 1. Since
κ1n > κ1n−1 for all n ≥ 1, then (1),

(3) ϕ(M(κ1n, κ1n+1)) = ϕ(M(Aκ1n−1, Aκ1n))

≤ ϕ(Ç(κ1n−1, κ1n))− ψ(D(κ1n−1, κ1n)).

Thus from (3),
(4) M(κ1n, κ1n+1) =M(Aκ1n−1, Aκ1n) ≤ Ç(κ1n−1, κ1n),

where

Ç(κ1n−1, κ1n) = max

{
M(κ1n,Aκ1n)[1+M(κ1n−1,Aκ1n−1)]

1+M(κ1n−1,κ1n)
, M(κ1n,Aκ1n)M(κ1n−1,Aκ1n−1)

M(κ1n−1,κ1n)

,M(κ1n, Aκ1n),M(κ1n−1, Aκ1n−1),M(κ1n−1, κ1n)

}

= max

{
M(κ1n,κ1n+1)[1+M(κ1n−1,κ1n)]

1+M(κ1n−1,κ1n)
, M(κ1n,κ1n+1)M(κ1n−1,κ1n)

M(κ1n−1,κ1n)

,M(κ1n, κ1n+1),M(κ1n−1, κ1n),M(κ1n−1, κ1n)

}

= max

{
M(κ1n, κ1n+1),

M(κ1n, κ1n+1)M(κ1n−1, κ1n)

1 +M(κ1n−1, κ1n)
,M(κ1n−1, κ1n)

}
≤ max {M(κ1n, κ1n+1),M(κ1n−1, κ1n)} .

If max {M(κ1n, κ1n+1),M(κ1n−1, κ1n)} = M(κ1n, κ1n+1) for some n ≥ 1, from (4) we have M(κ1n, κ1n+1) ≤
M(κ1n, κ1n+1) this a contradiction. Hence,

max {M(κ1n, κ1n+1),M(κ1n−1, κ1n)} =M(κ1n−1, κ1n) for all n ≥ 1.

Thus (4)
(5) M(κ1n, κ1n+1) ≤M(κ1n−1, κ1n).

Now, we prove that {κ1n} is an M−cauchy sequence Ŵ . By (M4),

M(κ2n+1, κ2n+3)−mκ2n+1,κ2n+3
≤
(
M(κ12n+1, κ12n+2)−mκ12n+1,κ12n+2

)
+

(
M(κ12n+2, κ12n+3)−mκ12n+2,κ12n+3

)
≤M(κ12n+1, κ12n+2) +M(κ12n+2, κ12n+3).

Similarly

M(κ12n+1, κ12n+4)−mκ12n+1,κ12n+4
≤
(
M(κ12n+1, κ12n+2)−mκ12n+1,κ12n+2

)
+

(
M(κ12n+2, κ12n+4)−mκ12n+2,κ12n+4

)
≤M(κ12n+1, κ12n+2) +M(κ12n+2, κ12n+3) +M(κ12n+3, κ12n+4).

In general, for all q > p > n1 with p = 2n+ 1, we obtain

M(κ1p, κ1q)−mκ1p,κ1q
≤

q−1∑
i=p

M(κ1i, κ1i+1) ≤
q−1∑
i=p

µi.

The convergence of series
∑∞

i=p µi leads

(6) lim
p,q→∞

(
M(κ1p, κ1q)−mκ1p,κ1q

)
= 0.
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By same way,

mκ1p,κ1q −mκ1p,κ1q ≤
q−1∑
i=p

(
mκ1i,κ1i+1 −mκ1i,κ1i+1

)
≤

q−1∑
i=p

mmκ1i,κ1i+1
,

≤
q−1∑
i=p

M(κ1i, κ1i) ≤
q−1∑
i=p

M(κ1i, κ1i+1),

≤
q−1∑
i=p

µi.

