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Abstract

In this paper, we consider the tangent bundle TM of a Riemannian manifold (M, g) with the Sasaki metric G and
using the Cauchy-Kowalevski Theorem, we answer the question of how many analytic statistical structures are there
on (TM, G). Also, we study the Ricci tensor of linear affine connections on the tangent bundle TM. In addition,
we answer the question of how many Ricci flat affine connections with and without torsion are there on the tangent
bundle.
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1 Introduction

The mathematical scope of information geometry arose in 1945 by C. R. Rao from the idea that using Fisher
information, it is possible to define a Riemannian metric in spaces of probability distributions ([14]). This powerful
branch of mathematics implements the methods of differential geometry to the extent of probability theory. Information
geometry leads us to a geometrical interpretation of probability theory and statistics and enables us to survey the
invariant properties of statistical manifolds. It was realized by the works of S. Amari that the differential geometric
structure of a statistical manifold can be obtained from divergence functions, giving a Riemannian metric and a
pair of affine connections ([3, 4]). Information geometry has many applications in various fields of research. These
applications can be found for example in image processing, physics, computer science and machine learning (see for
instance [6, 17]).

A statistical manifold is a Riemannian manifold such that each of its points is a probability distribution. Let Θ be
an open subset of Rn. If S is a set of probability density functions on a sample space Ω with parameter θ = (θ1, . . . , θn)
such that

S =

{
p(x; θ) :

∫
Ω

p(x; θ) = 1, p(x; θ) > 0, θ ∈ Θ ⊆ Rn

}
,
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then S is called a statistical model. The semi-definite Fisher information matrix g(θ) = (gij(θ)) is defined on a
statistical model S by

gij(θ) :=

∫
Ω

∂ilθ∂j lθp(x; θ)dx = Ep [∂ilθ∂j lθ] ,

where lθ := log p(x; θ), ∂i = ∂
∂θi and Ep[f ] is the expectation of f(x) with respect to p(x; θ). Equipping S to this

metric, S is called an info-manifold or a statistical manifold.

The notion of lifted metrics on the tangent bundle of Riemannian manifolds is widely considered as an interesting
field by many mathematicians (see for example [2, 13, 10, 15, 18]). This notion was first introduced by Sasaki in [16]
and in recent years his works have generated strong motivation for other mathematicians to study and develop this
concept on the tangent bundles of Riemannian manifolds. For example, in [1] the authors introduced the notion of
g-natural metrics on the tangent bundle of a Riemannian manifold (M, g) as the most general type of lifted metrics
on tangent bundles.

The concept of statistical structure is a very important motif in differential geometry, appearing in information
geometry and statistic. A statistical structure is a pair (g,∇) where g is a metric tensor field and ∇ is a symmetric
linear connection such that the cubic tensor field C = ∇g is totally symmetric. As an application of such structures,
we can mention the theory of equiaffine hypersurfaces in Rn (see [9], for more details).

Considering an infinite family of geometric objects, this natural question arises that how many such objects live
on a Riemannian manifold. Using the Cauchy-Kowalevski Theorem, O. Kowalski and some mathematicians answered
such questions ([8, 11, 12]). In fact, the Cauchy-Kowalevski Theorem enables us to answer such questions in case of
analytic structures.

In this paper, we consider the tangent bundle of a Riemannian manifold (M, g) with the Sasaki metric and using
the Cauchy-Kowalevski Theorem, we count the number of analytic statistical structures on it. In Section 2, we provide
some fundamental information on the geometry of tangent bundles with the Sasaki metrics and also, we present the
suitable version of Cauchy-Kowalevski Theorem of order one with respect to our consideration. Section 3 contains
some definitions and basic information on statistical Riemannian manifolds and statistical structures on the tangent
bundle of a Riemannian manifold. In Section 4, we apply the Cauchy-Kowalevski Theorem for counting analytic
statistical structures on the tangent bundle TM equipped to the Sasaki metric G and we prove that the set of all
analytic statistical structures (G, ∇̄) around the point 0, depends on 11

3 n
3 + 5

2n
2 + 5

6n arbitrary chosen analytic

functions (Christoffel symbols) of n variables, and n(n+1)
2 − 1 arbitrarily chosen analytic functions gij of metric g for

(ij) ̸= (1, 1), of (n−1) variables. In section 5, we compute the Ricci tensor of a linear affine connection on the tangent
bundle TM, and then we answer the question of how many Ricci flat affine connections with torsion are there on the
tangent bundle. In other words, we prove that the set of all analytic Ricci flat affine connection ∇̄ with torsion on the
tangent bundle TM depends on n2(8n−4) arbitrary chosen analytic functions (Christoffel symbols) of n variables and
4n2 analytic functions of n− 1 variables. Also, we study the problem for the case of torsionless Ricci flat connections,
and we show that the family of all analytic linear affine Ricci flat connections without torsion on the tangent bundle
TM, depends on 6n3 − 6n2 − 2n analytic functions of n variables and 3n2 + n analytic functions of n− 1 variables.

2 Preliminaries

In this section, we provide some fundamental information on the geometry of tangent bundles, and then we equip
the tangent bundle to the Sasaki metric, which is an important subclass of g-natural metric on the tangent bundle.
Also, to remain self-contained, we provide the suitable version of Cauchy-Kowalevski Theorem of order one with
respect to our consideration.

2.1 Cauchy-Kowalevski Theorem

We now present the appropriate case of order one of the Cauchy-Kowalevski Theorem, with the aim of the rest of
paper. All coordinate systems supposed to be analytic in this paper.
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Theorem 2.1. [8] Consider a system of differential equations for unknown functions U1
(
x1, . . . , xn

)
, . . . , UN

(
x1,

. . . , xn) in a neighborhood of 0 ∈ Rn and of the form

∂U1

∂x1
= H1

(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2
, . . . ,

∂U1

∂xn
, . . . ,

∂UN

∂x2
, . . . ,

∂UN

∂xn

)
,

∂U2

∂x1
= H2

(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2
, . . . ,

∂U1

∂xn
, . . . ,

∂UN

∂x2
, . . . ,

∂UN

∂xn

)
,

. . .

∂UN

∂x1
= HN

(
x1, . . . , xn, U1, . . . , UN ,

∂U1

∂x2
, . . . ,

∂U1

∂xn
, . . . ,

∂UN

∂x2
, . . . ,

∂UN

∂xn

)
,

where Hi , i = 1, . . . , N , are analytic functions of all variables in a neighborhood of(
0, . . . , 0, φ1(0), . . . , φN (0),

∂φ1

∂x2
(0), . . . ,

∂φ1

∂xn
(0), . . . ,

∂φN

∂x2
(0), . . . ,

∂φN

∂xn
(0)

)
∈ R(N+1)n,

for analytic functions φ1, . . . , φN given in a neighborhood of 0 ∈ Rn−1.

Then the system has a unique solution
(
U1

(
x1, . . . , xn

)
, . . . , UN

(
x1, . . . , xn

))
which is analytic around 0 ∈ Rn

and satisfies the initial conditions

U i
(
0, x2, . . . , xn

)
= φi

(
x2, . . . , xn

)
for i = 1, . . . , N.

The analytic functions ψ1, . . . , ψn defined in a neighborhood of 0 ∈ Rn−1, appear in the second order Cauchy-

Kowalewski Theorem. More precisely, the second order derivatives ∂U1

∂x1∂x1 , . . . ,
∂UN

∂x1∂x1 form the left-hand sides, and

on the right-hand sides, we add the first order derivatives ∂U1

∂x1 , . . . ,
∂UN

∂x1 and also, the second order derivatives ∂Ui

∂xj∂xk

for i = 1, . . . , N , j = 1, . . . , n and k = 2, . . . , n to the set of H1, . . . HN . As the initial conditions we add the following
conditions

∂U i

∂x1
(
0, x2, . . . , xn

)
= ψi

(
x2, . . . , xn

)
,

for the prescribed functions ψi, i = 1, . . . , N . The problem of finding the number of statistical structures has a local
nature. Therefore, we look at to these structures in open neighborhoods of 0 ∈ Rn. Since such neighborhoods can be
implemented by any analytic coordinate system, we quickly choose the canonical one.

