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Abstract

This paper adopts the extended rational sinh-cosh as well as sine-cosine procedures to find precise solutions to the
Hirota equation and Hirota-Maccari equation. It is illustrated that seeking the precise solutions for these equations
plays a foremost and effectual role in solving the numerous kinds of PDEs applied in optics, fluid mechanics, plasma
physics and solid physics. Furthermore, we are able to obtain some consequences of dark and cusp wave solutions.
Besides, two-dimensional and three-dimensional surfaces have been drawn in order to acknowledge the concept of the
acquired equations
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1 Introduction

In the last decades, research on nonlinear partial differential equations has been one of the most effectual and
exciting fields of research in the numerous areas of sciences and engineering [12, 13, 14, 3, 11, 5, 7, 8, 9, 2, 10]. A wide
range of powerful approaches are intermittently used and a diversification of perspectives have been studied.
The evolution of mathematical techniques, that give readers more accurate consequences for the extraction of solitons,
is a highly salient area of applied physics, fluid mechanics, and optics. A graceful way of seeking the precise soliton
solutions of nonlinear sciences and fractional systems is to propose a transformation to obtain a solvable ODEs
( ordinary partial differential equations) employing analytical methods such as Hirota bilinear transformation, the
(G/G’)-expansion technique and the other ones [4, 1, 6, 15]. In this article, we employ these methods for looking
for the precise solutions of two fundamental and important of these (Hirota equation and Hirota-macarri equation)
physical models.
Assume that the Hirota equation has the subsequent formation:

iϱt + ϱxx + 2|ϱ|2ϱ+ iΩϱxxx + 6iΩ|ϱ|2ϱx = 0, (1)

in which x, t and Ω illustrates the spatial and temporal variables, Ω is a small parameter respectively. Secondly,
assume that the Hirota-macarri system in the following formation:
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iϱt + ϱxy + iϱxxx + ϱφ− i|ϱ|2ϱx = 03φx + (|ϱ|2)y = 0, (2)

in which ϱ(x, y, t) and φ(x, y, t) demonstrate the filed of complex scalar and the real one. Temporal variable and
spatial variables are illustrated by t, x and y. The residual sections of this paper are conformed as follows: in section
2, the algorithms of the extension rational sin-cos as well as sinh-cosh techniques are presented, in section 3 and 4,
these techniques are represented with the Hirota equation and Hirota-macarri system respectively. Furthermore, the
representation of some acquired solutions in section 5 will be considered.

2 General solution of the technique

Consider the nonlinear partial differential equation (PDE) be of the form

H(ϑ, ϑt, ϑx, ϱxx, ...) = 0, (3)

in which traveling wave solution is denoted by ϑ = ϑ(x, t). By using the subsequent transformation:

ϑ(x, t) = ϑ(ξ), ξ = mx+ gt, (4)

where wave speed is illustrated by g. Equation (3) can be turned into the subsequent ordinary differential equation:

G(ϑ, ϑ′, ϑ′′, ...) = 0. (5)

2.1 The extension rational sin-cos technique

Pace1. Assume that Equation (5) has the solution in the conformation of

ϑ(ξ) =
β0 sinh(ζξ)

β2 + β1 cosh(ζξ)
, cosh(ζξ) ̸= −β2

β1
, (6)

or

ϑ(ξ) =
β0 cosh(ζξ)

β2 + β1 sinh(ζξ)
, sinh(ζξ) ̸= −β2

β1
, (7)

where ζ is the wave number and the parameters of β0, β1,and β2 will be determined.

Pace 2. In this pace, we concatenated one of the equations mentioned above into Eq.(5), then by gathering all
words with the identical powers of cosh(ζξ)r or sinh(ζξ)r and equalling to zero, all the coefficients of cosh(ζξ)r or
sinh(ζξ)r leads to a set of algebraic equations. By using mathematics software, algebraic equations’ solutions will be
found.

