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Abstract

A continuous operator T between two Banach lattices E and F is called almost order-weakly compact, whenever for
each almost order bounded subset A of E, T (A) is a relatively weakly compact subset of F . We show that the positive

operator T from E into a Dedekind complete Banach lattice F is almost order-weakly compact iff T (xn)
∥.∥−−→ 0 in F

for each disjoint almost order bounded sequence {xn} in E. In this manuscript, we study some properties of this class
of operators and its relationships with the others known classes of operators.
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1 Introduction

Since order weakly compact operators play an important role in the class of positive operators, our aim in this
manuscript is to introduce and study a new class of operators as almost order-weakly compact operators and we
establish some of its relationships with the others known classes of operators. Under some conditions, we show that
the adjoint of any almost order-weakly compact operator is so. Every compact and weakly compact operator is an
almost order-weakly compact operator, but the converse in general not holds.

To state our results, we need to fix some notations and recall some definitions. Let E be a Banach lattice. A subset
A is said to be almost order bounded if for any ϵ there exists u ∈ E+ such that A ⊆ [−u, u] + ϵBE (BE is the closed
unit ball of E). One should observe the following useful fact, which can be easily verified using Riesz decomposition
Theorem, that A ⊆ [−u, u] + ϵBE iff supx∈A ∥(|x| − u)+∥ = supx∈A ∥|x| − |x| ∧ u∥ ≤ ϵ. By Theorems 4.9 and 3.44 of
[1], each almost order bounded subset in order continuous Banach lattice is relatively weakly compact. A ⊆ L1(µ) is
relatively weakly compact iff it is almost order bounded (see [7]). Recall that a vector e > 0 in vector lattice E is an
order unit or a strong unit (resp, weak unit) when the ideal Ie (resp, band Be) is equal to E; equivalently, for every
x ≥ 0 there exists n ∈ N such that x ≤ ne (resp, x ∧ ne ↑ x for every x ∈ E+). Suppose that Banach lattice E is an
order continuous norm with a weak unit e. It is known that E can be represented as a norm and order dense ideal in
L1(µ) for some finite measure µ (see [5]). A continuous operator T from a Banach lattice E to a Banach space X is
said to be

� order weakly compact whenever T [0, x] is a relatively weakly compact subset of X for each x ∈ E+.

� M-weakly compact if T (xn)
∥.∥−−→ 0 holds for every norm bounded disjoint sequence {xn} of E.
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� b-weakly compact whenever T carries each b-order bounded subset of E into a relatively weakly compact
subset of X.

A continuous operator T from a Banach space X to a Banach lattice E is said to be

� L-weakly compact whenever yn
∥.∥−−→ 0 for every disjoint sequence {yn} in the solid hull of T (BX).

� semicompact whenever for each ϵ ≥ 0 there exists some u ∈ E+ satisfying ∥(|Tx| − u)+∥ ≤ ϵ for all x ∈ BX .

An operator T : E → F is regular if T = T1 − T2 where T1, T2 : E → F are positive operators. We denote by L(E,F )
(Lr(E,F )) the space of all operators (regular operators) from E into F .

An operator T : E → F between two vector lattices is said to be a lattice homomorphism (resp. a disjointness
preserving) whenever T (x ∨ y) = T (x) ∨ T (y) (resp. x ⊥ y in E implies T (x) ⊥ T (y) in F ).

Recall that Lb(E,F ) is the vector space of all order bounded operators from E to F .

A Banach space X is said to be Grothendieck space whenever weak∗ and weak convergence of sequences in X ′

(the norm dual of X) coincide.

A Banach lattice E is said to be AM -space (resp. AL-space), if for x, y ∈ E with x ∧ y = 0, we have ∥x ∨ y∥ =
max{∥x∥, ∥y∥} (resp. ∥x + y∥ = ∥x∥ + ∥y∥). A Banach lattice E is said to be KB-space whenever every increasing
norm bounded sequence of E+ is norm convergent.