2.2 Tangent bundle with the Sasaki metric

Let (M, g) be an n-dimensional Riemannian manifold, and we denote by
g

∇ its Levi-Civita connection. If H and

V are the horizontal and vertical spaces concerning
g

∇, then the tangent space TM(x,y) of the tangent bundle TM at
a point (x, y) splits as

(TM)(x,y) = H(x,y) ⊕ V(x,y).

Let π : TM → M be the natural projection. For a vector X ∈ Mx, the horizontal lift of X to (x, y) ∈ TM, is
uniquely determined by the vector Xh ∈ H(x,y) such that π∗X

h = X. Also, the vertical lift of a vector X ∈ Mx is
defined by a vector Xv ∈ V(x,y) such that Xv(df) = Xf, for all functions f on M . Remark that 1-forms df on M are

considered as functions on TM (i.e., (df)(x, y) = yf). Both maps X → Xh and X → Xv are isomorphisms between
the vector spaces Mx and H(x,y) and between Mx and V(x,y) respectively. Moreover, we can write each tangent vector

Z ∈ (TM)(x,y) in the form Z = Xh + Y v, where X,Y ∈Mx are uniquely determined vectors.

We now consider the local chart (x,U) on M by x = (x1, . . . , xn) where xi’s are smooth functions on M for
i ∈ {1, . . . , n}. In order to make a local chart on TM, we denote xi ◦ π briefly by xi and we define

yi(X) = X(xi) = dxi(X), X ∈ χ(M), i ∈ {1, . . . , n} .

Considering the local chart (x1, . . . , xn, y1, . . . , yn) : π−1(U) −→ R2n on TM, it can be checked that if we put
X = Xi ∂

∂xi , then

Xh = Xi ∂

∂xi
−Xjyk

g

Γi
jk

∂

∂yi
, Xv = Xi ∂

∂yi
,
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where
g

Γi
jk’s denote the Christoffel symbols of the Levi-Civita connection

g

∇. The Lie bracket operation of vector fields
on the tangent bundle TM is given by (see [7])

(i) [Xv, Y v] = 0, (ii) [Xh, Y v] =

(
g

∇XY

)v

, (iii) [Xh, Y h] = [X,Y ]h −
(

g

R(X,Y )y

)v

,

for all vector fields X and Y on M at any point (x, y) in TM, where
g

R is the Riemann curvature tensor of g defined
by

g

R(X,Y ) =

[
g

∇X ,
g

∇Y

]
−

g

∇[X,Y ].

We now see how to define the Sasaki metric G on the tangent bundle TM of (M, g). Let (M, g) be a Riemannian
manifold. As a natural lift of the Riemannian metric g, the Sasaki metric G on the tangent bundle TM is given by G(x,y)(X

h, Y h) = gx(X,Y ),
G(x,y)(X

h, Y v) = 0,
G(x,y)(X

v, Y v) = gx(X,Y ),
(2.1)

for all vector fields X and Y on M at any point (x, y) in TM. Considering the natural basis
{

∂
∂xi |(x,y), ∂

∂yi |(x,y)
}n

i=1

of (TM)(x,y), it can be verified that H(x,y) could be spanned by the set
{

δ
δxi |(x,y)

}n

i=1
, where

δ

δxi
|(x,y) =

∂

∂xi
|(x,y) − yk

g

Γj
ki(x)

∂

∂yj
|(x,y).

If we put

δyi = dyi +
g

Γj
ki(x) dx

j ,

then the set
{
dxi, δyi

}n

i=1
is the dual basis for

{
δ

δxi ,
∂

∂yi

}n

i=1
.

Remark 2.2. From now on, we use ∂i, ∂ī and δi instead of ∂
∂xi ,

∂
∂yi and δ

δxi respectively, to simplify notations.

Taking into account Remark 2.2, we can express (2.1) by G(x,y)(δi, δi) = gij |x,
G(x,y)(δi, ∂j̄) = 0,
G(x,y)(∂ī, ∂j̄) = gij |x.

(2.2)

Therefore, the Sasaki metric G is presented by

G(x, y) = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj .

Also, in view of Remark 2.2, the Lie bracket operation of the basis
{

δ
δxi ,

∂
∂yi

}n

i=1
on the tangent bundle TM is

given by 
[
δi, ∂j̄

]
=

g

Γk
ji∂k̄,

[δi, δj ] = yr
g

Rk
ijr∂k̄,[

∂ī, ∂j̄
]
= 0,

(2.3)

where
g

Γi
jk’s denote the Christoffel symbols of the Levi-Civita connection

g

∇ and
g

R is the Riemann curvature tensor
of g.
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3 Statistical structures on the tangent bundle

This section contains some definitions and basic information on statistical Riemannian manifolds and statistical
structures on the tangent bundle of a Riemannian manifold. Also, we answer the question of how many affine
connections without torsion are there on the tangent bundle.

3.1 Statistical manifold

A statistical manifold is a triple (M, g,∇) where g is a Riemannian metric on manifold M and ∇ is a symmetric
linear connection such that the cubic tensor field C = ∇g is totally symmetric, i.e., the following Codazzi equations

(∇Xg) (Y,Z) = (∇Y g) (Z,X) ,

for all vector fields X, Y , and Z on the Riemannian manifold M hold. The cubic tensor field C in local coordinate
has the following expression.

C (∂i, ∂j , ∂k) = ∂ig(∂j , ∂k)− g (∇∂i
∂j , ∂k)− g(∇∂j

∂i, ∂k),

hence, we get

Cijk = ∂k(gij)− Γh
ikgjh − Γh

jkgih, Cijk = Cjki = Ckij ,

where Γi
jk’s are the Christoffel symbols of ∇. Therefore, every statistical manifold (M, g,∇) naturally corresponds to

a totally symmetric covariant tensor field C of degree 3. Conversely, if triple (M, g, C) is a semi-Riemannian manifold

with a totally symmetric covariant tensor field C of degree 3, then the linear connection ∇ defined by ∇ =
g

∇− A
2 is

torsionless and also, satisfies ∇g = C, where the tensor field A is determined by

g(A(X)Y, Z) = C(X,Y, Z).

Hence, the triple (M, g,∇) becomes a statistical manifold. Therefore, existing a statistical structure (g,∇) on M
is equivalent to equip a structure (g, C) consisting of a semi-Riemannian metric g and a totally symmetric trilinear C.

3.2 Statistical structures on the tangent bundle

Suppose that ∇̄ is a linear connection on the tangent bundle (TM, G) of a Riemannian manifold (M, g), where G
is the Sasakian lift of metric g. Concerning {δi, ∂ī}, the linear connection ∇̄ has the following expression

∇̄δiδj = Γ̄k
ij δk + Γ̄k̄

ij ∂k̄, ∇̄δi∂j̄ = Γ̄k
ij̄
δk + Γ̄k̄

ij̄
∂k̄,

∇̄∂ī
δj = Γ̄k

īj
δk + Γ̄k̄

īj
∂k̄, ∇̄∂ī

∂j̄ = Γ̄k
īj̄
δk + Γ̄k̄

īj̄
∂k̄,

where Γ̄C
AB , for A,B,C ∈ {1, . . . , n, 1̄, . . . , n̄}, are smooth functions on TM. In [5], the first author et al., equipped

the tangent bundle of a statistical manifold with the Sasaki metric, and classified all the statistical connections living
on it. We now report the following propositions.