The convergence of series
∑q−1

i=p µi

lim
p,q→∞

(
Mκ1p,κ1q −mκ1p,κ1q

)
= 0

Therefore, {κ1n} is M−cauchy sequence in Ŵ . Since Ŵ is M -complete, then there exist κ1 ∈ Ŵ so κ1n → κ1 as
n → ∞, implies that κ12n+1 → κ1 and κ12n+1 → κ1 as n → ∞. Also,completeness of Ŵ implies that κ1n → t for
t ∈ Ŵ . Furthermore, continuity of A, then

A(t) = A( lim
n→∞

κ1n) = lim
n→∞

A(κ1n) = lim
n→∞

κ1n+1 = t,

which shows that A has a fixed point t ∈ Ŵ . □

Example 2.2. Let Ŵ = [0, 1] and M : Ŵ × Ŵ → Ŵ be a M -metric space defined by

M(κ1, κ2) = |κ1 − κ2| ,

with ⪯ and A : Ŵ → Ŵ defined

A(κ1) =
κ1
2
,

and ϕ(t) = t
3 and ψ = log t where t ∈ [0,∞).

Solution: It is clear that M(κ1, κ2) = |κ1 − κ2| is a M -metric space on Ŵ .

ϕ(M(Aŝ,Aĉ)) ≤ ϕ(Ç(ŝ, ĉ))− ψ(D(ŝ, ĉ)).

Therefore all condition of result (2.1) satisfied. Hence, A has 0 as unique fixed point in Ŵ .

We have the following result in which the mapping A is not continuous, still is valid to have a faxed point.

Theorem 2.3. By Result 2.1, non−continuous A : Ŵ → Ŵ has fixed point if Ŵ meets conditions, non−decreasing
{κ1n} ⊆ Ŵ such that κ1n → θ ∈ Ŵ then κ1n ⪯ θ for θ ∈ N, that is, θ = sup k1n.

Proof . As from Result 2.1, a non−decreasing cauchy {κ1n} ⊆ Ŵ exist such that κ1n → θ ∈ Ŵ . Hence condition,
κ1n ⪯ θ ∀ n, θ = supκ1n. Next to show that θ is fixed point of A in Ŵ . Assume that Aθ = θ.

Ç(κ1n, θ) = max

{
M(θ,Aθ)[1+M(κ1n,Aκ1n)]

1+M(κ1n,θ)
, M(θ,Aθ)M(κ1n,Aκ1n)

1+M(κ1n,θ)

,M(θ,Aθ),M(κ1n, Aκ1n),M(κ1n, θ)

}
,

and

D(κ1n, θ) = max

{
M(θ,Aθ)[1 +M(κ1n, Aκ1n)]

1 +M(κ1n, θ)
,M(κ1n, θ)

}
.

As n → +∞ and since {κ1n} is cauchy sequence in M -metric space then M -metric space complete there exist
κ1 ∈ Ŵ so κ1n → κ1 as n→ ∞,which implies that κ1n+1 → κ1 and κ1n+2 → κ1 as n→ ∞.

lim
n→∞

(M(κ1n, κ1)−mκ1n,κ1
) = 0.
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Since
lim
n→∞

(M(κ1n, κ1)) = 0,

we have,
(7) lim

n→∞
Ç(κ1n, θ) = max{M(θ,Aθ), 0} =M(θ,Aθ),

and
(8) D (κ1n, θ) = max{M(θ,Aθ), 0} =M(θ,Aθ).

Since κ1n ⪯ θ for any n, then from (1),

(9) ϕ(M(κ1n+1, Aθ)) = ϕ(M(Aκ1n, Aθ)),

≤ ϕ(Ç(κ1n, θ))− ψ(D(κ1n, θ)).

Taking n→ ∞ (9) and from (7) and (8),

ϕ(M(θ,Aθ)) ≤ ϕ(M(θ,Aθ))− ψ(M(θ,Aθ)) < ϕ(M(θ,Aθ)),

contradiction. Hence, Aθ = θ, i.e., A has a fixed point θ ∈ Ŵ . □

Theorem 2.4. If every two elements of Ŵ are comparable then A has a unique fixed point in Theorems 2.1 and 2.3.

Proof . Consider ŝ ̸= ĉ be two fixed points of A in Ŵ , then from (1), we have

ϕ(M(Aŝ,Aĉ)) ≤ ϕ(Ç(ŝ, ĉ))− ψ(D(ŝ, ĉ)).