Let E be a vector lattice and x ∈ E. A net {xα} ⊆ E is said to be order convergent to x if there is a net {zβ} over
different index set in E such that zβ ↓ 0 and for every β, there exists α0 such that |xα−x| ≤ zβ whenever α ≥ α0. We

denote this convergence by xα
o−→ x and write that {xα} is o-convergent to x. A net {xα} ⊆ E is said to be unbounded

order convergent to x if |xα −x| ∧u
o−→ 0 for all u ∈ E+. We denote this convergence by xα

uo−→ x and write that {xα}
is uo-convergent to x.

2 Almost order bounded operators

Let T : E → F be a continuous operator between two Banach lattices. T is said to be an almost order bounded
operator whenever T maps the almost order bounded subset A of E into an almost order bounded subset of F .
The vector space of all almost order bounded operators from E to F will be denoted Laob(E,F ).

It is obvious that if T : E → F is a semicompact operator, then it is almost order bounded. If E has an order unit
and T : E → F is order bounded, then it is an almost order bounded operator and if F has an order unit and T is an
almost order bounded opertor, then it is order bounded.

In the following, there is an example of almost order bounded operator whose modulus does not exist.

Example 2.1. Consider the continuous function g : [0, 1] → [0, 1] defined by g(x) = x if 0 ≤ x ≤ 1

2
and g(x) = 1

2 if

1
2 < x ≤ 1. Now define the operator T : C[0, 1] → C[0, 1] by Tf(x) = f(g(x)) − f(

1

2
). Then T is a regular operator

and therefore it is an order bounded operator. Since C[0, 1] is an AM -space with order unit, T is an almost order
bounded operator. Note that the modulus of T does not exist (see Exercise 9 of page 22 of [1].).

In the following, under some conditions, we show that |T | is almost order bounded operator whenever T is an almost
order bounded operator.

Proposition 2.2. Let T : E → F be an almost order bounded operator between two Banach lattices that F is
Dedekind complete and E,F have an order unit, then the modulus of T exists and it is almost order bounded.

Proof . Let T : E → F be an almost order bounded operator. Since F has an order unit, therefore T is an order
bounded operator. Because F is Dedekind complete, so by Theorem 1.18 of [1], |T | exists and it is an order bounded
operator. Since E has an order unit, |T | is an almost order bounded operator. □

Proposition 2.3. If T : E → F is a lattice homomorphism and surjective, then T is almost order bounded.
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Proof . Let T : E → F be an almost order bounded and A ⊆ E be an almost order bounded set. It means that
for each ϵ > 0 there exists u ∈ E+ that supx∈A ∥(|x| − u)+∥ ≤ ϵ. Since T is a positive operator, therefore it is a
continuous operator. Hence for each ϵ > 0 there exists u ∈ E+ that supx∈A ∥T (|x| − u)+∥ ≤ ϵ. Since T is a lattice
homomorphism, therefore supx∈A ∥(|Tx| − Tu)+∥ = supx∈A ∥T (|x| − u)+∥ ≤ ϵ. So the proof is complete. □

Remark 2.4. If T : E → F is an onto lattice homomorphism and F is Archimedean, then |T | exists and it is an
almost order bounded operator.

Proof . Since T is a lattice homomorphism, therefore it is order bounded and disjointness preserving. Hence by
Theorem 2.40 of [1], |T | exists. It is obvious thst |T | is a lattice homomorphism. By Proposition 2.3, |T | is an almost
order bounded operator. □

3 Almost order-weakly compact operators

Let T : E → F be a continuous operator between two Banach lattices. T is said to be an almost order-weakly
compact operator (for short, ao-wc operator) whenever T maps the almost order bounded subset A of E into a
relatively weakly compact subset of F .

By Theorem 3.40 of [1], T is an ao-wc operator iff for every almost order bounded sequence {xn} of E, the sequence
{T (xn)} has a weak convergent subsequence in F .

The collection of all ao-wc operators between two Banach lattices E and F will be denoted by Kao−wc(E,F ).

It is obvious that each compact and weakly compact operator are ao-wc and each ao-wc operator is an order weakly
compact operator.

By Theorem 5.23 and 5.27 of [1], we have the following result.

Theorem 3.1. 1. Each continuous operator T from a Grothendieck Banach lattice E into a Banach lattice F is
an ao-wc operator.