Proposition 3.1 ([5]). Let ∇̄ be a symmetric linear connection on (TM, G). Symmetry of ∇̄ has the following locally
alternative:

Γ̄k̄
ij̄ − Γ̄k̄

j̄i =
g

Γk
ij , (3.1)

Γ̄k
ij̄ = Γ̄k

j̄i, (3.2)

Γ̄k̄
ij − Γ̄k̄

ji = −yr
g

Rk
ijr, (3.3)

Γ̄k
ij = Γ̄k

ji, (3.4)

Γ̄k
īj̄ = Γ̄k

j̄ī, (3.5)

Γ̄k̄
īj̄ = Γ̄k̄

j̄ī. (3.6)
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Proposition 3.2 ([5]). Let (M, g,∇) be a statistical manifold. Then, ∇̄ is a statistical connection on (TM, G) if and
only if

(Γ̄r
ik − Γr

ik)grj = (Γ̄r
jk − Γr

jk)gri, (3.7)

Γ̄r̄
ijgrk = Γ̄r

k̄jgri, (3.8)

Γ̄r
ik̄gjr − ym

g

Rijmk = Γ̄r
jk̄gri, (3.9)

(Γ̄r̄
ik̄ −

g

Γr
ik)gjr = Γ̄r

j̄k̄gri, (3.10)

Γ̄r̄
j̄igrk = Γ̄r̄

k̄igrj , (3.11)

Γ̄r̄
īk̄grj = Γ̄r̄

j̄k̄gri, (3.12)

where
g

Rijmk =
g

Rr
ijmgrk.

We finish this section with the following theorem, which is a corollary of Proposition 3.1.

Theorem 3.3. Let (M, g) be an n-dimensional manifold. The set of all affine connections without torsion on the
tangent bundle TM depends locally on 2n2(2n+ 1) arbitrary functions of n variables.

Proof . Taking into account Proposition 3.1, each symmetry conditions (3.1) and (3.2) determines n3 functions. Also,

each conditions (3.3)-(3.6) determines n2(n+1)
2 Christoffel symbols. Therefore, in view of these symmetry conditions,

the connection is given by 2n3 + 4n2(n+1)
2 = 2n2(2n+ 1) functions of n variables. □

4 How many are analytic statistical structures on the tangent bundle?

In this section, we apply the Cauchy-Kowalevski Theorem for counting analytic statistical structures on the tangent
bundle TM equipped to the Sasakian metricG. The metric tensor field g is unknown in the following theorem. However,
the Cauchy-Kowalevski Theorem enables us to choose it arbitrarily at the point 0. We present the following lemmas.

Lemma 4.1. Let (M, g) be a Riemannian manifold and ∇ be a linear torsionless connection on M . The pair (g,∇)
is a statistical structure if and only if

(∇g)(∂i, ∂j , ∂k) = (∇g)(∂j , ∂i, ∂k), (4.1)

for every i, j, k = 1, . . . , n with i < j and i ≤ k.

Proof . The symmetry of metric g implies the symmetry for the last two arguments of ∇g. Suppose that (4.1) holds
for every i, j, k = 1, . . . , n with i < j and i ≤ k. We choose i, j, k = 1, . . . , n such that i < j and k < i. So k < j and
we have

(∇g)(∂i, ∂j , ∂k) = (∇g)(∂i, ∂k, ∂j) = (∇g)(∂k, ∂i, ∂j)
= (∇g)(∂k, ∂j , ∂i) = (∇g)(∂j , ∂k, ∂i) = (∇g)(∂j , ∂i, ∂k).

□

Similar to the Lemma 4.1, we establish the truthfulness of the following.

Lemma 4.2. Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped to the Sasaki metric G.
Let ∇̄ be a linear torsionless connection on TM. The pair (G, ∇̄) satisfies the Codazzi equation on the set {δr}nr=1 if
and only if (∇G)(δi, δj , δk) = (∇G)(δj , δi, δk), for all i, j, k = 1, . . . , n with i < j and i ≤ k.

Remark 4.3. In the following theorem, according to the Cauchy-Kowalevski Theorem, we suppose that the metric
tensor field g has the identity matrix (gij) at point 0. More precisely, in the following theorem each gij appears by
gij(0) = δij , where δ is notation for Kronecker delta.
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Theorem 4.4. The set of all analytic statistical structures (G, ∇̄) around the point 0, depends on 11
3 n

3 + 5
2n

2 + 5
6n

arbitrary chosen analytic functions of n variables, such that one of these functions is g11 and other 11
3 n

3+ 5
2n

2+ 5
6n−1

functions are some Christoffel symbols of ∇̄, and n(n+1)
2 − 1 arbitrarily chosen analytic functions gij for (ij) ̸= (1, 1),

of (n− 1) variables.

Proof . Let ∇̄ be a linear connection on (TM, G). According to Proposition 3.2, ∇̄ is a statistical connection if and
only if (3.7)-(3.12) satisfy. Applying the Codazzi equations for the couple of (g,∇) yields

∂igjk − ∂jgki = Γr
ikgrj − Γr

jkgri. (4.2)

Also, implementing the Codazzi equations on the pair of (G, ∇̄), we get

∂igjk − Γ̄r
ijgrk − Γ̄r

ikgrj = ∂jgki − Γ̄r
jkgri − Γ̄r

jigrk. (4.3)

Taking into account (4.2), (4.3), Lemma 4.1 and Lemma 4.2 the equation (3.7) is equivalent to

∂igjk − Γ̄r
ikgrj = ∂jgki − Γ̄r

jkgri, (4.4)

for i, j, k = 1, . . . , n with i < j and i ≤ k. We now consider the system of equations (4.4) for the indices 1, j, k, where
1 ≤ k ≤ j. So we have

∂1gjk = ∂jg1k + Γ̄r
1kgrj − Γ̄r

jkgr1, (4.5)

The system (4.5) is our Cauchy-Kowalevski system of equations. There exist n(n+1)
2 − 1 equations in system (4.5).

The part −1 is related to ∂1g11. In fact, the Cauchy-Kowalevski theorem enables us to prescribe all functions gjk at
the point 0. We choose these functions such that the metric (gij)(0) has the identity one form. Moreover, g11 can be
chosen arbitrarily modulo the assumption that g11(0) = 1. Considering the system (4.4) for the indices 1, j, k, where
1 < k < j, we get

∂1gjk − Γ̄r
ikgrj = ∂jgk1 − Γ̄r

jkgri. (4.6)

Taking into account (3.4), we have Γ̄k
ij = Γ̄k

ji. Now using gjk = gkj , (4.5) leads us to the following.