Pace 3. In this step, by concatenating the values of β0, β1 and β2 and ζ in Eq.(6) or Eq.(7) the solution to the
Eq.(5) will be resolved.

2.2 The extension rational sin-cos technique

Pace 1. Assume that Equation (5) has the solution in the conformation of

ϑ(ξ) =
β0 sin(ζξ)

β2 + β1 cos(ζξ)
, cos(ζξ) ̸= −β2

β1
, (8)

or

ϑ(ξ) =
β0 cos(ζξ)

β2 + β1 sin(ζξ)
, sin(ζξ) ̸= −β2

β1
, (9)

where ζ is the wave number and the parameters of β0, β1,and β2 will be determined.

Pace 2. In this pace, we concatenated one of the equations mentioned eralier into Eq.(5), then by gathering all
words with the identical powers of cos(ζξ)r or sin(ζξ)r and equalling to zero, all the coefficients of cos(ζξ)r or sin(ζξ)r

leads to a set of algebraic equations. By using mathematics software, algebraic equations’ solutions will be found.

Pace 3. In this step, by concatenating the values of β0,β1,β2 and ζ in Eq.(8) or Eq.(9) the solution to the Eq.(5)
will be resolved.
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2.3 The implementation of the extension rational sinh-cosh technique

Assume that Eq. (12) has solutions in the conformation of

ϑ(ξ) =
β0 sinh(ζξ)

β2 + β1 cosh(ζξ)
(10)

By concatenating Eq. (13) into Eq. (12) and then gathering all words with the identical powers of cosh(ζξ)r as well
as calculating all the coefficients of cosh(ζξ)r to zero, then we have:

cosh(ζξ)2 : −β0

((
−s3Ω+ s2 + r

)
β1

2 + 6Ωβ0
2s− 2β0

2
)

cosh(ζξ)1 : −2β0β1

(
−s3Ω− 3

2sζ
2Ω+ s2 + 1

2ζ
2 + r

)
β2

cosh(ζξ)0 : −β0

((
3sζ2Ω− s3Ω− ζ2 + s2 + r

)
β2

2 − 6
(
Ωs− 1

3

) (
β1

2ζ2 + β0
2
))

These algebraic equations will be solved by software and then we have the subsequent solutions:
part 1)

ζ = ±
√

−s3Ω− s2 − r

6Ωs− 2
, β0 = ±

√
−−s3Ω+ s2 + r

6Ωs− 2
β1 β1 = β1, β2 = 0

(11)
part 2)

ζ = ±
√
−2s3Ω− 2s2 − 2r

3Ωs− 1
, β0 = ±

√
−−s3Ω+ s2 + r

6Ωs− 2
β2 β1 = β2, β2 = β2 (12)

part 3)

ζ = ±
√
−2s3Ω− 2s2 − 2r

3Ωs− 1
, β0 = ±

√
−−s3Ω+ s2 + r

6Ωs− 2
β2 β1 = −β2, β2 = β2 (13)

Case 1: Taking part 1 into consideration, and the solution of (12) can be obtained as

ϑ1(x, t) = ±
√
−−s3Ω+ s2 + r

6Ωs− 2
tanh

(√
−s3Ω− s2 − r

6Ωs− 2
ξ

)
(14)

by merging the equations (10) and (17), we get

ϱ1(x, t) = ±
√

−−s3Ω+ s2 + r

6Ωs− 2
tanh

(√
−s3Ω− s2 − r

6Ωs− 2
(vt+ x)

)
ei(rt+sx) (15)

Case 2: Likewise, for part 2, the solutions of (12) can be obtained as

ϑ2(x, t) = ±
√
−−s3Ω+ s2 + r

6Ωs− 2
sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

) (
1 + cosh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

))−1

(16)
by merging equations (10) and (19), we get

ϱ2(x, t) = ±
√

−−s3Ω+ s2 + r

6Ωs− 2
sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
(vt+ x)

