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Abstract

This paper seeks to prove the pathwise uniqueness of an abstract stochastic partial differential equation in Hilbert
spaces driven by both Poisson random measure and the Wiener process with Hölder continuous drift. The main
idea is based on the corresponding infinite-dimensional Kolmogorov equation. In addition, the main result is further
supported by the help of an example.
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1 Introduction

The theory of stochastic differential equations driven by Lévy noise has been a central issue for different studies.
Understanding how the noise can improve the uniqueness for SPDEs, while the corresponding PDEs do not have this
property, is a topic of great interest. For instance, consider the following deterministic differential equation:

dXt = f(Xt)dt, X0 = x0. (1.1)

It is well-known that if f is a Lipschitz continuous function, the equation is well-posed, instead if f is only Hölder
continuous, it is not well-posed. For example, let f(x) = |x|γ with 0 < γ < 1 and X0 = 0, then equation (1.1) has two

solutions: Xt ≡ 0 and Xt = (1 − γ)t
1

1−γ . Nonetheless, if equation (1.1) is considered by a strong enough noise, the
equation becomes well-posed for many singular f ’s. To put it simply, consider the following SDE on Rm:

dXt = b(Xt)dt+ dZt, X0 = x0. (1.2)

In the case that Zt is an m-dimensional standard Wiener noise and b is a bounded measurable function, Veretennikov
[18] first proved the existence of a unique strong solution for SDE (1.2). In the finite dimensional case, this result has
been extended in various directions, see for example [7], [9], [8], [10], [12], [13]. Also Veretennikov’s result has been
extended to stochastic evolution equations in Hilbert and Banach spaces, see [2], [3], [4], [5]. Studying the pathwise
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uniqueness of SDE (1.2), when Zt is a symmetric α-stable process or Poisson random measure, is faced with more
difficulties. Tanaka et al. [17] analyzed the SDE (1.2) with a symmetric α-stable noise and proved the existence of
a unique strong solution for this equation in the case m = 1 and α ≥ 1 with bounded continuous drift b. Also they
substantiated that when m = 1 and α+ β < 1, even a bounded and β-Hölder continuous function b is not enough for
the pathwise uniqueness . On the other hand, when the parameters α, β satisfy β > 1− α

2 with α ∈ [1, 2), Priola et al.
[15] demonstrated the pathwise uniqueness for SDE (1.2) when the function b is bounded and β-Hölder continuous.

In the case of infinite dimensional case, Desheng Yang [19] proved the pathwise uniqueness of stochastic evolution
equations in Hilbert spaces with α-stable noise and bounded β-Hölder continuous drift term. Also, Sun et al. [16]
proved the pathwise uniqueness of stochastic evolution equations in Hilbert spaces driven by cylindrical α-stable
process and β-Hölder continuous drift term.

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and N(dt, dx) be a Poisson random measure on the Borel
σ-algebra B(R+ ×H) with intensity measure ν(dx)dt. This paper is designed to prove the pathwise uniqueness of the
mild solution of the following stochastic differential equation,

dXt = AXtdt+B(t,Xt)dt+ F (t,Xt)dt+ dWt +

∫
H
xN(dt, dx), X0 = x ∈ H, (1.3)

where

� (H, ⟨., .⟩, |.|) is a separable Hilbert space.

� A : D(A) ⊆ H −→ H is the infinitesimal generator of a C0-semigroup (etA)t≥0 of linear operators in Hilbert
space H.

� B : [0, T ] × H −→ H is Hölder continuous in x uniformly in t and F : [0, T ] × H −→ H is locally Lipschitz
continuous.

� Wt is a Wiener process in Hilbert space H with covariance operator Q and N(dt, dx) = N(dt, dx) − ν(dx)dt
denotes the compensated Poisson random measure corresponding to N(dt, dx) and it is independent of Wt. For
more details about Poisson random measure and Wiener process in Hilbert spaces and definition and properties
of integral with respect to Wt and N(dt, dx), consult [14], [6].

As far as we know, little attention has been paid to the pathwise uniqueness for stochastic evolution equations
in Hilbert spaces driven by both Wiener process and Poisson random measure with Hölder continuous drift. The
main technical ingredient of this study is a regularity result for a nonhomogeneous infinite dimensional Kolmogorov
equations.

This paper is organized as follows. The second section provides an explanation for some notations, assumptions
and results used throughout this paper and in Section 3, we go through the regularity results of the Ornstein-Ulenbeck
semigroup and the associated Kolmogorov equation. Also we focus on the proof of the main theorem and corroborate
our main claim by an example.

2 Preliminaries

We are given a separable Hilbert space H (equipped with inner product ⟨., .⟩ and norm |.|). In the sequel, the space
of all bounded linear operators from H into H will be denoted by L(H,H), also ∥.∥L(H,H) and ∥.∥L(H,L(H,H)) always
denote the usual operator norm of a linear bounded operator from H into H and L(H,H), respectively. On the other
hand, ∥.∥HS indicates the Hilbert–Schmidt norm (cf. [6], chapter 4).