∂jg1k + Γ̄r
1kgjr = ∂kg1j + Γ̄r

1jgkr, (4.7)

for 1 < k < j ≤ n. The system (4.7) contains (n− 2)+ (n− 3)+ . . .+1 = (n−1)(n−2)
2 equations. We assign the unique

pair (k, j) with k < j to each equation of the system (4.7). So we have a bijective correspondence between the set of
equations of the system (4.7) and the set of pairs (k, j) of integers with 1 < k < j ≤ n. Therefore, the system (4.7)
can be ordered using the reverse lexical ordering for the set of pairs (k, j). More precisely, (k1, j1) ≤ (k, j) if and only
if j < j1 or j = j1 and k ≤ k1. We now consider the system (4.4) for indices i, j, k where all indices are different from
1. First, we suppose that two indices i and k are equal. Hence, we have

∂igji − Γ̄r
iigjr = ∂jgii − Γ̄r

jigir, (4.8)

where i = 2, . . . , n and j ∈ {2, . . . , n} \ {i}. Therefore, we have (n − 1)(n − 2) equations here. We assign the unique
pair (j, i) of indices to each equation of the system (4.8) and we obtain a bijective correspondence between the set
of equations of system (4.8) and the set of pairs (j, i) for i = 2, . . . , n and j ∈ {2, . . . , n} \ {i}. Employing reverse
lexical ordering for pairs (i, j), we order the equations of system (4.8). We now pay attention to system (4.4) for all
remaining indices i, j, k such that 2 ≤ i < j ≤ n and k ∈ {2, . . . , n} \ {i, j} and i ≤ k. So the system (4.4) gives

n−2∑
i=2

(n− i)(n− i− 1) =

n−2∑
r=1

r(r − 1) =
n3 − 6n2 + 11n− 6

3

equations

∂igjk − Γ̄r
ikgjl = ∂jgik − Γ̄r

jkgil, (4.9)
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for 2 ≤ i < j ≤ n and k ∈ {2, . . . , n} \ {i, j} and i ≤ k. We assign the unique triple (i, j, k) of indices to each equation
of system (4.9). We now have a bijective correspondence between the set of equations of system (4.9) and the set
of triple (i, j, k) of integers for 2 ≤ i < j ≤ n and k ∈ {2, . . . , n} \ {i, j} and i ≤ k. Using reverse lexical ordering
for triple (i, j, k), we can order the equations of system (4.9). We now consider the ordered system of equations with
unknown Christoffel symbols including the ordered systems (4.7), (4.8) and (4.9) in the sequence (4.7), (4.8), (4.9).
We denote this system by Λ. In the system Λ, our approach is to begin with the first equation and continue to the
last one to determine one Christoffel symbol and replace it into the all next equations of the system Λ as well as into
the Cauchy-Kowalevski system. It is noticeable that at each step, equations in the Cauchy-Kowalevski system will
change. We determine Γ̄j

1k from the subsystem (4.7) of ordered system Λ. Also, using the subsystem (4.8) of Λ, we

determine Christoffel symbols Γ̄j
ii and the subsystem (4.9) gives Γ̄j

ik. Notice that our system of differential equations
at each step, remains a Cauchy-Kowalevski system. Moreover, in some neighborhoods of 0, the coefficient in front of
the symbol determined in a sequential step is non-zero and hence, we can determine this symbol from the equation.
With the purpose of determining Christoffel symbols, we suppose that the metric g has the identity one matrix at the
point 0. Hence, the ordered system Λ at the point 0 is of the following form.

∂jg1k + Γ̄j
1k = ∂kg1j + Γ̄k

1j , for 1 < k < j ≤ n,

∂igji − Γ̄j
ii = ∂jgii − Γ̄i

ji, for i = 2, . . . , n; j ∈ {2, . . . , n} \ {i} ,
∂igjk − Γ̄j

ik = ∂jgik − Γ̄i
jk, for 2 ≤ i < j ≤ n; k ̸= j; i ≤ k,

(4.10)

In the system (4.10), each Christoffel symbol that we are going to determine it, appears only once. The coefficient in
front of a Christoffel symbol that we wish to determine it at a step is non-zero in some neighborhoods of 0. Therefore,
it is possible to determine this Christoffel symbol in a neighborhood of 0.

Now by solving the Cauchy-Kowalevski system, and then going back to algebraic system and starting from the
last to first equation, we completely determine the set of desired Christoffel symbols. To summarize, we now present
a brief statement of the main points of this proof. We have the system of algebraic equations o unknowns Christoffel
symbols, including the system (4.7) for 1 < k < j ≤ n, the system (4.8) for i = 2, . . . , n; j ∈ {2, . . . , n} \ {i}, and
the system (4.9) for 2 ≤ i < j ≤ n; k ∈ {2, . . . , n} \ {i, j} ; i ≤ k. At the point 0, the system is of form (4.10). The
coefficients of the system have a matrix of maximal rank at 0 and so it is around 0. Therefore, around the point 0,
the system has an analytic solution depending on

n2(n+ 1)

2
− (n− 1)(n− 2)

2
− (n− 1)(n− 2)− n3 − 6n2 + 11n− 6

3
=
n3 + 6n2 + 5n− 6

6

arbitrarily chosen analytic arguments. We now consider (3.8)-(3.12), to determine all remaining Christoffel symbols
of the statistical structure (G, ∇̄) on the tangent bundle TM. We have the following system of equations.

Γ̄r̄
ijgrk = Γ̄r

k̄j
gri,

Γ̄r
ik̄
gjr − ym

g

Rijmk = Γ̄r
jk̄
gri,

(Γ̄r̄
ik̄
−

g

Γr
ik)gjr = Γ̄r

j̄k̄
gri,

Γ̄r̄
j̄i
grk = Γ̄r̄

k̄i
grj ,

Γ̄r̄
īk̄
grj = Γ̄r̄

j̄k̄
gri.

(4.11)

Taking into account Remark 4.3, the system of equations (4.11) at the point 0 is of following form.

Γ̄k̄
ij = Γ̄i

k̄j , (4.12)

Γ̄j

ik̄
− ym

g

Rijmk = Γ̄i
jk̄, (4.13)

Γ̄j̄

ik̄
−

g

Γj
ik = Γ̄i

j̄k̄, (4.14)

Γ̄k̄
j̄i = Γ̄j̄

k̄i
, (4.15)

Γ̄j̄

īk̄
= Γ̄ī

j̄k̄. (4.16)

Because of the symmetry of (4.12), this equation determines n3 Christoffel symbols. Similarly, (4.14) determines

n3 functions (Christoffel symbols). Moreover, each equation (4.13), (4.15) and (4.16) specifies n2(n+1)
2 Christoffel
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symbols. Hence, the system of equations consisting of (4.12)-(4.16) completely determine

2n3 +
3n2(n+ 1)

2
=
n2(7n+ 3)

2

Christoffel symbols. Therefore, around the point 0, the system of equations consisting of (4.10), (4.12)-(4.16) has an
analytic solution depending on

n2(7n+ 3)

2
+
n3 + 6n2 + 5n− 6

6
=

11

3
n3 +

5

2
n2 +

5

6
n− 1 (4.17)

arbitrarily chosen analytic arguments. In conclusion, the set of all analytic statistical structures (G, ∇̄) around the
point 0, depends on 11

3 n
3+ 5

2n
2+ 5

6n arbitrary chosen analytic functions of n variables, such that one of these functions

is g11 and other 11
3 n

3 + 5
2n

2 + 5
6n− 1 functions are some Christoffel symbols of ∇̄, and n(n+1)

2 − 1 arbitrarily chosen
analytic functions gij for (ij) ̸= (1, 1), of (n− 1) variables. □

5 How many are linear Ricci flat affine connections on the tangent bundle?

In this section, we answer the question of how many Ricci flat affine connections with torsion are there on the
tangent bundle. Also, we study the problem for the case of torsionless Ricci flat connections.

5.1 Ricci flat connections on the tangent bundle

Let ∇̄ be a linear connection on the tangent bundle TM of an n-dimensional Riemannian manifold (M, g). Denoting
by Ric the Ricci tensor corresponding to the linear connection ∇̄, we investigate the condition Ric = 0 on the tangent
bundle TM. Let R̄ be the curvature tensor field corresponding the linear connection ∇̄. Considering the standard
basis

{
δi|(x,y), ∂ī|(x,y)

}n

i=1
of (TM)(x,y), we present the following proposition.