As a result,
(10) M(ŝ, ĉ) =M(Aŝ,Aĉ) ≤ Ç(ŝ, ĉ),

where

Ç(ŝ, ĉ) = max

{
M(ĉ,Aĉ)[1+M(ŝ,Aŝ)]

1+M(ŝ,ĉ) , M(ĉ,Aĉ)M(ŝ,Aŝ)
1+M(ŝ,ĉ)

,M(ĉ, Aĉ),M(ŝ, Aŝ),M(ŝ, ĉ)

}
,

= max

{
M(ĉ,ĉ)[1+M(ŝ,ŝ)]

1+M(ŝ,ĉ) , M(ĉ,ĉ)M(ŝ,ŝ)
1+M(ŝ,ĉ)

,M(ĉ, ĉ),M(ŝ, ŝ),M(ŝ, ĉ)

}
,

= max{M(ŝ, ĉ),M(ŝ, ŝ),M(ĉ, ĉ)}.

Therefore from (10), we haveM(ŝ, ĉ) < M(ŝ, ĉ), which leads contradiction to ŝ ̸= ĉ. Thus, ŝ = ĉ. □

Following consequences by Theorems 2.1, 2.3 and 2.3.

Corollary 2.5. In place of D (κ1, κ2) by Ç(κ1, κ2) in (1), same conclusions from Theorems 2.1, 2.3 and 2.3.

Corollary 2.6. Taking ϕ(κ1) = κ1 and ψ(κ1) = (1− k)κ1 Corollary 2.5, then contraction condition,

M(Aŝ,Aĉ) ≤ max

{
M(ĉ,Aĉ)[1+M(ŝ,Aŝ)]

1+M(ŝ,ĉ) , M(ĉ,Aĉ)M(ŝ,Aŝ)
1+M(ŝ,ĉ)

,M(ĉ, Aĉ),M(ŝ, Aŝ),M(ŝ, ĉ)

}
.

Then can arrive same conclusions as Theorems 2.1, 2.3 and 2.3. A A : Ŵ → Ŵ with respect to B : Ŵ → Ŵ
generalized contraction mapping, if it satisfies following condition for all ŝ, ĉ ∈ Ŵ with Bŝ ≤ Bĉ, ϕ ∈ Φ & ψ ∈ Ψ:

(11) ϕ(M(Aŝ,Aĉ)) ≤ ϕ(ÇB(ŝ, ĉ))− ψ(DB(ŝ, ĉ)),

where

ÇB(ŝ, ĉ) = max

{
M(Bĉ,Aĉ)[1+M(Bŝ,Aŝ)]

1+M(Bŝ,Bĉ) , M(Bĉ,Aĉ)M(Bŝ,Aŝ)
1+M(Bŝ,Bĉ)

,M(Bĉ,Aĉ),M(Bŝ,Aŝ),M(Bŝ,Bĉ)

}
,

and

DB(ŝ, ĉ) = max

{
M(Bĉ,Bĉ)[1 +M(Bŝ,Aŝ)]

1 +M(Bŝ,Bĉ)
,M(Bŝ,Bĉ)

}
.
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Theorem 2.7. Two continuous self-mappings A, B : Ŵ → Ŵ coincidence point, if following conditions holds:

1. A monotone B−non−decreasing,

2. AŴ ⊆ BŴ and a pair (A,B) are compatible,

3. Bκ0 ⪯ Aκ0 for some κ0 ∈ Ŵ ,

4. Satisfies condition (11) complete partially ordered M−metric space (Ŵ ,M,⪯).

Proof . Result 2.2 of [10], have sequences {ŝn}, {ĉn} ⊆ Ŵ with

(14) ĉn = Aŝn = Aŝn+1 for all n ≥ 0,

which
(15) Bŝ0 ⪯ Bŝ1 ⪯ · · · ⪯ Bŝn ⪯ Bŝn+1 ⪯ · · · ,

now from, we have to show that

(16) M(Aĉn, Aĉn+1) ≤ κM(ĉn, ĉn+1) for all n ≥ 1 and where κ ∈ {0, 1).