) (
1 + cosh

(√
−2s3Ω− 2s2 − 2 r

3Ωs− 1
(vt+ x)

))−1

ei(rt+sx)

(17)

Case 3: Likewise for part 3, the solutions of (12) can be obtained as

ϑ3(x, t) = ±1

√
−−s3Ω+ s2 + r

6Ωs− 2
sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

) (
1− cosh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

))−1

(18)
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by merging equations (10) and (21), we get

ϱ3(x, t) = ±
√

−−s3Ω+ s2 + r

6Ωs− 2
sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
(vt+ x)

) (
1− cosh

(√
−2s3Ω− 2s2 − 2 r

3Ωs− 1
(vt+ x)

))−1

ei(rt+sx).

(19)

OR
Assume that Equation (12) has solutions in the conformation of

ϑ(ξ) =
β0 cosh(ζξ)

β2 + β1 sinh(ζξ)
(20)

By concatenating Eq. (23) in Eq. (12) and then gathering all terms with the iden- tical powers of sinh(ζξ)r and
equating to zero. All coefficients of sinh(ζξ)r will obtain and we have the subsequent set of algebraic equations in the
following stage:
sinh(ζξ)2 : −2

((
− 1

2s
3Ω+ 1

2s
2 + r

2

)
β1

2 + 3Ωβ0
2s− β0

2
)
β0

sinh(ζξ)1 : −2β2β1

(
−s3Ω− 3

2Ωζ
2s+ s2 + 1

2ζ
2 + r

)
β0

sinh(ζξ)0 : −
(
β2

2
(
3Ωζ2s− s3Ω− ζ2 + s2 + r

)
+ 6

(
β1

2ζ2 + β0
2
) (

sΩ− 1
3

))
β0

These algebraic equations will be solved by software and then we have the subsequent solutions: part 4)

ζ = ±
√
−s3Ω− s2 − r

6sΩ− 2
, β0 = ±

√
−−s3Ω+ s2 + r

6sΩ− 2
β1 β1 = β1, β2 = 0 (21)

part 5)

ζ = ±
√
−2s3Ω− 2s2 − 2r

3Ωs− 1
, β0 =

√
−s3Ω− s2 − r

6Ωs− 2
β2, β1 = Iβ2, β2 = β2 (22)

Case 4: we take part 4 into consideration, the solution of (12) can be obtained as

ϑ4(x, t) = ±
√

−−s3Ω+ s2 + r

6sΩ− 2
coth

(√
−s3Ω− s2 − r

6sΩ− 2
ξ

)
(23)

by merging equations (10) and (26), we get

ϱ4(x, t) = ±
√
−−s3Ω+ s2 + r

6sΩ− 2
coth

(√
−s3Ω− s2 − r

6sΩ− 2
(vt+ x)

)
ei(rt+sx) (24)

Case 5: Likewise, for part 5, the solutions of (12) can be obtained as

ϑ5(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
cosh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

) (
1 + i sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
ξ

))−1

(25)
by merging equations (10) and (28), we get,

ϱ5(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
cosh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
(tv + x)

) (
1 + i sinh

(√
−2s3Ω− 2s2 − 2r

3Ωs− 1
(tv + x)

))−1

ei(rt+sx)

(26)

2.4 Extension rational sine-cosine method

Assume that Equation (12) has solutions in the conformation of

ϑ(ξ) =
β0 sin(ζξ)

β2 + β1 cos(ζξ)
. (27)

By concatenating Eq. (30) in Eq. (12) and then gathering all terms with the identical powers of cos(ζξ)r and equalling
to zero. All coefficients of cos(ζξ)r will obtain and we have the subsequent set of algebraic equations in the follow-
ing stage:
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cos(ζξ)2 : −β0