Proposition 5.1. Let (M, g) be an n-dimensional Riemannian manifold and ∇̄ be a linear connection on TM. The
curvature tensor field R̄ corresponding ∇̄ on the tangent bundle TM is given by

R̄(δi, δj)δk = Γ̄r
jkΓ̄

s
irδs + Γ̄r

jkΓ̄
s̄
ir∂s̄ + Γ̄r̄

jkΓ̄
s
ir̄δs + Γ̄r̄

jkΓ̄
s̄
ir̄∂s̄ − Γ̄r

ikΓ̄
s
jrδs − Γ̄r

ikΓ̄
s̄
jr∂s̄ − Γ̄r̄

ikΓ̄
s
jr̄δs − Γ̄r̄

ikΓ̄
s̄
jr̄∂s̄

+ δi(Γ̄
r
jk)δr + δi(Γ̄

r̄
jk)∂r̄ − δj(Γ̄

r
ik)δr − δj(Γ̄

r̄
ik)∂r̄ + yp

g

Rq
ijp(Γ̄

s
q̄kδs + Γ̄s̄

q̄k∂s̄),

R̄(δi, δj)∂k̄ = Γ̄r
jk̄Γ̄

s
irδs + Γ̄r

jk̄Γ̄
s̄
ir∂s̄ + Γ̄r̄

jk̄Γ̄
s
ir̄δs + Γ̄r̄

jk̄Γ̄
s̄
ir̄∂s̄ − Γ̄r

ik̄Γ̄
s
jrδs − Γ̄r

ik̄Γ̄
s̄
jr∂s̄ − Γ̄r̄

ik̄Γ̄
s
jr̄δs − Γ̄r̄

ik̄Γ̄
s̄
jr̄∂s̄

+ δi(Γ̄
r
jk̄)δr + δi(Γ̄

r̄
jk̄)∂r̄ − δj(Γ̄

r
ik̄)δr − δj(Γ̄

r̄
ik̄)∂r̄ + yp

g

Rq
ijp(Γ̄

s
q̄k̄δs + Γ̄s̄

q̄k̄∂s̄),

R̄(δi, ∂j̄)δk = Γ̄r
j̄kΓ̄

s
irδs + Γ̄r

j̄kΓ̄
s̄
ir∂s̄ + Γ̄r̄

j̄kΓ̄
s
ir̄δs + Γ̄r̄

j̄kΓ̄
s̄
ir̄∂s̄ − Γ̄r

ikΓ̄
s
j̄rδs − Γ̄r

ikΓ̄
s̄
j̄r∂s̄ − Γ̄r̄

ikΓ̄
s
j̄r̄δs − Γ̄r̄

ikΓ̄
s̄
j̄r̄∂s̄

+ δi(Γ̄
r
j̄k)δr + δi(Γ̄

r̄
j̄k)∂r̄ − ∂j̄(Γ̄

r
ik)δr − ∂j̄(Γ̄

r̄
ik)∂r̄ −

g

Γq
ji(Γ̄

s
q̄kδs + Γ̄s̄

q̄k∂s̄),

R̄(δi, ∂j̄)∂k̄ = Γ̄r
j̄k̄Γ̄

s
irδs + Γ̄r

j̄k̄Γ̄
s̄
ir∂s̄ + Γ̄r̄

j̄k̄Γ̄
s
ir̄δs + Γ̄r̄

j̄k̄Γ̄
s̄
ir̄∂s̄ − Γ̄r

ik̄Γ̄
s
j̄rδs − Γ̄r

ik̄Γ̄
s̄
j̄r∂s̄ − Γ̄r̄

ik̄Γ̄
s
j̄r̄δs − Γ̄r̄

ik̄Γ̄
s̄
j̄r̄∂s̄

+ δi(Γ̄
r
j̄k̄)δr + δi(Γ̄

r̄
j̄k̄)∂r̄ − ∂j̄(Γ̄

r
ik̄)δr − ∂j̄(Γ̄

r̄
ik̄)∂r̄ −

g

Γq
ji(Γ̄

s
q̄k̄δs + Γ̄s̄

q̄k̄∂s̄),

R̄(∂ī, ∂j̄)δk = Γ̄r
j̄kΓ̄

s
īrδs + Γ̄r

j̄kΓ̄
s̄
īr∂s̄ + Γ̄r̄

j̄kΓ̄
s
īr̄δs + Γ̄r̄

j̄kΓ̄
s̄
īr̄∂s̄ − Γ̄r

īkΓ̄
s
j̄rδs − Γ̄r

īkΓ̄
s̄
j̄r∂s̄ − Γ̄r̄

īkΓ̄
s
j̄r̄δs − Γ̄r̄

īkΓ̄
s̄
j̄r̄∂s̄

+ ∂ī(Γ̄
r
j̄k)δr + ∂ī(Γ̄

r̄
j̄k)∂r̄ − ∂j̄(Γ̄

r
īk)δr − ∂j̄(Γ̄

r̄
īk)∂r̄,

R̄(∂ī, ∂j̄)∂k̄ = Γ̄r
j̄k̄Γ̄

s
īrδs + Γ̄r

j̄k̄Γ̄
s̄
īr∂s̄ + Γ̄r̄

j̄k̄Γ̄
s
īr̄δs + Γ̄r̄

j̄k̄Γ̄
s̄
īr̄∂s̄ − Γ̄r

īk̄Γ̄
s
j̄rδs − Γ̄r

īk̄Γ̄
s̄
j̄r∂s̄ − Γ̄r̄

īk̄Γ̄
s
j̄r̄δs − Γ̄r̄

īk̄Γ̄
s̄
j̄r̄∂s̄

+ ∂ī(Γ̄
r
j̄k̄)δr + ∂ī(Γ̄

r̄
j̄k̄)∂r̄ − ∂j̄(Γ̄

r
īk̄)δr − ∂j̄(Γ̄

r̄
īk̄)∂r̄,

where
g

Γi
jk’s denote the Christoffel symbols of the Levi-Civita connection

g

∇ and
g

R is the Riemann curvature tensor
of g.
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Proof . Using (2.3) and the definition

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,

the truthfulness of the assertion is verified. □ We now calculate the Ricci curvature tensor Ric corresponding to the
linear connection ∇̄ on the tangent bundle TM. The Ricci tensor Ric is defined to be the trace:

Ric(X,Y ) = trace
(
W 7→ R̄(W,X)Y

)
. (5.1)

Using Proposition 5.1 and (5.1), we compute the Ricci curvature tensor Ric as follows.

Ric(δi, δj) = Γ̄r
ijΓ̄

k
kr + Γ̄r̄

ijΓ̄
k
kr̄ + Γ̄r

ijΓ̄
k̄
k̄r + Γ̄r̄

ijΓ̄
k̄
k̄r̄ − Γ̄r

kjΓ̄
k
ir − Γ̄r̄

kjΓ̄
k
ir̄ − Γ̄r

k̄jΓ̄
k̄
ir − Γ̄r̄

k̄jΓ̄
k̄
ir̄

+ δk(Γ̄
k
ij)− δi(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
ij)− δi(Γ̄

k̄
k̄j) +

g

Γq
kiΓ̄

k̄
q̄j + yr

g

Rs
kirΓ̄

k
s̄j , (5.2)

Ric(δi, ∂j̄) = Γ̄r
ij̄Γ̄

k
kr + Γ̄r̄

ij̄Γ̄
k
kr̄ + Γ̄r

ij̄Γ̄
k̄
k̄r + Γ̄r̄

ij̄Γ̄
k̄
k̄r̄ − Γ̄r

kj̄Γ̄
k
ir − Γ̄r̄

kj̄Γ̄
k
ir̄ − Γ̄r

k̄j̄Γ̄
k̄
ir − Γ̄r̄

k̄j̄Γ̄
k̄
ir̄

+ δk(Γ̄
k
ij̄)− δi(Γ̄

k
kj̄) + ∂k̄(Γ̄

k̄
ij̄)− δi(Γ̄

k̄
k̄j̄) +

g

Γq
kiΓ̄

k̄
q̄j̄ + yr

g

Rs
kirΓ̄

k
s̄j̄ , (5.3)