From (11), (14) and (15),

(17) ϕ(M(Aĉn, Aĉn+1)) = ϕ(M(ŝn, ŝn+1))

≤ ϕ(ÇB(ŝn, ŝn+1))− ψ(DB(ŝn, ŝn+1)).

where

ÇB(ŝn, ŝn+1) = max

{
M(Bŝn+1,Aŝn+1)[1+M(Bŝn,Aŝn)]

1+M(Bŝn,Bŝn+1)
, M(Bŝn+1,Aŝn+1)M(Bŝn,Aŝn)

1+M(Bŝn,Bŝn+1)

,M(Bŝn+1, Aŝn+1),M(Bŝn, Aŝn),M(Bŝn, Bŝn+1)

}
,

= max

{
M(ĉn,ĉn+1)[1+M(ĉn−1,ĉn)]

1+M(ĉn−1,ĉn)
, M(ĉn−1,ĉn)M(ĉn,ĉn+1)

1+M(ĉn−1,ĉn)

,M(ĉn−1, ĉn),M(ĉn, ĉn+1),M(ĉn−1, ĉn)

}
,

≤ max {M(ĉn, ĉn+1),M(ĉn−1, ĉn)} .

and

DB(ŝn, ŝn+1) = max

{
M(Bŝn+1, Aŝn+1)[1 +M(Bŝn, Aŝn)]

1 +M(Bŝn, Bŝn+1)
,M(Bŝn, Bŝn+1)

}
,

= max

{
M(ĉn, ĉn+1)[1 +M(ĉn−1, ĉn)]

1 +M(ĉn−1, ĉn)
,M(ĉn−1, ĉn)

}
,

= max {M(ĉn, ĉn+1),M(ĉn−1, ĉn)}

From (17),

(18) ϕ(M(Aĉn, Aĉn+1)) ≤ ϕ(max {M(ĉn, ĉn+1),M(ĉn−1, ĉn)}),−ψ(max {M(ĉn, ĉn+1),M(ĉn−1, ĉn)}).

If M(ĉn−1, ĉn) ≤M(ĉn, ĉn+1) some n, Eq. (18),

(19) ϕ(M(Aĉn, Aĉn+1)) ≤ ϕ(M(ĉn, ĉn+1))− ψ(M(ĉn, ĉn+1)) ≤ ϕ(M(ĉn, ĉn+1)),

or equivalently
(20) ϕ(M(Aĉn, Aĉn+1)) ≤ ϕ(M(ĉn, ĉn+1)),

a contradiction. Therefore, from Eq. (18) we have

(21) ϕ(M(ĉn, ĉn+1)) ≤ ϕ(M(ĉn−1, ĉn)).

Hence, κ ∈ [0, 1). By Lemma 3.1 of [22] and from eq. (16),

lim
n→+∞

Aŝn = lim
n→+∞

BAŝn+1 = ũ, for ũ ∈ Ŵ ,
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From condition (b), we have
lim

n→+∞
M(BA(ŝn), AB(ŝn)) = 0,

continuity of A and B we have, limn→+∞BA(ŝn) = Bũ, limn→+∞AB(ŝn) = Aũ. Furthermore,

(22) M(Aũ,Bũ) ≤ (M(Aũ,ABũ)−mAũ,ABũ) + (M(ABũ,Bũ)−mABũ,Aũ) +mAũ,Bũ.

Thus, M(Aũ,Bũ) = 0 as n→ +0 in (22) hence result. □

Following result without continuity property B and L in Theorem 2.7.

Theorem 2.8. If Ŵ property in Theorem 2.7 that {Bŝn} ⊂ Ŵ non−decreasing such that limn→+∞Bŝn = Bŝ ∈ BŴ ,
and BŴ ⊆ Ŵ is closed Bŝn ⪯ Bŝ, Bŝ ⪯ B(Bŝ) for n and Bŝ0 ⪯ Aŝ0 for some ŝ0 ∈ Ŵ , then weakly compatible
mappings A, B have coincidence point. When A and B commute there coincidence points, then A, B have a common
fixed point in Ŵ .

Proof . From Theorem 2.7, {ŝn} = {Aŝn} = {Bŝn+1} is a Cauchy sequence. Since Bx closed, we have

lim
n→+∞

Aŝn = lim
n→+∞

Bŝn+1 = Bŝ for ŝ ∈ Ŵ .