For α, T > 0, the space C
(
[0, T ];Cα

b (H,H)
)
stands for all continuous bounded functions f : [0, T ] ×H −→ H for

which there exists C > 0 such that:

|f(t, x)− f(t, y)| ≤ C|x− y|α, x, y ∈ H, t ∈ [0, T ],

equipped with the following norm

∥f∥α = sup
t∈[0,T ],x∈H

|f(t, x)|+ sup
t∈[0,T ]

sup
x ̸=y∈H

|f(t, x)− f(t, y)|
|x− y|α

,
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and Lip(H,H) stands for the usual space of Lipschitz continuous functions in H. Throughout this paper, we fix a
complete orthonormal system {en}n≥1 for Hilbert space H. Also, we shall denote the components of any H-valued
function φ with respect to {en}n≥1 by φn, i.e., φn(x) = ⟨φ(x), en⟩.

Now we list the assumptions used throughout this paper

H1. A is self adjoint and Aen = −αnen with αn > 0, αn ↑ ∞,

H2.
∫
H |x|2ν(dx) < ∞,

H3.
∑∞

n=1
∥Bn∥2

α

αn
< ∞,

H4. the operator Qt =
∫ t

0
esAQesA

⋆

ds is trace class,

H5. etA(H) ⊆ Q
1
2
t (H) for all t > 0,

H6. the bounded operator Λt = Q
−1
2

t etA satisfies
∫ T

0
∥Λt∥1+θ

L(H,H)dt < ∞ for some θ ≥ max (α, 1− α), where by Q
−1
2

t

we denote the pseudo-inverse of Q
1
2
t ,

H7. B ∈ C
(
[0, T ];Cα

b (H,H)
)
and F ∈ C

(
[0, T ];Lip(H,H)

)
for some α, T > 0.

In this part, we introduce Ornstein-Ulenbeck process and provide some results which play an important role in the
proof of our main results. Firstly, let us define some of the spaces we use throughout this paper

(i) Bb(H) (resp. Bb(H,H)) denotes the space of all bounded real-valued (resp. H-valued) functions on H.

(ii) UCb(H,H) stands for the space of all uniformly continuous and bounded functions from H into H.

(iii) UC2
b (H,H) is the space of all functions f : H −→ H which are twice Fréchet differentiable on H with a uniformly

continuous and bounded second derivative D2f .

We consider the following equation:

dZx
t = AZx

t dt+ dWt +

∫
H
yN(dt, dy), Zx

0 = x ∈ H. (2.1)

This equation has a unique mild solution for any initial value x ∈ H as follows

Zx
t = etAx+

∫ t

0

e(t−s)AdWs +

∫ t

0

∫
H
e(t−s)AyN(ds, dy).

The solution Zx
t is called the Ornstein-Ulenbeck process. The process WA(t) = etAx+

∫ t

0
e(t−s)AdWs is Gaussian

with mean etAx and covariance operator Qt =
∫ t

0
esAQesA

⋆

ds, see [6] for more details . We denote the law of WA(t)
by NetAx,Qt

. Suppose that Rt : Bb(H) −→ Bb(H) is the corresponding semigroup defined as Rtφ(x) = E[φ(Zx
t )], then

we have

Rtφ(x) = E[φ(Zx
t )] =

∫
H

∫
H
φ(y + z)NetAx,Qt

(dy)µx
t (dz),

where µx
t is the law of

Y x
t =

∫ t

0

∫
H
e(t−s)AyN(ds, dy).

Let us introduce the analogous semigroup on H-valued functions as follows:

Rtφ(x) = E[φ(Zx
t )], φ ∈ Bb(H,H).

Clearly, we have
⟨Rtφ(x), g⟩ = Rtφg(x), φg(x) = ⟨φ(x), g⟩, g ∈ H.

The following theorem is argued in [3].
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Theorem 2.1. Let R0
t be the semigroup defined on Bb(H,H) as R0

tφ(x) =
∫
H φ(etAx+y)NQt

(dy), then by considering
the assumption H5, we get

φ ∈ UCb(H,H) =⇒ R0
tφ ∈ UC2

b (H,H),

for every t > 0.

Furthermore, the differential DR0
tφ(x) ∈ L(H,H) at each fixed x ∈ H is the linear operator given by

DR0
tφ(x)g =

∫
H
⟨Λtg,Q

−1
2

t y⟩φ(etAx+ y)NQt
(dy), g ∈ H,

and the second order derivative D2R0
tφ(x) ∈ L

(
H, L(H,H)

)
is as follows

[D2R0
tφ(x)g]k =

∫
H
[⟨Λtg,Q

−1
2

t y⟩⟨Λtk,Q
−1
2

t y⟩ − ⟨Λtg,Λtk⟩]φ(etAx+ y)NQt(dy).