Ric(∂ī, δj) = Γ̄r
ījΓ̄

k
kr + Γ̄r̄

ījΓ̄
k
kr̄ + Γ̄r

ījΓ̄
k̄
k̄r + Γ̄r̄

ījΓ̄
k̄
k̄r̄ − Γ̄r

kjΓ̄
k
īr − Γ̄r̄

kjΓ̄
k
īr̄ − Γ̄r

k̄jΓ̄
k̄
īr

− Γ̄r̄
k̄jΓ̄

k̄
īr̄ + δk(Γ̄

k
īj)− ∂ī(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
īj)− ∂ī(Γ̄

k̄
k̄j)−

g

Γq
ikΓ̄

k
q̄j , (5.4)

Ric(∂ī, ∂j̄) = Γ̄r
īj̄Γ̄

k
kr + Γ̄r̄

īj̄Γ̄
k
kr̄ + Γ̄r

ijΓ̄
k̄
k̄r + Γ̄r̄

ijΓ̄
k̄
k̄r̄ − Γ̄r

k̄j̄Γ̄
k
ir − Γ̄r̄

k̄j̄Γ̄
k
ir̄ − Γ̄r

kjΓ̄
k̄
īr

− Γ̄r̄
kjΓ̄

k̄
īr̄ + δk(Γ̄

k
īj̄)− δi(Γ̄

k
k̄j̄) + ∂k̄(Γ̄

k̄
ij)− ∂ī(Γ̄

k̄
kj)−

g

Γq
kiΓ̄

k
q̄j̄ . (5.5)

We now suppose that Ric(δi, δj) = 0. Taking into account (5.2), we have

δk(Γ̄
k
ij)− δi(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
ij)− δi(Γ̄

k̄
k̄j) = −Γ̄r

ijΓ̄
k
kr − Γ̄r̄

ijΓ̄
k
kr̄ − Γ̄r

ijΓ̄
k̄
k̄r − Γ̄r̄

ijΓ̄
k̄
k̄r̄

= Γ̄r
kjΓ̄

k
ir + Γ̄r̄

kjΓ̄
k
ir̄ + Γ̄r

k̄jΓ̄
k̄
ir + Γ̄r̄

k̄jΓ̄
k̄
ir̄ −

g

Γq
kiΓ̄

k̄
q̄j − yr

g

Rs
kirΓ̄

k
s̄j . (5.6)

Denoting sum of all terms on the right-hand side of (5.6) by Λ̄ij , we rewrite this equation as

δk(Γ̄
k
ij)− δi(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
ij)− δi(Γ̄

k̄
k̄j) = Λ̄ij . (5.7)

For Ric(δi, ∂j̄) = 0, using (5.3) we get

δk(Γ̄
k
ij̄)− δi(Γ̄

k
kj̄) + ∂k̄(Γ̄

k̄
ij̄)− δi(Γ̄

k̄
k̄j̄) = −Γ̄r

ij̄Γ̄
k
kr − Γ̄r̄

ij̄Γ̄
k
kr̄ − Γ̄r

ij̄Γ̄
k̄
k̄r − Γ̄r̄

ij̄Γ̄
k̄
k̄r̄ + Γ̄r

kj̄Γ̄
k
ir

+ Γ̄r̄
kj̄Γ̄

k
ir̄ + Γ̄r

k̄j̄Γ̄
k̄
ir + Γ̄r̄

k̄j̄Γ̄
k̄
ir̄ −

g

Γq
kiΓ̄

k̄
q̄j̄ − yr

g

Rs
kirΓ̄

k
s̄j̄ . (5.8)

We denote the sum of all terms on the right-hand side of (5.8) by Λ̄ij̄ and rewrite (5.8) as

δk(Γ̄
k
ij̄)− δi(Γ̄

k
kj̄) + ∂k̄(Γ̄

k̄
ij̄)− δi(Γ̄

k̄
k̄j̄) = Λ̄ij̄ . (5.9)

Taking into account (5.4), the case Ric(∂ī, δj) = 0 is equivalent to

δk(Γ̄
k
īj)− ∂ī(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
īj)− ∂ī(Γ̄

k̄
k̄j) = −Γ̄r

ījΓ̄
k
kr − Γ̄r̄

ījΓ̄
k
kr̄ − Γ̄r

ījΓ̄
k̄
k̄r − Γ̄r̄

ījΓ̄
k̄
k̄r̄ + Γ̄r

kjΓ̄
k
īr

+ Γ̄r̄
kjΓ̄

k
īr̄ + Γ̄r

k̄jΓ̄
k̄
īr + Γ̄r̄

k̄jΓ̄
k̄
īr̄ +

g

Γq
ikΓ̄

k
q̄j . (5.10)
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We denote by Λ̄īj the right-hand side of (5.10). Rewriting this equation we get

δk(Γ̄
k
īj)− ∂ī(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
īj)− ∂ī(Γ̄

k̄
k̄j) = Λ̄īj . (5.11)

Also, by means of (5.5) for the case Ric(∂ī, ∂j̄) = 0, we obtain

δk(Γ̄
k
īj̄)− δi(Γ̄

k
k̄j̄) + ∂k̄(Γ̄

k̄
ij)− ∂ī(Γ̄

k̄
kj) = −Γ̄r

īj̄Γ̄
k
kr − Γ̄r̄

īj̄Γ̄
k
kr̄ − Γ̄r

ijΓ̄
k̄
k̄r − Γ̄r̄

ijΓ̄
k̄
k̄r̄ + Γ̄r

k̄j̄Γ̄
k
ir

+ Γ̄r̄
k̄j̄Γ̄

k
ir̄ + Γ̄r

kjΓ̄
k̄
īr + Γ̄r̄

kjΓ̄
k̄
īr̄ +

g

Γq
kiΓ̄

k
q̄j̄ . (5.12)

The sum of all terms on the right-hand side of (5.12) is denoted by Λ̄īj̄ and hence, we have

δk(Γ̄
k
īj̄)− δi(Γ̄

k
k̄j̄) + ∂k̄(Γ̄

k̄
ij)− ∂ī(Γ̄

k̄
kj) = Λ̄īj̄ . (5.13)

We now investigate the condition

Ric(X̄, Ȳ ) = 0, (5.14)

where X̄ and Ȳ are arbitrary tangent vectors in (TM)(x,y) with the standard basis {δi|(x,y), ∂ī|(x,y)}ni=1 and we show
that the Cauchy-Kowalevski Theorem is applicable to this system of equations. According to (5.7), (5.9), (5.11) and
(5.13), the Ricci curvature tensor Ric vanishes if and only if the following system of equations for i, j = 1, . . . , n holds.