Thus, Bŝn ⪯ Bŝ for all n. Next show A, B have coincidence points. From (11),

(23) ϕ(M(Aŝn, Aŝ)) ≤ ϕ(ÇB(ŝn, ŝ))− ψ(DB(ŝn, ŝ)),

where

ÇB(ŝn, ũ) = max

{
M(Bũ,Aũ)[1+M(Bŝn,Aŝn)]

1+M(Bŝn,Bũ) , M(Bũ,Aũ)M(Bŝn,Aŝn)
1+M(Bŝn,Bũ)

,M(Bũ,Aũ),M(Bŝn, Aŝn),M(Bŝn, Bũ)

}
,

→ max {M(Bũ,Aũ), 0,M(Bũ,Aũ), 0, 0} =M(Bũ,Aũ) as n→ +∞

DB(ŝn, ũ) = max

{
M(Bũ,Bũ)[1 +M(Bŝn, Aŝn)]

1 +M(Bŝn, Bũ)
,M(Bŝn, Bũ)

}
,

→ max{M(Bũ,Bũ), 0} =M(Bũ,Bũ) as n→ +∞. Thus Eq.(23) becomes

(24) ϕ( lim
n→+∞

M(Aŝn, Aŝ)) ≤ ϕ(M(Bũ,Aũ))− ψ(M(Bũ,Aũ)) < ϕ(M(Bũ,Aũ)).

As a result,
(25) lim

n→+∞
M(Aŝn, Aŝ) < M(Bũ,Aũ).

Furthermore, the triangular inequality of M ,

(26) M(Bũ,Aũ) ≤ (M(Bũ,ABũ)−mBũ,ABũ) + (M(ABũ,Aũ)−mABũ,Aũ) +mBũ,Aũ.

Eqs. (25) and (26) contradiction, if Bũ ̸= Aũ. Hence, Bũ = Aũ. Let Bũ ̸= Aũ = p, then Ap = A(Bũ) = B(Aũ) =
Bp. Since Bũ = B(Bũ) = Bp, then Eq. (23) with Bũ = Aũ & Bp = Ap , we get

(27) ϕ(M(Aũ,Ap)) ≤ ϕ(ÇB(ũ, p))− ψ(DB(ũ, p)) < ϕ(ÇB(ũ, p)),

or equivalently,
M(Aũ,Ap) ≤M(Aũ,Ap),

which contradiction, if Lũ ̸= Lp. Thus, Aũ = Lp = p ⇒ Aũ = Bp = p. □

Definition 2.9. Consider a partially ordered m-metric space (Ŵ ,M,⪯). Mapping A : Ŵ × Ŵ → Ŵ is generalized
(ϕ, ψ)−contractive mapping with respect to B : Ŵ → Ŵ ,

(28) ϕ(M(A(ŝ, ĉ), A(ũ, ô)) ≤ ϕ(ÇB(ŝ, ĉ, ũ, ô))− ψ(DB(ŝ, ĉ, ũ, ô))
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if for all ŝ, ĉ, ũ, ô ∈ Ŵ with Bŝ ⪯ Bũ and Bĉ ⪰ Bô ϕ ∈ Φ, ψ ∈ Ψ and where

ÇB(ŝ, ĉ, ũ, ô) = max

{
M(Bũ,A(ũ,ô))[1+M(Bŝ,A(ŝ,ĉ)]

1+M(Bŝ,Bũ) , M(Bŝ,A(ŝ,ĉ))M(Bũ,A(ũ,ô))
1+M(Bŝ,Bũ)

,M(Bŝ,A(ŝ, ĉ)),M(Bũ,A(ũ, ô)),M(Bŝ,Bũ)

}
,

and

DB(ŝ, ĉ, ũ, ô) = max

{
M(Bũ,A(ũ, ô))[1 +M(Bŝ,A(ŝ, ĉ)]

1 +M(Bŝ,Bũ)
,M(Bŝ,Bũ)

}
.

Theorem 2.10. Let (Ŵ ,M,⪯) be complete partially ordered M -metric space. Assume mapping A : Ŵ × Ŵ → Ŵ
satisfies condition (28), A, B continuous, A mixed B−monotone property and commutes with B. Consider, if for
(ŝ0, ĉ0) ∈ Ŵ × Ŵ such that Bŝ0 ⪯ A(ŝ0, ĉ0), Bĉ0 ⪰ A(ĉ0, ŝ0) and A(Ŵ × Ŵ ) ⊆ B(Ŵ ), then A & B coupled
coincidence point Ŵ .