Finally,

∥DR0
tφ(x)∥L(H,H) ≤ ∥Λt∥L(H,H)∥φ∥∞,

∥D2R0
tφ(x)∥L(H,L(H,H)) ≤

√
2∥Λt∥2L(H,H)∥φ∥∞,

where ∥φ∥∞ = supx∈H |φ(x)|.

As a consequence of this theorem, we prove the following lemma.

Lemma 2.2. Let assumption H5 hold. Then for every t > 0 and φ ∈ UCb(H,H), we have Rtφ ∈ UC2
b (H,H),

moreover for each t > 0 and g, k ∈ H, we get

DRtφ(x)g =

∫
H

∫
H
⟨Λtg,Q

−1
2

t y⟩φ(etAx+ y + z)NQt
(dy)µt(dz),

and

[D2Rtφ(x)g]k =

∫
H

∫
H
[⟨Λtg,Q

−1
2

t y⟩⟨Λtk,Q
−1
2

t y⟩ − ⟨Λtg,Λtk⟩]φ(etAx+ y + z)NQt
(dy)µt(dz).

Finally, we have

∥DRtφ(x)∥L(H,H) ≤ ∥Λt∥L(H,H)∥φ∥∞,

∥D2Rtφ(x)∥L(H,L(H,H)) ≤
√
2∥Λt∥2L(H,H)∥φ∥∞.

Proof . The validity of part 1 and 2 is obtained from the preceding theorem, so it suffices to prove the last part. We
have

|DRtφ(x)g| ≤
∫
H

∣∣∣∣ ∫
H
⟨Λtg,Q

−1
2

t y⟩φ(etAx+ y + z)NQt(dy)

∣∣∣∣µt(dz)

≤
∫
H
∥Λt∥L(H,H)∥φ∥∞|g|µt(dz) = ∥Λt∥L(H,H)∥φ∥∞|g|,

and ∣∣[D2Rtφ(x)g]k
∣∣ ≤ ∫

H

∣∣∣∣ ∫
H
[⟨Λtg,Q

−1
2

t y⟩⟨Λtk,Q
−1
2

t y⟩ − ⟨Λtg,Λtk⟩]φ(etAx+ y + z)NQt
(dy)

∣∣∣∣µt(dz)

≤
√
2

∫
H
∥Λt∥2L(H,H)∥φ∥∞|g||k|µt(dz) =

√
2∥Λt∥2L(H,H)∥φ∥∞|g||k|.

□
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3 Main Results

At first, we consider the sequence of the following backward equations of Kolmogorov type on [0, T ] with values in
H:

∂Vn

∂t
(t, x) + ⟨Ax,DVn(t, x)⟩+ ⟨B(t, x), DVn(t, x)⟩+

1

2
Tr

(
QD2Vn(t, x)

)
(3.1)

+

∫
H

(
Vn(t, x+ y)− Vn(t, x)− ⟨DVn(t, x), y⟩

)
ν(dy) = Bn(t, x),

Vn(T, x) = 0,

where Bn denotes the nth component of B. In the following lemma, we prove that equation (3.1) has a unique regular

solution for each n ≥ 1 and we also analyze the properties of the H-valued function V (t, x) =
∞∑

n=1
Vn(t, x)en.

Lemma 3.1. Let the assumptions H1–H7 hold. Then for small enough T, equation (3.1) has a unique solution for
each n ≥ 1 such that V ∈ C

(
[0, T ];UC2

b (H,H)
)
. If we set KT = ∥DV ∥∞, then limT→0 KT = 0. Furthermore, for

some constant CT > 0, we have ∥D2Vn∥∞ ≤ CT ∥Bn∥α for every n ∈ N.
Proof . For the sake of simplicity, we use the following forward notations for the PDE. The final result will apply to
the backward PDE (3.1).

∂Vn

∂t
(t, x) = ⟨Ax,DVn(t, x)⟩+

1

2
Tr

(
QD2Vn(t, x)

)
+ (3.2)∫

H

(
Vn(t, x+ y)− Vn(t, x)− ⟨DVn(t, x), y⟩

)
ν(dy) + ⟨B(t, x), DVn(t, x)⟩+Bn(t, x),

Vn(0, x) = 0.