((
−s3Ω+ s2 + r

)
β1

2 − 6Ωβ0
2s+ 2β0

2
)

cos(ζξ)1 : −2β0β1

(
−s3Ω+ 3

2sζ
2Ω+ s2 − 1

2ζ
2 + r

)
β2

cos(ζξ)0 : −β0

((
−3sζ2Ω− s3Ω+ ζ2 + s2 + r

)
β2

2 + 6
(
Ωs− 1

3

) (
β1

2ζ2 + β0
2
))

These algebraic equations will be solved by software and then we have the subsequent solutions: part 6)

ζ = ±
√
−−s3Ω+ s2 + r

6Ωs− 2
, β0 = ±

√
−s3Ω− s2 − r

6Ωs− 2
β1 β1 = β1, β2 = 0

(28)
part 7)

ζ = ±
√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
, β0 = ±

√
−s3Ω− s2 − r

6Ωs− 2
β2 β1 = β2, β2 = β2

(29)
part 8)

ζ = ±
√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
, β0 = ±

√
−s3Ω− s2 − r

6Ωs− 2
β2 β1 = −β2, β2 = β2

(30)
Case 6: Taking part 6 into consideration, the solutions of (12) can be obtained as

ϑ6(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
tan

(√
−−s3Ω+ s2 + r

6Ωs− 2
ξ

)
(31)

by merging equations (10) and (34), then we get

ϱ6(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
tan

(√
−−s3Ω+ s2 + r

6Ωs− 2
(x+ v · t)

)
ei(rt+sx) (32)

Case 7: Likewise, for part 7, the solutions of (12) can be obtained as

ϑ7(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
sin

(√
−−2s3Ω+ 2s2 + 2r

3Ω s− 1
ξ

) (
1 + cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

))−1

(33)
by merging equations (10) and (36), then we get

ϱ7(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
sin

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

)(
1 + cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

))−1

ei(rt+sx) (34)

Case 8: Likewise, for part 8, the solutions of (12) can be obtained as

ϑ8(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
sin

(√
−−2s3Ω+ 2s2 + 2r

3Ω s− 1
ξ

) (
1− cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

))−1

(35)
by merging equations (10) and (38), then we get

ϱ8(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
sin

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1

(
x+ v · t

))(
1− cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1

(
x+ v · t

))−1

e
i

(
rt+sx

)
(36)

OR
Assume that Equation (12) has solution in the conformation of

ϑ(ξ) =
β0 cos(ζξ)

β2 + β1 sin(ζξ)
(37)
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By concatenating Eq. (40) into Eq. (12) and then garthering all words with the identical powers of sin(ζξ)r as well
as equalling all the coefficients of sin(ζξ)r to zero, then we have:
sin(ζξ)2 : 2

(
−
(
1
2s

3Ω− 1
2s

2 − r
2

)
β1

2 − 3Ωβ0
2s+ β0

2
)
β0

sin(ζξ)1 : 2β1β2

(
−s3Ω+ 3

2Ωζ
2s+ s2 − 1

2ζ
2 + r

)
β0

sin(ζξ)0 :
(
β2

2
(
−3Ωζ2s− s3Ω+ ζ2 + s2 + r

)
+ 6

(
Ωs− 1

3

) (
β1

2ζ2 + β0
2
))

β0

These algebraic equations will be solved by mathematics software and then we have the subsequent solutions:
set 9)

ζ = ±
√
−−s3Ω+ s2 + r

6sΩ− 2
, β0 = ±

√
−s3Ω− s2 − r

6sΩ− 2
β1β1 = β1, β2 = 0 (38)

part 10)

ζ = ±
√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
, β0 = ±

√
−s3Ω− s2 − r

6Ωs− 2
β2β1 = β2, β2 = β2 (39)

part 11)

ζ = ±
√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
, β0 = ±

√
−s3Ω− s2 − r

6Ωs− 2
β2 β1 = −β2, β2 = β2 (40)

Case 9: we take set 9 into consideration, the solutions of (12) can be obtained as