Proof . From Theorem 2.3, there are two {ŝn}{ĉn} ⊂ Ŵ such that in particular, the {Bŝn} and {ĉn} non-decreasing
and non-increasing in Ŵ . Put ŝ = ŝn, ĉ = ĉn, ũ = ŝn+1, and ô = ĉn+1 in (28),

ϕ(M(A(ŝn+1, ŝn+1)) = ϕ(M(A(ŝn, ĉn), A(ŝn+1, ĉn+1)) (2.1)

≤ ϕ(ÇB(ŝn, ĉn, ŝn+1, ĉn+1))− ψ(DB(ŝn, ĉn, ŝn+1, ĉn+1)),

where
(30) ÇB(ŝn, ĉn, ŝn+1, ĉn+1) ≤ max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2)},

and
(31) D B(ŝn, ĉn, ŝn+1, ĉn+1) = max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2)}.

Therefore from (29), we have

(32) ϕ(M(Bŝn+1, Bŝn+2)) ≤ ϕ(max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2)})
−ψ(max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2)}).

Similarly by taking ŝ = ĉn+1, ĉ = ŝn+1ũ = ŝn, ô = ŝn in (28), we get

(33) ϕ(M(A(ĉn+1, ĉn+1)) ≤ϕ(max{M(Bĉn, Bĉn+1),M(Bĉn+1, Bĉn+2)})− ψ(max{M(Bĉn, Bĉn+1),M(Bĉn+1, Bĉn+2)}).

We know that
max{ϕ(θ1), ϕ(θ2)} = max{θ1, θ2}forθ1, θ2 ∈ {0,+∞).

Then by adding Eqs.(32) and (33) together,

(34) ϕ(δn) ≤ ϕ(max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2),M(Bĉn, Bĉn+1),M(Bĉn+1, Bĉn+2)})
−ψ(max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2),M(Bĉn, Bĉn+1),M(Bĉn+1, Bĉn+2)}),

where
(35) δn = max{M(Bŝn+1, Bŝn+2),M(Bĉn+1, Bĉn+2)}.

Let us denote that,

▽n = max{M(Bŝn, Bŝn+1),M(Bŝn+1, Bŝn+2),M(Bĉn, Bĉn+1),M(Bĉn+1, Bĉn+2)}.

Hence from Eqs. (32)–(35), we obtain that
(37) δn ≤ ▽n.

Now to claim that
(38) δn ≤ κδn−1,

for n ≥ 1 and κ ∈ [0, 1). Suppose that if ▽n = δn from (37), we give δn ≤ δn this leads to δn = 0 since κ > 1 and thus
(38) holds. Consider ▽n = max{M(Bŝn, Bŝn+1),M(Bĉn, Bĉn+1)}, that is, ▽n = δn−1 then (37) and (38). From (37)
that δn ≤ κnδ0 therefore, M(Bŝn+1, Bŝn+2) ≤ κnδ0 and M(Bĉn+1, Bĉn+2) ≤ κnδ0. Shows that {Bŝn} and {Bĉn} in
Ŵ Cauchy sequences from Lemma(3.1) of [15]. Therefore, Result(2.2) that A and B in Ŵ coincidence point. □



202 Hassan, Ishtiaq, Ray

Corollary 2.11. Suppose that (Ŵ ,M,⪯) is a complete partially ordered M -metric space. Suppose that continuous
mapping A : Ŵ × Ŵ → Ŵ has a mixed monotone property and satisfies contraction conditions for any ŝ, ĉ, ũ, ô ∈ Ŵ
such that ŝ ⪯ ũ and ĉ ⪰ ô and κ > 2, ϕ ∈ Φ and ψ ∈ Ψ,

i. ϕ(κM(A(ŝ, ĉ), A(ũ, ô)) ≤ ϕ(ÇB(ŝ, ĉ, ũ, ô))− ψ(D B(ŝ, ĉ, ũ, ô)),

ii. ϕ(M(A(ŝ, ĉ), A(ũ, ô)) ≤ 1
κϕ(ÇB(ŝ, ĉ, ũ, ô))− 1

kψ(D B(ŝ, ĉ, ũ, ô)).

where

ÇB(ŝ, ĉ, ũ, ô) = max

{
M(Bũ,A(ũ,ô))[1+M(Bŝ,A(ŝ,ĉ)]

1+M(Bŝ,Bũ) , M(Bŝ,A(ŝ,ĉ))M(Bũ,A(ũ,ô))
1+M(Bŝ,Bũ)

,M(Bŝ,A(ŝ, ĉ)),M(Bũ,A(ũ, ô)),M(Bŝ,Bũ)

}
,

and

DB(ŝ, ĉ, ũ, ô) = max

{
M(Bũ,A(ũ, ô))[1 +M(Bŝ,A(ŝ, ĉ)]

1 +M(Bŝ,Bũ)
,M(Bŝ,B)

}
.