For any φ of class C2, applying the Itô’s formula to the process
(
φ(Zx

t )
)
t≥0

, we have

dφ(Z
x
t ) = ⟨Dφ(Z

x
t−), dZ

x
t ⟩+

1

2
Tr

[
QD

2 φ(Z
x
t−)

]
dt

+

∫
H

(
φ(Z

x
t− +y)− φ(Z

x
t−)− ⟨Dφ(Z

x
t−), y⟩

)
N(dt, dy)

= ⟨Dφ(Z
x
t−), AZ

x
t ⟩ dt+ ⟨Dφ(Z

x
t−), dWt⟩+ ⟨Dφ(Z

x
t−),

∫
H

yN(dt, dy)⟩+ 1

2
Tr

[
QD

2 φ(Z
x
t−)

]
dt

+

∫
H

(
φ(Z

x
t− +y)− φ(Z

x
t−)− ⟨Dφ(Z

x
t−), y⟩

)
N(dt, dy).

Consequently

Rtφ(x) = E [φ(Z
x
t )] = φ(x) + E

t∫
0

⟨Dφ(Z
x
r−), AZ

x
r ⟩ dr +

1

2
E

t∫
0

Tr
[
QD

2 φ(Z
x
r−)

]
dr

+ E

t∫
0

∫
H

(
φ(Z

x
r− +y)− φ(Z

x
r−)− ⟨φ(Zx

r−), y⟩
)
ν(dy)dr.

By the dominated convergence theorem, we have

Λφ(x) = lim
t↓0

Rtφ(x)− φ(x)

t
= ⟨Ax,Dφ(x)⟩+ 1

2
Tr

[
QD

2 φ(x)
]
+

∫
H

(
φ(x+ y)− φ(x)− ⟨Dφ(x), y⟩

)
ν(dy),

which Λ denotes the infinitesimal generator of semigroup Rt. Therefore, equation (3.2) is equivalent to the following
equation for each fixed t ≥ 0.

∂Vn

∂t
(t, x) = ΛVn(t, x) + ⟨B(t, x), DVn(t, x)⟩+Bn(t, x),

Vn(0, x) = 0. (3.3)
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By writing the PDE (3.3) in convolution form, we get

Vn(t, x) =

∫ t

0

Rt−s

(
⟨B(s), DVn(s)⟩+Bn(s)

)
(x)ds,

where we have used B(s) instead of B(s, .) for simplicity and so on. Notice that for a fixed t ≥ 0, the Fréchet derivative
of V (t, .) at each x ∈ H is a Linear operator on H and for every p ∈ H,

⟨DV (t, x)p, en⟩ = ⟨DVn(t, x), p⟩.

Therefore, we have

Vn(t, x) =

∫ t

0

Rt−s

(
⟨DV (s)B(s) +B(s), en⟩

)
(x)ds,

and finally we get the following H-valued equation

V (t, x) =

∫ t

0

Rt−s

(
⟨B(s), D⟩V (s) +B(s)

)
(x)ds, (3.4)

where V (t, x) =
∞∑

n=1
Vn(t, x)en and we have denoted

∞∑
n=1

⟨B(s), DVn(s)⟩ en by ⟨B(s), D⟩V (s). Finally, according to

Lemma 2.2, the semigroups R0
t and Rt have the same regularity properties, so by considering Theorem 5 in [3],

equation (3.4) has a unique solution with the mentioned properties in the theorem and this completes the proof. □

Now, let V be the solution of the equation (3.4), under assumptions H1–H7 the following Zvonkin’s transformation
holds.

Theorem 3.2. Xt is a mild solution of equation (1.3) if and only if it satisfies the following equation

Xt = etA
(
x− V (0, x)

)
+ V (t,Xt) +

∫ t

0

Ae(t−s)AV (s,Xs)ds (3.5)

−
∫ t

0

e(t−s)ADV (s,Xs)F (s,Xs)ds+

∫ t

0

e(t−s)AF (s,Xs)ds

−
∫ t

0

e(t−s)ADV (s,Xs−)dWs +

∫ t

0

e(t−s)AdWs

+

∫ t

0

∫
H
e(t−s)A

(
V (s,Xs− + y)− V (s,Xs−)

)
N(ds, dy)

+

∫ t

0

∫
H
e(t−s)AyN(ds, dy).

Proof . According to Lemma 3.1, Vn is smooth enough for each n ∈ N, so by using Itô’s formula, we have

dVn(t,Xt) =
∂Vn

∂t
(t,Xt)dt+ ⟨DVn(t,Xt−), dXt⟩+

1

2
Tr

(
QD2Vn(t,Xt)

)
dt (3.6)

+

∫
H

(
Vn(t,Xt− + y)− Vn(t,Xt−)− ⟨DVn(t,Xt−), y⟩

)
N(dt, dy).