ϑ9(x, t) = ±
√
−s3Ω− s2 − r

6sΩ− 2
cot

(√
−−s3Ω+ s2 + r

6sΩ− 2
ξ

)
(41)

by merging equations (10) and (44), then we get

ϱ9(x, t) = ±
√
−s3Ω− s2 − r

6sΩ− 2
cot

(√
−−s3Ω+ s2 + r

6sΩ− 2
(x+ v · t)

)
ei(rt+sx) (42)

Case 10: Likewise, for part 10, the solutions of (12) can be obtained as

ϑ10(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
cos

(√
−−2s3Ω+ 2s2 + 2r

3Ω s− 1
ξ

)(
1 + sin

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

))−1

(43)

by merging equations (10) and (46), then we get

ϱ10(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
(x+ v · t)

) (
1 + sin

(√
−−2s3Ω+ 2s2 + 2 r

3Ωs− 1
(x+ v · t)

))−1

ei(rt+sx)

(44)

Case 11: Likewise, for part 11, the solutions of (12) can be obtained as

ϑ11(x, t) = ±
√
−s3Ω− s2 − r

6Ωs− 2
cos

(√
−−2s3Ω+ 2s2 + 2r

3Ω s− 1
ξ

)(
1− sin

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
ξ

))−1

(45)
by merging equations (10) and (48), then we obtain

ϱ11(x, t) = ±
√

−s3Ω− s2 − r

6Ωs− 2
cos

(√
−−2s3Ω+ 2s2 + 2r

3Ωs− 1
(x+ v · t)

)(
1− sin

(√
−−2s3Ω+ 2s2 + 2 r

3Ωs− 1
(x+ v · t)

))−1

ei(rt+sx)

(46)

3 Implementation of these methods on Hirota-maccari system

Suppose the Hirota-maccari equation, then by adopting the following transformations

ϱ(x, y, t) = e−iζϑ(ξ), φ(x, y, t) = Ψ(ξ), ξ = x+ y + kt, ζ = sx+ ry + kt. (47)

Then, we have the subsequent ordinary differential equations:

3(1− 3s)ϑ′′ + 3(s3 − sr − k)ϑ+ (3s− 1)ϑ3 = 0 Ψ = −ϑ2

3
, (48)

where s ̸= 1
3 .
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3.1 The implementation of the extension rational sinh-cosh technique

Assume that Equation (51) has solutions in the conformation of

ϑ(ξ) =
β0 sinh(ζξ)

β2 + β1 cosh(ζξ)
(49)

By concatenating Eq. (52) in Eq. (51) and then gathering all terms with the identical powers of cosh(ζξ)r and
equating to zero all coefficients of cosh(ζξ)r, the subsequent set of algebraic equations are obtained in the following
stage:
cosh(ζξ)2 : −3β0

((
−s3 + sr + k

)
β1

2 − β0
2
(
s− 1

3

))
cosh(ζξ)1 : −6β0β2

(
−s3 +

(
− 3

2ζ
2 + r

)
s+ 1

2ζ
2 + k

)
β1

cosh(ζξ)0 :−3β2
2 − 6

(
s− 1

3

) (
β1β0

((
−s3 +

(
3ζ2 + r

)
s− ζ2 + k

)
2ζ2 − 1

6β0
2
))

These algebraic equations will be resolved by mathematics software and then we have the subsequent solutions:
set 1)

ζ = ±
√
−s3 − sr − k

6s− 2
, β0 = ±

√
−3s3 − 3sr − 3k

3s− 1
β1 β1 = β1, β2 = 0

(50)
set 2)

ζ = ±
√
−2s3 − 2sr − 2k

3s− 1
, β0 = ±

√
−3s3 − 3sr − 3k

3s− 1
β2 β1 = β2, β2 = β2 (51)

set 3)

ζ = ±
√

−2s3 − 2sr − 2k

3s− 1
, β0 = ±

√
−3s3 − 3sr − 3k

3s− 1
β2 β1 = −β2, β2 = β2 (52)

Case 1: Taking set 1 into consideration, and then the solutions of equation (51) can be obtained as