2. Let T be a positive operator from a Banach lattice E into a Banach lattice F and E′ has order continuous norm.
If F is a KB-space, then T is ao-wc.

In the following we have some examples of ao-wc operators.

Example 3.2. 1. Since C[0, 1] is a Grothendieck space, therefore by Theorem 3.1(1), the continuous operator
T : C[0, 1] → c0, given by

T (f) = (

∫ 1

0

f(x) sinxdx,

∫ 1

0

f(x) sin 2xdx, · · · ),

is an ao-wc operator.

2. Since c′ has order continuous norm and R is a KB-space, therefore by Theorem 3.1(2), the functional f : c → R
defined by

f(x1, x2, ...) = lim
n→∞

xn

is an ao-wc operator.

Proposition 3.3. Let E, F and G be three Banach lattices, T : E → F and S : F → G be two ao-wc operators. By
one of the following conditions, S ◦ T is an ao-wc operator.

1. F is an AL-space.

2. F has order continuous norm with a weak unit.

Proof . Let A ⊆ E be almost order bounded. By assumption, T (A) is a relatively weakly compact subset of F .
If F is an AL-space, then by Theorem 4.27 of [1], F is lattice isometric to some concrete L1(µ) and if F has order
continuous norm with a weak unit, then F is norm and order dense ideal in L1(µ). Therefore T (A) is an almost order
bounded subset of F . So by assumption, S(T (A)) is a relatively weakly compact subset of G. Hence S ◦T is an ao-wc
operator. □ As following example the adjoint of ao-wc operator in general is not an ao-wc operator.

Example 3.4. Let A ⊆ ℓ1 be an almost order bounded set. Since ℓ1 has order continuous norm, therefore A is
relatively weakly compact. Thus the identity operator I : ℓ1 → ℓ1 is an ao-wc operator. Since the identity operator
I : ℓ∞ → ℓ∞ is not order weakly compact, therefore it is not ao-wc.
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In the following theorem, under some conditions, we show that the adjoint of ao-wc operator is so.

Theorem 3.5. Let T : E → F be an ao-wc operator between two Banach lattices. If any of the following conditions
are met, then T ′ is ao-wc.

1. E has an order unit.

2. E′ is a KB-space and F ′ has an order unit.

Proof .

1. Let E has an order unit and T : E → F be ao-wc. If A ⊆ E is norm bounded, then A is order bounded and
therefore almost order bounded. Hence by assumption, T (A) is a relatively weakly compact subset of F . It
means that T is a weakly compact operator. Therefore by Theorem 5.5 of [4], T ′ is weakly compact and hence
it is an ao-wc operator.

2. Let T : E → F be an ao-wc operator. Therefore T is an order weakly compact operator. Since E′ is a KB-space,
by Theorem 3.3 of [2], T ′ also is an order weakly compact operator. Since F ′ has an order unit, it is clear that
T ′ is ao-wc.

□ We know that each compact and weakly compact operator is an ao-wc operator, but by following example the
converse in general not holds.

Example 3.6. The identity operator I : ℓ1 → ℓ1 is an ao-wc operator, but is not a compact or weakly compact
operator.

Corollary 3.7. Under the conditions of Theorem 3.5, an operator T : E → F is weakly compact iff it is ao-wc.

Proof .

Let E has an order unit and T : E → F be ao-wc, then it is a weakly compact operator.
Let E′ be a KB-space, F ′ has an order unit and T : E → F is ao-wc. By Theorem 3.5, T ′ is ao-wc. Because F ′ has
an order unit, T ′ is weakly compact. By Theorem 5.5 of [4], T is weakly compact. □

Remark 3.8. Let E be a Banach lattice with an order unit. Then a subset A of E is norm bounded iff it is order
bounded iff it is almost order bounded. Therefore an operator T : E → F is weakly compact iff it is order weakly
compact iff it is ao-wc.

Remark 3.9. Under the conditions of Theorem 3.5, if T : E → F is ao-wc, then by Corollary 3.7 and Theorem 5.44
of [1], there exist a reflexive Banach lattice G, a lattice homomorphism Q : E → G and a positive operator S : G → F
that T = S ◦Q.

Note that the identity operator I : ℓ∞ → ℓ∞ is not ao-wc, however its adjoint I : (ℓ∞)′ → (ℓ∞)′ is ao-wc.