By substituting Xt− with x in equation (3.1) and then substituting the value of ∂Vn

∂t (t, x) in equation (3.6), we
arrive at

dVn(t,Xt) = Bn(t,Xt)dt− ⟨AXt, DVn(t,Xt)⟩dt− ⟨B(t,Xt), DVn(t,Xt)⟩dt

− 1

2
Tr

(
QD2Vn(t,Xt)

)
dt−

∫
H

(
Vn(t,Xt− + y)− Vn(t,Xt−)− ⟨DVn(t,Xt−), y⟩

)
ν(dy)dt

+ ⟨DVn(t,Xt), AXt⟩dt+ ⟨DVn(t,Xt), B(t,Xt)⟩dt+ ⟨DVn(t,Xt), F (t,Xt)⟩dt

+ ⟨DVn(t,Xt−), dWt⟩+
∫
H
⟨DVn(t,Xt−), y⟩N(dt, dy)

+
1

2
Tr

(
QD2Vn(t,Xt)

)
dt+

∫
H

(
Vn(t,Xt− + y)− Vn(t,Xt−)− ⟨DVn(t,Xt−), y⟩

)
N(dt, dy).
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After some simplification, we get

dVn(t,Xt) = Bn(t,Xt)dt+ ⟨DVn(t,Xt), F (t,Xt)⟩dt+ ⟨DVn(t,Xt−), dWt⟩

+

∫
H

(
Vn(t,Xt− + y)− Vn(t,Xt−)

)
N(dt, dy)

=
〈
B(t,Xt)dt+DV (t,Xt)F (t,Xt)dt+DV (t,Xt−)dWt

+

∫
H

(
V (t,Xt− + y)− V (t,Xt−)

)
N(dt, dy), en

〉
.

Namely

dV (t,Xt) = B(t,Xt)dt+DV (t,Xt)F (t,Xt)dt+DV (t,Xt−)dWt (3.7)

+

∫
H

(
V (t,Xt− + y)− V (t,Xt−)

)
N(dt, dy),

where V (t, x) =
∞∑

n=1
Vn(t, x)en. By substituting the value of B(t,Xt)dt from equation (3.7) in equation (1.3), we get

dXt = AXtdt+ dV (t,Xt)−DV (t,Xt)F (t,Xt)dt+ F (t,Xt)dt

−
∫
H

(
V (t,Xt− + y)− V (t,Xt−)

)
N(dt, dy)

−DV (t,Xt−)dWt + dWt +

∫
H
yN(dt, dy).

From the usual variation of constant method, we get

Xt = etAx+

∫ t

0

e(t−s)AdV (s,Xs)−
∫ t

0

e(t−s)ADV (s,Xs)F (s,Xs)ds (3.8)

+

∫ t

0

e(t−s)AF (s,Xs)ds−
∫ t

0

e(t−s)ADV (s,Xs−)dWs +

∫ t

0

e(t−s)AdWs

+

∫ t

0

∫
H
e(t−s)A

(
V (s,Xs− + y)− V (s,Xs−)

)
N(ds, dy)

+

∫ t

0

∫
H
e(t−s)AyN(ds, dy).

Using integration by parts in the first integral of the equation above, we have∫ t

0

e(t−s)AdV (s,Xs) = etAV (0, x) + V (t,Xt) +

∫ t

0

Ae(t−s)AV (s,Xs)ds.

We put this formula in equation (3.8) and finally get

Xt = etA
(
x− V (0, x)

)
+ V (t,Xt) +

∫ t

0

Ae(t−s)AV (s,Xs)ds (3.9)

−
∫ t

0

e(t−s)ADV (s,Xs)F (s,Xs)ds+

∫ t

0

e(t−s)AF (s,Xs)ds

−
∫ t

0

e(t−s)ADV (s,Xs−)dWs +

∫ t

0

e(t−s)AdWs

+

∫ t

0

∫
H
e(t−s)A

(
V (s,Xs− + y)− V (s,Xs−)

)
N(ds, dy) +

∫ t

0

∫
H
e(t−s)AyN(ds, dy).

□

We are now in a position to prove our main theorem.
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Theorem 3.3. Assume that assumptions H1–H7 hold, then for sufficiently small T , pathwise uniqueness holds for
mild solution of equation (1.3) on [0, T ].

Proof . Let X1
t and X2

t be two solutions of equation (1.3), both starting at x ∈ H. By Theorem 3.2, the difference
Yt = X1

t −X2
t satisfies

Yt = V (t,X1
t )− V (t,X2

t ) +

∫ t

0

Ae(t−s)A[V (s,X1
s )− V (s,X2

s )]ds

−
∫ t

0

e(t−s)A[DV (s,X1
s )F (s,X1

s )−DV (s,X2
s )F (s,X2

s )]ds

+

∫ t

0

e(t−s)A[F (s,X1
s )− F (s,X2

s )]ds−
∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

+

∫ t

0

∫
H
e(t−s)A

[
V (s,X1

s− + y)− V (s,X2
s− + y)− V (s,X1

s−) + V (s,X2
s−)

]
N(ds, dy),

we claim that E(
∫ T

0
|Yt|2dt) = 0. Let us fix T and choose its value at the end. By Lemma 3.1,

|V (t,X1
t )− V (t,X2

t )| ≤ KT |X1
t −X2

t |, t ∈ [0, T ], (3.10)

∥DV (t,X1
t )−DV (t,X2

t )∥L(H,H) ≤ CT |X1
t −X2

t |, t ∈ [0, T ].