δk(Γ̄
k
ij)− δi(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
ij)− δi(Γ̄

k̄
k̄j) = Λ̄ij , (5.15)

δk(Γ̄
k
ij̄)− δi(Γ̄

k
kj̄) + ∂k̄(Γ̄

k̄
ij̄)− δi(Γ̄

k̄
k̄j̄) = Λ̄ij̄ , (5.16)

δk(Γ̄
k
īj)− ∂ī(Γ̄

k
kj) + ∂k̄(Γ̄

k̄
īj)− ∂ī(Γ̄

k̄
k̄j) = Λ̄īj , (5.17)

δk(Γ̄
k
īj̄)− δi(Γ̄

k
k̄j̄) + ∂k̄(Γ̄

k̄
ij)− ∂ī(Γ̄

k̄
kj) = Λ̄īj̄ . (5.18)

Now we consider (5.15) and rewrite this equation into the more suitable form[(
Γ̄1
ij

)
1
+ · · ·+

(
Γ̄n
ij

)
n

]
−
[(
Γ̄1
1j

)
i
+ · · ·+

(
Γ̄n
nj

)
i

]
+ ∂k̄

(
Γ̄k̄
ij

)
− δi

(
Γ̄k̄
k̄j

)
= Λ̄ij , (5.19)

where the derivative δi is denoted by the bottom index i. For i = 1 and j = 1, . . . , n, we keep the derivatives
(
Γ̄n
nj

)
1

in the left-hand side of the corresponding equation, and denote the sum of all remaining terms in the left-hand side
of the corresponding equation by Λ̄′

1j , and move it to the right-hand side. For i > 1 and j = 1, . . . , n, we keep the

derivatives
(
Γ̄1
ij

)
1
in the left-hand side of the corresponding equation, and denote the sum of all remaining terms in

the left-hand side of the corresponding equation by Λ̄′
ij , and move it to the right-hand side. So we obtain the following

system { (
Γ̄n
nj

)
1
= Λ̄1j − Λ̄′

1j , j = 1, . . . , n,(
Γ̄1
ij

)
1
= Λ̄ij − Λ̄′

ij , i = 2, . . . , n, j = 1, . . . , n.
(5.20)

The system of equations (5.20) is our Cauchy-Kowalevski system. It can be verified that the first derivatives which
are on the left-hand sides of the system (5.20), are not present in any terms Λ̄′

ij in the right-hand sides. Therefore,
using the Cauchy-Kowalevski Theorem, we can choose all Christoffel symbols, except those whose derivatives appear
in the left-hand sides of the system (5.20), as arbitrary functions and determine the other Christoffel symbols. Hence,
the n2 Christoffel symbols appear by solving the system (5.20) by the Cauchy–Kowalevski Theorem.

Here, we consider (5.16) and rewrite this equation into the following form.[(
Γ̄1
ij̄

)
1
+ · · ·+

(
Γ̄n
ij̄

)
n

]
−
[(

Γ̄1
1j̄

)
i
+ · · ·+

(
Γ̄n
nj̄

)
i

]
+ ∂k̄

(
Γ̄k̄
ij̄

)
− δi

(
Γ̄k̄
k̄j̄

)
= Λ̄ij̄ . (5.21)

For i = 1 and j = 1, . . . , n, we keep the derivatives
(
Γ̄n
nj̄

)
1
in the left-hand side of the corresponding equation, and

denote the sum of all remaining terms in the left-hand side of the corresponding equation by Λ̄′
1j̄
, and move it to the

right-hand side. For i > 1 and j = 1, . . . , n, we keep the derivatives
(
Γ̄1
ij̄

)
1
in the left-hand side of the corresponding
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equation, and denote the sum of all remaining terms in the left-hand side of the corresponding equation by Λ̄′
ij̄
, and

move it to the right-hand side. So we have the following system.
(
Γ̄n
nj̄

)
1
= Λ̄1j̄ − Λ̄′

1j̄
, j = 1, . . . , n,(

Γ̄1
ij̄

)
1
= Λ̄ij̄ − Λ̄′

ij̄
, i = 2, . . . , n, j = 1, . . . , n.

(5.22)

The system of equations (5.22) will be our Cauchy-Kowalevski system. Note that the first derivatives which are on
the left-hand sides of the system (5.22), are not present in any terms Λ̄′

ij̄
and Λ̄′

ij in the right-hand sides. Therefore,
using the Cauchy-Kowalevski Theorem, we can choose all Christoffel symbols, except those whose derivatives appear in
the left-hand sides of the system (5.22), as arbitrary functions and determine the other Christoffel symbols. Therefore,
the n2 Christoffel symbols appear by solving the system (5.22) by the Cauchy–Kowalevski Theorem.

We now consider (5.17) and rewrite it into the following form.[(
Γ̄1
īj

)
1
+ · · ·+

(
Γ̄n
īj

)
n

]
− ∂ī

(
Γ̄k
kj

)
+ ∂k̄

(
Γ̄k̄
īj

)
− ∂ī

(
Γ̄k̄
k̄j

)
= Λ̄īj . (5.23)

For i, j = 1, . . . , n, we keep the derivatives
(
Γ̄1
īj

)
1
in the left-hand side of the corresponding equation, and denote

the sum of all remaining terms in the left-hand side of the corresponding equation by Λ̄′
īj
, and move it to the right-hand

side. Hence, we have the following system.(
Γ̄1
īj

)
1
= Λ̄īj − Λ̄′

īj , i, j = 1, . . . , n. (5.24)

The system of equations (5.24) is our Cauchy-Kowalevski system. It can be checked that the first derivatives
which are in the left-hand sides of the system (5.24), are not present in any terms Λ̄′

īj
and Λ̄′

ij̄
and Λ̄′

ij in the right-
hand sides. Therefore, using the Cauchy-Kowalevski Theorem, we can choose all Christoffel symbols, except those
whose derivatives appear in the left-hand sides of the system (5.24), as arbitrary functions and determine the other
Christoffel symbols. Therefore, the n2 Christoffel symbols appear by solving the system (5.24) by means of the
Cauchy–Kowalevski Theorem.

Finally, we consider (5.18) and rewrite that into the following form.[(
Γ̄1
īj̄

)
1
+ · · ·+

(
Γ̄n
īj̄

)
n

]
−
[(

Γ̄1
1̄j̄

)
i
+ · · ·+

(
Γ̄n
n̄j̄

)
i

]
+ ∂k̄

(
Γ̄k̄
ij

)
− ∂ī

(
Γ̄k̄
kj

)
= Λ̄īj̄ . (5.25)

For i = 1 and j = 1, . . . , n, we keep the derivatives
(
Γ̄n
n̄j̄

)
1
in the left-hand side of the corresponding equation, and

denote the sum of all remaining terms in the left-hand side of the corresponding equation by Λ̄′
1̄j̄
, and move it to the

right-hand side. For i > 1 and j = 1, . . . , n, we keep the derivatives
(
Γ̄1
īj̄

)
1
in the left-hand side of the corresponding

equation, and denote the sum of all remaining terms in the left-hand side of the corresponding equation by Λ̄′
īj̄
, and

move it to the right-hand side. Therefore, we have the following system.
(
Γ̄n
n̄j̄

)
1
= Λ̄1̄j̄ − Λ̄′

1̄j̄
, j = 1, . . . , n,(

Γ̄1
īj̄

)
1
= Λ̄īj̄ − Λ̄′

īj̄
, i = 2, . . . , n, j = 1, . . . , n.

(5.26)

The system of equations (5.26) is our Cauchy-Kowalevski system. It is easy to check that the first derivatives
which are in the left-hand sides of the system (5.26), are not present in any terms Λ̄′

īj̄
and Λ̄′

īj
and Λ̄′

ij̄
and Λ̄′

ij in
the right-hand sides. Therefore, using the Cauchy-Kowalevski Theorem, we can choose all Christoffel symbols, except
those whose derivatives appear in the left-hand sides of the system (5.26), as arbitrary functions and determine the
other Christoffel symbols. Therefore, the n2 Christoffel symbols appear by solving the system (5.26) by means of the
Cauchy–Kowalevski Theorem.

Theorem 5.2. Let (M, g) be an n-dimensional Riemannian manifold. The set of all analytic Ricci flat affine connec-
tion ∇̄ with torsion on the tangent bundle TM depends on 8n3 − 4n2 arbitrary chosen analytic functions (Christoffel
symbols) of n variables and 4n2 analytic functions of n− 1 variables.
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Proof . We have the following system of equations consisting of (5.20), (5.22), (5.24) and (5.26) as follows.