Let T : E → F be an operator between two Banach lattices. If T ′ : F ′ → E′ is ao-wc and F ′ has an order unit,
then T ′ is weakly compact and therefore T is weakly compact. It follows that T is ao-wc. If T is M -weakly compact
or L-weakly compact, then by Theorem 5.61 of [1], T is weakly compact and therefore T is an ao-wc operator. Thus
we have the following result.

Theorem 3.10. Let T : E → F be an operator between two Banach lattices. By one of the following conditions T is
an ao-wc operator.

1. T is M -weakly compact.

2. T is L-weakly compact.

If T : E → F is a semicompact operator, or dominated by a semicompact opereator, then T is ao-wc. Let A be
an almost order bounded subset of E. Then A is norm bounded. Therefore if T is a semicompact operator, T (A) is
an almost order bounded set in F . Since F has order continuous norm, T (A) is a relatively weakly compact subset of
F . Hence T is an ao-wc operator. If T is dominated by a semicompact operator, then by Theorem 5.72 of [1], T is a
semicompact operator. Thus T is an ao-wc operator.
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Remark 3.11. 1. An ao-wc operator needs not be an M -weakly or L-weakly compact operator. For instance, the
identity operator I : L1[0, 1] → L1[0, 1] is ao-wc, but it is not a M -weakly or L-weakly compact operator.

2. Note that if F has not order continuous norm, then each semicompact operator T : E → F is not necessarily
ao-wc. For example, the identity operator I : ℓ∞ → ℓ∞ is semicompact, but I is not ao-wc.

Let E and F be two normed vector lattices. Recall from [8], a continuous operator T : E → F is said to be

σ-uon-continuous, if for each norm bounded uo-null sequence {xn} ⊆ E implies T (xn)
∥.∥−−→ 0.

Theorem 3.12. Let E and F be two Banach lattices that F is Dedekind complete. The positive operator T : E → F

is ao-wc iff for each disjoint almost order bounded sequence {xn} in E implies T (xn)
∥.∥−−→ 0 in F .

Proof . Let the operator T : E → F be ao-wc. This means that for every ϵ > 0 there exists u ∈ E+ such that
T ([−u, u] + ϵBE) is relatively weakly compact. Let Iz be the ideal generated by z ∈ [−u, u] + ϵBE in E. Then the
operator T |Iz : Iz → F is weakly compact operator. Since Iz is an AM -space with order unit, therefore T |Iz : Iz → F
is M -weakly and hence by Remark 2.8 of [8], is σ-uon-continuous. It is clear that the extension of the operator T |Iz ,
T : E → F is σ-uon-continuous. If {xn} ⊆ E is almost order bounded and disjoint, hence it is norm bounded and

uo-null. So we have T (xn)
∥.∥−−→ 0.

Conversely, let A ⊆ E be an almost order bounded set. Then for each ϵ > 0 there exists u ∈ E+ such that
A ⊆ [−u, u]+ ϵBE . Let Iu be the ideal generated by u in E and {xn} ⊆ A be a disjoint sequence. It is clear that {xn}
is norm bounded. By assumption, we have T (xn)

∥.∥−−→ 0 in F . Therefore T : Iu ⊕ E → F is M -weakly compact, and
so by Theorem 3.10, T : Iu ⊕ E → F is an ao-wc operator. Thus T : E → F is ao-wc. □

Corollary 3.13. 1. Let T : E → F and S : F → G be two ao-wc operators where F and G are Dedekind complete

and {xn} ⊆ E be a disjoint almost order bounded sequence. By Theorem 3.12, we have T (xn)
∥.∥−−→ 0. Since S

is a continuous operator, S(T (xn))
∥.∥−−→ 0. Therefore S ◦ T is ao-wc operator.

2. By Theorem 5.60 of [1], obviously that if T : E → F is an ao-wc operator, then for each ϵ > 0 there exists some
u ∈ E+ such that ∥T ((|x| − u)+)∥ < ϵ holds for all x ∈ A where A is an almost order bounded subset of E.

Recall that a Banach lattice E is said to have the dual positive Schur property if every positive w∗-null sequence in
E′ is norm null.