If there exist, (ŝ0, ĉ0)∈ Ŵ × Ŵ such that ŝ0 ⪯ A(ŝ0, ĉ0) and ĉ0 ⪯ A(ĉ0, ŝ0) ,then A has a coupled fixed point in Ŵ .

Theorem 2.12. A unique coupled common fixed point as A and B exist in Result(2.9), if for (ŝ, ĉ), (κ, ϱ) ∈ Ŵ × Ŵ
there some (λ, µ) ∈ Ŵ × Ŵ such that (A(λ, µ), A(µ, λ)) comparable (A(ŝ, ĉ), A(ĉ, ŝ)) and (A(κ, ϱ), A(ϱ, κ)).

Proof . By Theorem 2.10, the mappings A & B coupled coincidence point Ŵ . Let (ŝ, ĉ), (κ, ϱ) ∈ Ŵ × Ŵ two
coupled coincidence points of A and B . Now, claim that Bŝ = Bκ and Bĉ = Bϱ. By hypotheses (A(λ, µ), A(µ, λ))
comparable to (A(ŝ, ĉ), A(ĉ, ŝ)) for some (λ, µ) ∈ Ŵ × Ŵ .

(A(ŝ, ĉ), A(ĉ, ŝ)) ≤ (A(λ, µ), A(µ, λ))

(A(κ, ϱ), A(ϱ, κ)) ≤ (A(λ, µ), A(µ, λ)).

Suppose λ0 = λ and µ0 = µ there is point (λ1, µ1) ∈ Ŵ × Ŵ such that

B(λ1) = A(λ0,µ0), B(µ1) = A(µ0,λ0) (n ≥ 1),

We have sequences {Bλn} and {Bµn} in Ŵ repeated application above argument,

B(λn+1) = A(λn,µn), B(µn+1) = A(µn,λn).

Similarly, defoe the sequences {Bŝn}, {Bĉn} and {Bκn}, {Bϱn} in Ŵ by setting ŝ0 = ŝ and ĉ0 = ĉ and κ0 = κ ,
ϱ0 = ϱ. Furthermore, we have Bŝn → A(ŝ, ĉ), Bĉn → A(ĉ, ŝ), Bκn → A(κ, ϱ), Bϱn → A(ϱ, κ), (n ≥ 1). Therefore by
induction,

(Bŝn, Bĉn) ≤ (B(λn), B(µn)) , n ≥ 0.

Now from Eq. (28),

(39) ϕ(M(Bŝ,Bλn+1)) = ϕ(M(A(ŝ, ĉ), A(λn, µn))

≤ ϕ(ÇB(ŝ, ĉ, λn, µn))− ψ(DB(ŝ, ĉ, λn, µn)),

where

ÇB(ŝ, ĉ, λn, µn) = max

{
M(Bλn,A(λn,µn))[1+M(Bŝ,A(ŝ,ĉ)]

1+M(Bŝ,Bλn)
, M(Bŝ,A(ŝ,ĉ))M(Bλn,A(λn,µn))

1+M(Bŝ,Bλn)

,M(Bŝ,A(ŝ, ĉ)),M(Bλn, A(λn, µn)),M(Bŝ,Bλn)

}
,

and

DB(ŝ, ĉ, λn, µn) = max{M(Bλn, A(λn, µn))[1 +M(Bŝ,A(ŝ, ĉ)]

1 +M(Bŝ,Bλn)
,M(Bŝ,Bλn)}.

As a result of Eq. (39),

(40) ϕ(M(Bŝ,Bλn+1)) ≤ ϕ(M(Bŝ,Bλn))− ψ(M(Bŝ,Bλn)).

As consequence of similar argument,

(41) ϕ(M(Bĉ,Bµn+1)) ≤ ϕ(M(Bĉ,Bµn))− ψ(M(Bĉ,Bµn)).
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Therefore from (40) and (41),

(42) ϕ(max {M(Bŝ,Bλn+1),M(Bĉ,Bµn+1)} ≤ ϕ(max {M(Bŝ,Bλn),M(Bĉ,Bµn)})
−ψ(max {M(Bŝ,Bλn),M(Bĉ,Bµn)})

< ϕ(max {M(Bŝ,Bλn),M(Bĉ,Bµn)}).