{ (
Γ̄n
nj

)
1
= Λ̄1j − Λ̄′

1j , j = 1, . . . , n,(
Γ̄1
ij

)
1
= Λ̄ij − Λ̄′

ij , i = 2, . . . , n, j = 1, . . . , n;
(
Γ̄n
nj̄

)
1
= Λ̄1j̄ − Λ̄′

1j̄
, j = 1, . . . , n,(

Γ̄1
ij̄

)
1
= Λ̄ij̄ − Λ̄′

ij̄
, i = 2, . . . , n, j = 1, . . . , n;{ (

Γ̄1
īj

)
1
= Λ̄īj − Λ̄′

īj
, i, j = 1, . . . , n;

(
Γ̄n
n̄j̄

)
1
= Λ̄1̄j̄ − Λ̄′

1̄j̄
, j = 1, . . . , n,(

Γ̄1
īj̄

)
1
= Λ̄īj̄ − Λ̄′

īj̄
, i = 2, . . . , n, j = 1, . . . , n.

(5.27)

Note that the first derivatives which are in the left-hand sides of the system (5.27), are not present in any terms
Λ̄′
īj̄

and Λ̄′
īj

and Λ̄′
ij̄

and Λ̄′
ij in the right-hand sides. The 4n2 Christoffel symbols are determined from the system

of equations (5.27). Therefore, we can choose arbitrarily 8n3 − 4n2 functions (Christoffel symbols) of n variables.
The 4n2 Christoffel symbols of n− 1 variables appear by solving the systems (5.20), (5.22), (5.24) and (5.26) by the
Cauchy–Kowalevski Theorem. □

We now describe all real analytic Ricci flat linear connections without torsion. We have the following theorem.

Theorem 5.3. Let (M, g) be an n-dimensional (n ≥ 3) Riemannian manifold. The family of all analytic linear affine
Ricci flat connections without torsion on the tangent bundle TM, depends on 6n3 − 6n2 − 2n analytic functions of n
variables and 3n2 + n analytic functions of n− 1 variables.

Proof . It is obvious that this problem is equivalent to finding all solutions of the system consisting of the system
(5.27) and the following system of equations obtained from Proposition 3.1

Γ̄k
ij = Γ̄k

ji, (5.28)

Γ̄k
ij̄ = Γ̄k

j̄i, (5.29)

Γ̄k
īj̄ = Γ̄k

j̄ī, (5.30)

Γ̄k̄
ij̄ =

g

Γk
ij + Γ̄k̄

j̄i, (5.31)

Γ̄k̄
ij = −yr

g

Rk
ijr + Γ̄k̄

ji, (5.32)

Γ̄k̄
īj̄ = Γ̄k̄

j̄ī. (5.33)

First, we study the condition (5.28). Using the symmetry condition Γ̄k
ij = Γ̄k

ji we have

Γ̄k+1
k k+1 = −

k−1∑
i=1

Γ̄i
ki −

n∑
i=k+2

Γ̄i
ki +

k−1∑
i=1

Γ̄i
ik +

n∑
i=k+1

Γ̄i
ik, k = 1, . . . , n− 1, (5.34)

Γ̄n−1
n n−1 = −

n−2∑
i=1

Γ̄i
ni +

n−1∑
i=1

Γ̄i
in.

Since n ≥ 3, the n Christoffel symbols in the left-hand sides of system (5.34) are not present in the left-hand side of
the 4n2 equations of system (5.27). Hence, by means of the symmetry condition (5.28), we can determine n Christoffel
symbols.

Now we consider the condition (5.29). We get the following relations.

Γ̄k+1

k k+1
= −

k−1∑
i=1

Γ̄i
kī −

n∑
i=k+2

Γ̄i
kī +

k−1∑
i=1

Γ̄i
īk +

n∑
i=k+1

Γ̄i
īk, k = 1, . . . , n− 1, (5.35)

Γ̄n−1
n n−1

= −
n−2∑
i=1

Γ̄i
nī +

n−1∑
i=1

Γ̄i
īn.
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Note that the n Christoffel symbols in the left-hand sides of system (5.35) are not present in the left-hand side of
the 4n2 equations of system (5.27). Also, using the symmetry condition (5.29), the n2 −n Christoffel symbols (Γ̄1

īj
) of

system (5.24) can be obtained from the n(n−1) = n2−n Christoffel symbols (Γ̄1
ij̄
) of the second line of system (5.22).

Therefore, by means of the symmetry condition (5.29), we can determine n+ (n2 − n) = n2 Christoffel symbols.

We now study the condition (5.30). Using the symmetry condition Γ̄k
īj̄
= Γ̄k

j̄ī
we have

Γ̄k+1

k̄ k+1
= −

k−1∑
i=1

Γ̄i
k̄ī −

n∑
i=k+2

Γ̄i
k̄ī +

k−1∑
i=1

Γ̄i
īk̄ +

n∑
i=k+1

Γ̄i
īk̄, k = 1, . . . , n− 1, (5.36)

Γ̄n−1
n̄ n−1

= −
n−2∑
i=1

Γ̄i
n̄ī +

n−1∑
i=1

Γ̄i
īn̄.

Since n ≥ 3, the n Christoffel symbols in the left-hand sides of system (5.36) are not present in the left-hand side
of the 4n2 equations of system (5.27). So, by means of the symmetry condition (5.30), we can determine n Christoffel
symbols.

Now we study the conditions (5.31), (5.32) and (5.33). According to the proof of Theorem 3.3, these three conditions

determine n3 + 2n2(n+1)
2 = 2n3 + n2 Christoffel symbols. Also, we note that the Christoffel symbols in the left-hand

sides of equations of (5.31), (5.32) and (5.33) are not present in the left-hand side of the 4n2 equations of system
(5.27).

We substitute the n equations of system (5.34), the n equations of system (5.35), the n2 − n equations (Γ̄1
īj
), the

n equations of system (5.36) and the 2n3 + n2 equations of system (5.31), (5.32) and (5.33) , into the 4n2 equations
of system (5.27). We obtain the following system of equations.

{ (
Γ̄n
nj

)
1
= ¯̄Λ1j − ¯̄Λ′

1j , j = 1, . . . , n,(
Γ̄1
ij

)
1
= ¯̄Λij − ¯̄Λ′

ij , i = 2, . . . , n, j = 1, . . . , n;
(
Γ̄n
nj̄

)
1
= ¯̄Λ1j̄ − ¯̄Λ′

1j̄
, j = 1, . . . , n,(

Γ̄1
ij̄

)
1
= ¯̄Λij̄ − ¯̄Λ′

ij̄
, i = 2, . . . , n, j = 1, . . . , n;{ (

Γ̄1
ī1

)
1
= ¯̄Λī1 − ¯̄Λ′

ī1
, i = 1, . . . , n;

(
Γ̄n
n̄j̄

)
1
= ¯̄Λ1̄j̄ − ¯̄Λ′

1̄j̄
, j = 1, . . . , n,(

Γ̄1
īj̄

)
1
= ¯̄Λīj̄ − ¯̄Λ′

īj̄
, i = 2, . . . , n, j = 1, . . . , n;

(5.37)

where ¯̄Λ and ¯̄Λ′ are Λ̄ and Λ̄′ respectively, after the substitutions. It can be checked that the first derivatives
which are in the left-hand sides of the system (5.37) are not present in the right-hand sides. Now we can choose
8n3 − 4n2 − n − (n + (n2 − n)) − n − (2n3 + n2) = 6n3 − 6n2 − 2n Christoffel symbols not present in the left-hand
sides of (5.37) and of (5.34), (5.35), (5.36) and of system (5.31), (5.32) and (5.33), as arbitrary analytic functions.
Then 3n2 + n analytic functions of n− 1 variables appear by solving the system (5.37) using the Cauchy-Kowalevski
Theorem. □
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