By maximal inequality, we have

∥
·∫

0

Ae(·−s)Af(s)ds∥2L2([0,T ];H) ≤ MT ∥f∥2L2([0,T ];H), (3.11)

in which CT is independent of f . Note that CT does not go to zero as T −→ 0. Applying the following inequality

(x1 + ...+ xn)
2 ≤ n(x2

1 + ...+ x2
n),

we get the following inequality∫ T

0

|Yt|2dt ≤ 6

∫ T

0

|V (t,X1
t )− V (t,X2

t )|2dt+ 6

∫ T

0

∣∣∣∣ ∫ t

0

Ae(t−s)A[V (s,X1
s )− V (s,X2

s )]ds

∣∣∣∣2dt
− 6

∫ T

0

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s ).F (s,X1

s )−DV (s,X2
s ).F (s,X2

s )]ds

∣∣∣∣2dt
+ 6

∫ T

0

∣∣∣∣ ∫ t

0

e(t−s)A[F (s,X1
s )− F (s,X2

s )]ds

∣∣∣∣2dt
+ 6

∫ T

0

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

∣∣∣∣2dt
+ 6

∫ T

0

∣∣∣∣ ∫ t

0

∫
H
e(t−s)A[V (s,X1

s− + y)− V (s,X2
s− + y)− V (s,X1

s−) + V (s,X2
s−)]N(ds, dy)

∣∣∣∣2dt,
by inequalities (3.10) and (3.11), we get∫ T

0

|Yt|2dt ≤ 6K2
T

∫ T

0

|Yt|2dt+ 6MTKT

∫ T

0

|Yt|2dt+ 6TC
′

T

∫ T

0

|Yt|2dt

+ 6TKT

∫ T

0

|Yt|2dt+ 6

∫ T

0

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

∣∣∣∣2dt
+ 6

∫ T

0

∣∣∣∣ ∫ t

0

∫
H
e(t−s)A[V (s,X1

s− + y)− V (s,X2
s− + y)− V (s,X1

s−) + V (s,X2
s−)]N(ds, dy)

∣∣∣∣2dt,
since by Lemma 3.1, limT→0 KT = 0, for small enough T , we have

6K2
T

∫ T

0

|Yt|2dt+ 6MTKT

∫ T

0

|Yt|2dt+ 6TC
′

T

∫ T

0

|Yt|2dt+ 6TKT

∫ T

0

|Yt|2dt ≤
1

2

∫ T

0

|Yt|2dt,
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thus we get∫ T

0

|Yt|2dt ≤ 12

∫ T

0

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

∣∣∣∣2dt
+ 12

∫ T

0

∣∣∣∣ ∫ t

0

∫
H
e(t−s)A[V (s,X1

s− + y)− V (s,X2
s− + y)− V (s,X1

s−) + V (s,X2
s−)]N(ds, dy)

∣∣∣∣2dt,
now taking expectation from both sides yields∫ T

0

E|Yt|2dt ≤ 12

∫ T

0

E

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

∣∣∣∣2dt (3.12)

+ 12

∫ T

0

E

∣∣∣∣ ∫ t

0

∫
H
e(t−s)A[V (s,X1

s− + y)− V (s,X2
s− + y)− V (s,X1

s−) + V (s,X2
s−)]N(ds, dy)

∣∣∣∣2dt,
also we have∥∥∥∥e(t−s)A[DV (s,X1

s−)−DV (s,X2
s−)]

√
Q

∥∥∥∥2
HS

=

∞∑
n,m=1

〈
e(t−s)A

(
DV (s,X

1
s−)−DV (s,X

2
s−)

)√
Qem, en

〉2

=

∞∑
n,m=1

e−2αn(t−s)
〈(

DV (s,X
1
s−)−DV (s,X

2
s−)

)√
Qem, en

〉2

=
∞∑

n,m=1

e−2αn(t−s)
〈(

DVn(s,X
1
s−)−DVn(s,X

2
s−)

)
,
√
Qem

〉2

=

∞∑
n=1

e−2αn(t−s)
∞∑

m=1

〈√
Q
(
DVn(s,X

1
s−)−DVn(s,X

2
s−)

)
, em

〉2

≤ ∥Q∥L(H,H)

∞∑
n=1

e−2αn(t−s)
∣∣DVn(s,X

1
s−)−DVn(s,X

2
s−)

∣∣2
≤ ∥Q∥L(H,H)