Theorem 3.14. The following statements are true.

1. Let E be a Dedekind complete Banach lattice. E has order continuous norm iff each positive operator T from
E into each Banach lattice F is an ao-wc operator.

2. Let E be a Dedekind complete Banach lattice. E has order continuous norm iff each almost order bounded
disjoint sequence {xn} ⊆ E is norm null.

3. If E has the property (b) and each operator T 2 : E → E is ao-wc, then E has order continuous norm.

4. Let T : E → F be a continuous operator between two Banach lattices E and F that F is Dedekind complete. If
|T | exists and it is ao-wc, then T is also ao-wc.

5. If E has the dual positive Schur propertry, F has order continuous norm and Dedekind complete, then adjoint
of each positive operator T : E → F is an ao-wc operator.

Proof .

1. Let E has order continuous norm and {xn} be an almost order bounded disjoint sequence in E. Therefore

xn
uo−→ 0 in E. By Proposition 3.7 of [7], xn

∥.∥−−→ 0. By continuity of T , it follows that T (xn)
∥.∥−−→ 0 in F .

Conversely, let E has no order continuous norm. By Theorem 2.7 of [3], there exists an operator T from E into
ℓ∞ such that T is not order weakly compact and therefore is not ao-wc.

2. Let E has order continuous norm, therefore the identity operator I : E → E is ao-wc. Then xn = I(xn)
∥.∥−−→ 0

where {xn} ⊆ E is almost order bounded disjoint sequence.
Conversely, let {xn} be an order bounded disjoint sequence in E. Therefore {xn} is almost order bounded

disjoint in E. Hence by assumption xn = I(xn)
∥.∥−−→ 0. By Theorem 4.14 of [1], E has order continuous norm.
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3. By contradiction, assume that E has no order continuous norm, it follows from the proof of Theorem 2 of [11],
that E contains a closed order copy of c0 and there exists a positive projection P : E → c0. Let i : c0 → E be
the canonical injection. Obviously that T = i ◦ P : E → E is not b-weakly compact. Since E has the property
(b), therefore T is not order weakly compact, and so T 2 is not ao-wc.

4. Let 0 ≤ T ≤ S and S be an ao-wc operator. If {xn} is an almost order bounded and disjoint sequence in E, then

by Theorem 3.12, S(xn)
∥.∥−−→ 0. Therefore T (xn)

∥.∥−−→ 0. We have −|T | ≤ T ≤ |T |, and so 0 ≤ T + |T | ≤ 2|T |. It
follows that T is an ao-wc operator whenever |T | is ao-wc.

5. Let {fn} be an almost order bounded disjoint sequence in F ′. Then fn
uo−→ 0 in F ′. Without loss of generality,

assume that 0 ≤ fn. Note that 0 ≤ T ′fn. Now since F has order continuous norm, by Theorem 2.1 from [6],

fn
w∗

−−→ 0 in F ′. Since T ′ is w∗-to-w∗ continuous, hence T ′fn
w∗

−−→ 0 in E′. Since E has the dual positive Schur

property, hence T ′fn
∥.∥−−→ 0 in E′.

□

Proposition 3.15. Suppose E has an order unit. Then T : E → F is σ-uon-continuous iff it is an ao-wc operator.

Proof . Since T : E → F is an ao-wc operator, T is order weakly compact. Let {xn} ⊆ E be a norm bounded disjoint
sequence. Since E has an order unit, then {xn} is order bounded disjoint sequence. By assumption and Theorem

5.57 of [1], T (xn)
∥.∥−−→ 0. So T is M -weakly compact and therefore by remark 2.8 of [8], T is σ-uon-continuous. □

By Remark 3.11, we know that the class of ao-wc operators different with the class of semicompact operators. In the
following, under some conditions, we establish the relationship between them.

Theorem 3.16. Let T : E → F be an ao-wc operator between two Banach lattices. Then T is semicompact operator.