The property ϕ implies that,

max {M(Bŝ,Bλn+1),M(Bĉ,Bµn+1)} < max {M(Bŝ,Bλn),M(Bĉ,Bµn)} .

Hence, max{M(Bŝ,Bλn),M(Bĉ,Bµn)} bounded below decreasing sequence of R+ and by result,

lim
n→+∞

max {M(Bŝ,Bλn),M(Bĉ,Bµn)} = Γ, Γ ≥ 0.

Therefore as n→ +∞ in Eq.(42),
ϕ(Γ) ≤ ϕ(Γ)− ψ(Γ),

derived ψ(Γ) = 0. Hence, Γ = 0.

lim
n→+∞

max {M(Bŝ,Bλn),M(Bĉ,Bµn)} = 0.

Thus,
(43) lim

n→+∞
M(Bŝ,Bλn) = 0 and lim

n→+∞
M(Bĉ,Bµn) = 0.

Also from above same argument,

(44) lim
n→+∞

M(Bκ,Bλn) = 0 and lim
n→+∞

M(Bϱ,Bµn) = 0.

Therefore from (43) and (44), Bŝ = Bκ and Bĉ = Bϱ. Since Bŝ = A(ŝ, ĉ) and Bĉ = A(ĉ, ŝ) commutativity
property of A and B,

(45) B(Bŝ) = B(A(ŝ, ĉ)) = A(Bŝ,Bĉ) and B(Bĉ) = B(A(ĉ, ŝ)) = A(Bĉ,Aŝ).

If Bŝ = λ and Bĉ = µ from (45), we get

(46) B(λ) = A(λ, µ) and B(µ) = A(µ, λ),

this shows that (λ, µ) coupled coincidence points of A and B . Hence, B(λ) = Bκ and B(µ) = Bϱ which in turn gives
that B(λ) = λ and B(µ) = µ. Therefore, we conclude from (46) that (λ, µ) is coupled common faxed point of A and B.
Consider (λ, µ) another coupled common fixed point to A and B. Thus λ = B(λ) = A(λ, µ) and µ = B(µ) = A(µ, λ).
But (µ, λ) is a coupled common fixed point of A and B then B(λ) = Bŝ = λ and B(µ) = Bĉ = µ. Therefore,
λ = Bλ = Bλ = λ λ = Bµ = Bµ = µ. Hence the uniqueness. □

Theorem 2.13. If Bŝ0 ⪯ Bĉ0 or Bŝ0 ⪰ Bĉ0 in Result 2.11, then A and B have a unique common fixed point in Ŵ .

Proof . Consider (ŝ, ĉ) ∈ Ŵ is unique coupled common fixed point of A and B. Next show that ŝ = ĉ. Suppose that
Bŝ0 ⪯ Bĉ0 by induction, ŝn ⪯ Bĉn, for all n ≥ 0. Lemma 2 of [16], we have

ϕ(M(ŝ, ĉ)) ≤ lim
n→+∞

supϕ(M(ŝn+1, ĉn+1))

= lim
n→+∞

supϕ(M(A(ŝn, ĉn), A(ĉn, ŝn)))

≤ lim
n→+∞

supϕ(ÇB(ŝn, ĉn, ĉn, ŝn))− lim
n→+∞

supψ(DB(ŝn, ĉn, ĉn, ŝn))

≤ ϕ(M(ŝ, ĉ))− lim
n→+∞

supψ(DB(ŝn, ĉn, ĉn, ŝn))

< ϕ(M(ŝ, ĉ)),

which is a contradiction. Hence, ŝ = ĉ. □
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3 Conclusion

In this manuscript, we derived several fixed point results in the context of partially ordered m-metric space. Our
results are more generalized in the existing literature. This work can be extend in the context of many generalized
spaces including fuzzy m-metric spaces, partially ordered fuzzy m-metric spaces, partially ordered metric-like spaces.
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[6] M. Aslantaş, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, J. Anal. 29 (2020), 89–103.

[7] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math.
3 (1922), 131–181.

[8] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.

[9] S.K. Chatterjee, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.

[10] L.B. Cirić, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (1971), 19–26.
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