∞∑
n=1

e−2αn(t−s)
∥∥D2Vn

∥∥2
∞

∣∣X1
s− −X2

s−

∣∣2
and by Lemma 3.1, we know that ∥D2Vn∥∞ ≤ CT ∥Bn∥α, hence∫ T

0

E

∣∣∣∣ ∫ t

0

e(t−s)A[DV (s,X1
s−)−DV (s,X2

s−)]dWs

∣∣∣∣2dt ≤ C2
T ∥Q∥L(H,H)

( ∫ T

0

∞∑
n=1

e−2αnt∥Bn∥2αdt
) ∫ T

0

|Ys|2ds,

by assumption H3,
∫ T

0

∑∞
n=1 e

−2αnt∥Bn∥2αdt is finite and goes to zero when T → 0. Hence the inequality (3.12) for
small T becomes∫ T

0

E|Yt|2dt ≤ 24

∫ T

0

E

∣∣∣∣ ∫ t

0

∫
H
e(t−s)A[V (s,X1

s− + y)−V (s,X2
s− + y)−V (s,X1

s−)+V (s,X2
s−)]N(ds, dy)

∣∣∣∣2dt. (3.13)

By the following inequality∣∣V (s,X1
s− + y)− V (s,X2

s− + y)− V (s,X1
s−)− V (s,X2

s−)
∣∣ =∣∣∣∣ ∫ 1

0

(
DV (s,X1

s− + zy)−DV (s,X2
s− + zy)

)
dz

∣∣∣∣
≤
∫ 1

0

KT |y||X1
s− −X2

s− |dz = KT |y||X1
s− −X2

s− |,

and inequality (3.13), we get∫ T

0

E|Yt|2dt ≤ 24

∫ T

0

( ∫ t

0

∫
H
E

∣∣∣∣e(t−s)A[V (s,X1
s− + y)− V (s,X2

s− + y)− V (s,X1
s−) + V (s,X2

s−)]

∣∣∣∣2ν(dy)ds)dt
≤ 24K2

T

∫ T

0

( ∫ t

0

∫
H
E|X1

s− −X2
s− |

2|y|2ν(dy)ds
)
dt

≤ 24TK2
T

∫
H
|y|2ν(dy)

∫ T

0

E|Yt|2dt,
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by the assumption H2,
∫
H |y|2ν(dy) is finite. Hence, 24TK2

T

∫
H |y|2ν(dy) → 0 as T → 0 and this gives E(

∫ T

0
|Yt|2dt) =

0. This implies X1
t = X2

t . The proof is completed. □

4 An illustrated example

In this section, motivated by [3] and [11], we provide an example of equation (1.3) to illustrate an application of
our main theorem. Let H = [L2

(
[0, 2π]d

)
]m, endowed with the usual norm ∥.∥ on this space and let (bn)n∈N be an

orthonormal basis of H. Consider the following vector-valued equation for the unknown X = (X1, ..., Xm),

dX(t, η) =
(
(∆β + I)X(t, η) +B

(
X(t, .)(η)

))
dt+∆

−γ
2 dW (t, η) + ∆

−ρ
2

∫
Rm

σπ̃(ds, dη, dσ), (4.1)

for t ≥ 0, η ∈ [0, 2π]d and σ ∈ Rm, with periodic boundary conditions, where for a fixed R > 0, the function B is
defined as follows:

B(f)(η) = g(η)

∫
[0,2π]d

3
√
|f(x)| ∧Rdx, (4.2)

for all f = (f1, ..., fm) ∈ H and given g ∈ [L∞(
[0, 2π]d

)
]m.

Here W = (W1, ...,Wm) is a space-time white noise with values in Rm, 0 ≤ γ < 1
3 , ρ > 2d and β > d(1+γ)

2 .

Moreover, ∆β , ∆
−γ
2 and ∆

−ρ
2 are pseudodifferential operators, acting componentwise [∆βX = (∆βX1, ...,∆

βXm) and
so on]. π̃ is a compensated Poisson random measure on (0,∞] × [0, 2π]d × Rm with intensity measure λ1 ⊗ λd ⊗ µ
where µ is a Lévy measure on Rm satisfying

∫
Rm σ2µ(dσ) < ∞ and λd stands for d-dimensional Lebesgue measure.

Also, Z(t, dη) =
∫ t

0

∫
Rm σπ̃(ds, dη, dσ) is an informal representation of an impulsive cylindrical process (Z(t))t≥0

on H with jump size intensity ν in the sense of Definition 7.23 in [14]. For ρ > 2d, the natural embedding of

U0 = ∆
−ρ
2 (H) ⊆ H into H is Hilbert–Schmidt, therefore by Example 2.5 in [11] the following series

∆
−ρ
2 Z(t) :=

∞∑
n=1

∫ t

0

∫
[0,2π]d

∫
Rm

σbn(η)π̃(ds, dη, dσ)∆
−ρ
2 bn, t ≥ 0, (4.3)

converges for each T ≥ 0 in M2
T (H) (the space of all càdlàg square integrable H-valued (Ft)-martingales equipped

with norm ∥X∥M2
T (H) = (E ∥X(T )∥2H))