Proof . Let T : E → F be ao-wc and A be an almost order bounded subset of E. Without loss of generality we
assume that for each ϵ there exists u ∈ E+ such that A = [−u, u]+ ϵBE . Let p(x) = ∥x∥. Then lim p(T (xn)) = 0 holds
for each disjoint sequence {xn} in A. By Theorem 4.36 of [1], there exists some v ∈ E+ satisfying ∥T (|x| − v)+∥ ≤ ϵ
for all x ∈ A. Put w = Tv ∈ F+, and note that

(|Tx| − w)+ = (|Tx| − Tv)+

≤ (T |x| − Tv)+

= (T (|x| − v))+

≤ T ((|x| − v)+).

Therefore T is a semicompact operator. □

By Theorems 3.10 and 3.16, we have the following result.

Corollary 3.17. 1. Each operator T : E → F that it is ao-wc is an almost order bounded operator.

2. Let F be a Banach lattice with order continuous norm. Then T : E → F is ao-wc iff it is a semicompact operator.

If T is ao-wc, in general |T | is not exist, see the following example.

Example 3.18. The operator T : L1[0, 1] → c0 defined by

T (f) = (

∫ 1

0

f(x) sinxdx,

∫ 1

0

f(x) sin 2xdx, · · · ),

is an ao-wc operator. Note that by Exercise 10 of page 289 of [1], its modulus does not exist.

In the following theorem, under some conditions, we show that |T | exists and is ao-wc whenever T is ao-wc.

Recall that a Banach lattice E is said to have the property (P ) if there exists a positive contractive projection
P : E′′ → E where E is identified with a sublattice of its topological bidual E′′.

Theorem 3.19. Let T : E → F be an ao-wc operator. By one of the following conditions, the modulus of T exists
and it is an ao-wc operator.
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1. E is an AL-space and F has the propery (P ).

2. E and F have an order unit.

3. F is Archimedean Dedekind complete and T is an order bounded operator that preserves disjointness.

Proof .

1. By Theorem 1.7 of [10], we have Lr(E,F ) = L(E,F ). Therefore |T | exists. Since E has order continuous norm,
by Theorem 3.14, |T | : E → F is an ao-wc operator.

2. Since E has an order unit, T is a weakly compact operator. Since F has an order unit, by Theorem 2.3 of [9],
the modulus of T exists and it is a weakly compact operator. It is obvious that |T | is an ao-wc operator.

3. By Theorem 2.40 of [1], |T | exists and for all x, we have |T |(|x|) = |T (|x|)| = |T (x)|. If {xn} ⊆ E is an almost

order bounded disjoint sequence, then by assumption T (xn)
∥.∥−−→ 0. For each n, we have |T |(|xn|) = |T (|xn|)| =

|T (xn)|
∥.∥−−→ 0 in F . The inequality |(|T |(xn))| ≤ |T ||xn|, implies that

|T |(xn)
∥.∥−−→ 0.

Hence |T | is an ao-wc operator.

□

Theorem 3.20. Let E and F have an order unit with F Dedekind complete. Then Kao−wc(E,F ) ∩ Lb(E,F ) is a
band in Lb(E,F ).

Proof . It is obvious that if T and S ∈ Kao−wc(E,F ) ∩ Lb(E,F ) and α ∈ R, then T + S and αT ∈ Kao−wc(E,F ) ∩
Lb(E,F ).

Let |S| ≤ |T | where T ∈ Kao−wc(E,F ) ∩ Lb(E,F ), S ∈ Lb(E,F ) and {xn} ⊆ E be almost order bounded

disjoint sequence. Without loss of generality, assume that xn ≥ 0 for all n. By Theorem 3.19, |T |(xn)
∥.∥−−→ 0. The

inequality |S(xn)| ≤ |S|(xn) ≤ |T |(xn) implies that S(xn)
∥.∥−−→ 0. Therefore S ∈ Kao−wc(E,F ) ∩ Lb(E,F ) and so

Kao−wc(E,F ) ∩ Lb(E,F ) is an ideal of Lb(E,F ).

Now let 0 ≤ Tα ↑ T in Lb(E,F ) with {Tα} ⊆ Kao−wc(E,F ) ∩ Lb(E,F ). Since T is positive, therefore T is order
bounded and since E has an order unit, then by Example 3.2, T is ao-wc. Hence T ∈ Kao−wc(E,F ) ∩ Lb(E,F ). □
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