1
2 and defines a Lévy process that satisfies the assumption H2 with covariance

operatorQ =
∫
Rm σ2µ(dσ)∆−ρ and intensity measure ν = (λd⊗µ)◦φ−1 where φ(x, y) =

∞∑
n=1

ybn(x)∆
−ρ
2 bn (convergence

in L2([0, 2π]d × Rm, λd ⊗ µ;H)). Notice that ∆
−ρ
2 Z(t) is an H-valued pure jump Lévy process which belongs to

M2
T (H), therefore by Lévy-Itô decomposition theorem, we have ∆

−ρ
2 Z(t) =

∫ t

0

∫
H yN(dt, dy) where N(dt, dy) is the

corresponding Poisson random measure on [0, t]×H. Hence, the last term of equation (4.1) can be written as

∆
−ρ
2

∫
Rm

σπ̃(ds, dη, dσ) =

∫
H
yN(dt, dy).

Setting A = ∆β + I with D(A) = [H2β
(
[0, 2π]d

)
per

]m where H2β
(
[0, 2π]d

)
per

is the classical Sobolev space with

periodic boundary conditions. The equation (4.1) is rewritten in the form of equation (1.3) on H. Let us check the
assumptions stated in section 2. Consider the following function k(y) = 3

√
|y| ∧R, for any y ∈ Rm, for some constant

CR > 0, we have |k(x)− k(y)| ≤ CR
3
√
|x− y|, consequently,

∥Bf −Bf
′
∥2 ≤

∫
[0,2π]d

∣∣∣∣g(x)∫
[0,2π]d

[k(f(y))− k(f
′
(y))]dy

∣∣∣∣2dx
≤ C∥g∥2∞

∣∣∣∣ ∫
[0,2π]d

[k(f(y))− k(f
′
(y))]dy

∣∣∣∣2
≤ C

′
∥g∥2∞C12

R

( ∫
[0,2π]d

|f(y)− f
′
(y)|2dy

) 1
3

= C
′
∥g∥2∞C12

R ∥f − f
′
∥ 1

6 .
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Therefore, the function B is 1
12 -Hölder and it is clear that B is bounded, so the assumption H7 is satisfied. Now,

for

Bnf = ⟨g, bn⟩
∫
[0,2π]d

k
(
f(y)

)
dy,

we have

|Bnf −Bnf
′
|2 = |⟨g, bn⟩|2

∣∣∣∣ ∫
[0,2π]d

[k(f(y))− k(f
′
(y))]dy

∣∣∣∣2 ≤ C|⟨g, bn⟩|2∥f − f
′
∥ 1

6 ,

therefore
|Bnf −Bnf

′ |
∥f − f ′∥ 1

12

≤
√
C|⟨g, bn⟩|,

then we get ∥Bn∥21
12

≤
√
C|⟨g, bn⟩|2 and

∞∑
n=1

∥Bn∥21
12

αn
≤

√
C

∞∑
n=1

|⟨g, bn⟩|2

αn
≤

√
C

α1

∞∑
n=1

|⟨g, bn⟩|2 =

√
C

α1
∥g∥2 < ∞,

hence the assumption H3 is satisfied. Notice that in this example Q = A−γ and it can be easily seen that Λt =

A
1+γ
2 (I − e2tA)−

1
2 etA and Qt =

1
2A

−1−γ(I − e2tA). Finally, since 0 ≤ γ < 1
3 and β > d(1+γ)

2 , according to Lemma 9
in [3], the pair Qt and Λt satisfy assumptions H4–H6 with θ = 1

2 .

5 Conclusions and future work

In conclusion, we proved pathwise uniqueness for stochastic evolution equations in Hilbert spaces driven by both
Poisson random measure and Wiener process with Hölder continuous drift. Thus, we extended the work done by
Flandoli et al. [3] which generalized Veretennikov’s fundamental result to infinite dimensions for Wiener noise. The
point of the trick was removing the non-regular drift B and replacing it with some new terms by means of the
corresponding infinite dimensional Kolmogorov equation, which was proved to have good Lipschitz properties. As we
saw the corresponding infinite dimensional Kolmogorov equation was a powerful tool and it could provide a strong
foundation for future works in this area. Finally, some problems are offered that will help expand and strengthen the
results of our work.

� Can a similar result be obtained by considering equation (1.3) with multiplicative noise under Lipschitz noise
coefficients for the next step?

� Does the equation (1.3) still have the pathwise uniqueness property by considering equation (1.3) with values
in Banach spaces? For more details about Poisson random measure and Wiener process in Banach spaces and
definition and properties of integral with respect to Wt and N(dt, dx), consult [1].

� Does the same idea work to prove the weak uniqueness of equation (1.3)?
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