ϑ1(x, y, t) = ±
√
−3s3 − 3sr − 3k

3s− 1
tanh

(√
−s3 − sr − k

6s− 2
ξ

)
(53)

by merging the equations (50) and (56), we get

ϱ1(x, y, t) = ±
√
−3s3 − 3sr − 3k

3s− 1
tanh

(√
−s3 − sr − k

6s− 2
(kt+ x+ y)

)
e−i(kt+ry−sx) (54)

the second part of (51) is expressed as follows:

Ψ1(x, y, t) = ±1

3

3s3 − 3sr − 3k

3s− 1

(
tanh

(√
−s3 − sr − k

6s− 2
(kt+ x+ y)

))2

(55)

Case 2: Likewise, for set 2, the solutions of (51) can be gained as

ϑ2(x, y, t) = ±
√
−3s3 − 3sr − 3k

3s− 1
sinh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

) (
1 + cosh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

))−1

(56)

by merging equations (50) and (59), we get

ϱ2(x, y, t) = ±
√

−3s3 − 3sr − 3k

3s− 1
sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

) (
1 + cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(57)
The second part of (51) is expressed as follows:

Ψ2(x, y, t) = ±1

3

3s3 − 3sr − 3k

3s− 1

(
sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))2 (
1 + cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−2

(58)
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Case 3: Likewise for set 3, the solutions of (51) can be got as

ϑ3(x, y, t) = ±
√
−3s3 − 3sr − 3k

3s− 1
sinh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

) (
1− cosh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

))−1

(59)

by merging equations (50) and (62), we get

ϱ3(x, y, t) = ±
√

−3s3 − 3 sr − 3k

3s− 1
sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

) (
1− cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

the second part of (51) is expressed as follows:

Ψ3(x, y, t) = ±1

3

3s3 − 3sr − 3k

3s− 1

(
sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))2 (
1− cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−2

(60)

OR
Assume that Eq.(51) has solutions in the conformation of

ϑ(ξ) =
β0 cosh(ζξ)

β2 + β1 sinh(ζξ)
(61)

By concatenating Eq. (65) in Eq. (51) and then gathering all terms with the identical powers of sinh(ζξ)r and equating
to zero all coefficients of sinh(ζξ)r, the subsequent set of algebraic equations are obtained in the following stage:
sinh(ζξ)2 : −6β0

((
− 1

2s
3 + 1

2sr +
k
2

)
β1

2 − 1
2β0

2
(
s− 1

3

))
sinh(ζξ)1 : −6β0β2

(
−s3 +

(
− 3

2ζ
2 + r

)
s+ 1

2ζ
2 + k

)
β1

sinh(ζξ)0 : −3β0

(
β2

2
(
−s3 +

(
3ζ2 + r

)
s− ζ2 + k

)
+ 6

(
β1

2ζ2 − 1
6β0

2
) (

s− 1
3

))
These algebraic equations will be solved by mathematics software and then we have the subsequent solutions:

set 4)

ζ = ±
√
−s3 − sr − k

6s− 2
, β0 = ±

√
−3s3 − 3sr − 3k

3s− 1
β1 β1 = β1, β2 = 0 (62)

set 5)

ζ = ±
√
−2s3 − 2sr − 2k

3s− 1
, β0 =

√
−−3s3 + 3sr + 3k

3s− 1
β2, β1 = Iβ2, β2 = β2 (63)

Case 4: we take set 4 into account, the solutions of (51) can be obtained as

ϑ4(x, y, t) = ±
√

−3s3 − 3sr − 3k

3s− 1
coth

(√
−s3 − sr − k

6s− 2
ξ

)
(64)

by merging equations (50) and (68), we get

ϱ4(x, y, t) = ±
√
−3s3 − 3sr − 3k

3s− 1
coth

(√
−s3 − sr − k

6s− 2
(kt+ x+ y)

)
e−i(kt+ry−sx) (65)

the second part of equations (51) is expressed as follows:

Ψ4(x, y, t) = ±1

3

3s3 − 3sr − 3k

3s− 1

(
coth

(√
−s3 − sr − k

6s− 2
(kt+ x+ y)

))2

(66)

Case 5: Likewise, for set 5, the solutions of (51) can be gained as

ϑ5(x, y, t) = ±
√

−−3s3 + 3sr + 3k

3s− 1
cosh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

) (
1 + i sinh

(√
−2s3 − 2sr − 2k

3s− 1
ξ

))−1

(67)
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by merging equations (50) and (71), we get,

ϱ5(x, y, t) =

±
√

−−3s3 + 3sr + 3k

3s− 1
cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

)(
1 + i sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(68)

the second part of equations (51) is expressed as follows:

Ψ5(x, y, t) = ±1

3

−3s3 + 3sr + 3k

3s− 1

(
cosh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))2 (
1 + i sinh

(√
−2s3 − 2sr − 2k

3s− 1
(kt+ x+ y)

))−2

(69)

3.2 extension rational sine-cosine method

Assume that Equation (51) has solutions in the conformation of

ϑ(ξ) =
β0 sin(ζξ)

β2 + β1cos(ζξ)
(70)

By concatenating Eq. (74) into Eq. (51) and then gathering all words with the identical powers of cos(ζξ)r and
equalling to zero all the coefficients of cos(ζξ)r , then we have:

cos(ζξ)2 : −3β0

((
−s3 + rs+ k

)
β1

2 + β0
2
(
s− 1

3

))
cos(ζξ)1 : −6β0

(
−s3 +

(
3
2ζ

2 + r
)
s− 1

2ζ
2 + k

)
β1β2

cos(ζξ)0 : −3
((
−s3 +

(
−3ζ2 + r

)
s+ ζ2 + k

)
β2

2 + 6
(
s− 1

3

) (
β1

2ζ2 − 1
6β0

2
))

β0

These algebraic equations will be solved by mathematics software and then we have the subsequent solutions:

set 6)

ζ = ±
√

−−s3 + rs+ k

6s− 2
, β0 = ±

√
−−3s3 + 3rs+ 3k

3s− 1
β1 β1 = β1, β2 = 0 (71)

set 7)

ζ = ±
√
−−2s3 + 2sr + 2k

3s− 1
, β0 = ±

√
−−3s3 + 3sr + 3k

3s− 1
β2 β1 = β1, β2 = β2 (72)

set 8)

ζ = ±
√
−−2s3 + 2sr + 2k

3s− 1
, β0 = ±

√
−−3s3 + 3sr + 3k

3s− 1
β2 β1 = −β2, β2 = β2 (73)

Case 6: Taking part 6 into consideration, the solutions of (51) can be got as

ϑ6(x, y, t) = ±
√
−−3s3 + 3rs+ 3k

3s− 1
tan

(√
−−s3 + rs+ k

6s− 2
ξ

)
(74)

by merging equations (50) and (78), then we get

ϱ6(x, y, t) = ±
√
−−3s3 + 3rs+ 3k

3s− 1
tan

(√
−−s3 + rs+ k

6s− 2
(kt+ x+ y)

)
e−i(kt+ry−sx) (75)
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the second part of (51) is expressed as follows:

Ψ6(x, y, t) = ±1/3
−3s3 + 3rs+ 3k

3s− 1

(
tan

(√
−−s3 + rs+ k

6s− 2
(kt+ x+ y)

))2

(76)

Case 7: Likewise, the solutions of (51) for set 7 can be got as

ϑ7(x, y, t) = ±
√

−−3s3 + 3sr + 3k

3s− 1
sin

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

) (
1 + cos

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

))−1

(77)

by merging equations (50) and (81), then we get

ϱ7(x, y, t) =

±
√

−−3s3 + 3sr + 3k

3s− 1
sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

)(
1 + cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(78)

the second part of (51) is expressed as follows:

Ψ7(x, y, t) = ±1/3
−3s3 + 3sr + 3k

3s− 1

(
sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))2 (
1 + cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−2

(79)

Case 8: Likewise, the solutions of (51) for part 8 can be obtained as

ϑ8(x, y, t) = ±
√
−−3s3 + 3sr + 3k

3s− 1
sin

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

) (
1− cos

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

))−1

(80)

by merging equations (50) and (84), then we get

ϱ8(x, y, t) =

±
√

−−3s3 + 3sr + 3k

3s− 1
sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

)(
1− cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(81)

the second part of (51) is expressed as follows:

Ψ8(x, y, t) = ±1

3

−3s3 + 3sr + 3k

3s− 1

(
sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))2(
1− cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−2

(82)
OR
Assume that Eq.(51) has solutions in the conformation of

ϑ(ξ) =
β0 cos(ζξ)

β2 + β1 sin(ζξ)
(83)

By concatenating Eq. (87) in Eq. (51) and then gathering all terms with the identical powers of sin(ζξ)r and
equating to zero all coefficients of sin(ζξ)r, the subsequent set of algebraic equations are obtained in the following
stage:
sin(ζξ)2 : 6

(
−
(
1
2s

3 − 1
2sr −

k
2

)
β1

2 + 1
2

(
s− 1

3

)
β0

2
)
β0

sin(ζξ)1 : 6β1β2

(
−s3 +

(
3
2ζ

2 + r
)
s− 1

2ζ
2 + k

)
β0

sin(ζξ)0 : 3β0

((
−s3 +

(
−3ζ2 + r

)
s+ ζ2 + k

)
β2

2 + 6
(
β1

2ζ2 − 1
6β0

2
) (

s− 1
3

))
.

These algebraic equations will be solved by mathematics software and then we have the subsequent solutions:
set 9)

ζ = ±
√

−−s3 + sr + k

6s− 2
, β0 = ±

√
−−3s3 + 3sr + 3k

3s− 1
β1 β1 = β1, β2 = 0 (84)
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set 10)

ζ = ±
√
−−2s3 + 2sr + 2k

3s− 1
, β0 = ±

√
−−3s3 + 3sr + 3k

3s− 1
β2 β1 = β2, β2 = β2 (85)

set 11)

ζ = ±
√

−−2s3 + 2sr + 2k

3s− 1
, β0 = ±

√
−−3s3 + 3sr + 3k

3s− 1
β2 β1 = −β2, β2 = β2 (86)

Case 9: we take set 9 into consideration, the solutions of (51) can be obtained as

ϑ9(x, y, t) = ±
√
−−3s3 + 3sr + 3k

3s− 1
cot

(√
−−s3 + sr + k

6s− 2
ξ

)
(87)

by merging equations (50) and (91), then we get

ϱ9(x, y, t) = ±
√
−−3s3 + 3sr + 3k

3s− 1
cot

(√
−−s3 + sr + k

6s− 2
(kt+ x+ y)

)
e−i(kt+ry−sx) (88)

the second part (51) is expressed as follows:

Ψ9(x, y, t) = ±1

3

−3s3 + 3sr + 3k

3s− 1

(
cot

(√
−−s3 + sr + k

6s− 2
(kt+ x+ y)

))2

(89)

Case 10: Likewise, for set 10, the solutions of (51) can be obtained as

ϑ10(x, y, t) = ±
√

−−3s3 + 3sr + 3k

3s− 1
cos

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

) (
1 + sin

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

))−1

(90)

by merging equations (50) and (94), then we get

ϱ10(x, y, t) =

±
√

−−3s3 + 3sr + 3k

3s− 1
cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

)(
1 + sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(91)

the second part of (51) is expressed as follows:

Ψ10(x, y, t) = ±1

3

−3s3 + 3sr + 3k

3s− 1

(
cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))2 (
1 + sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−2

(92)

Case 11: Likewise, for set 11, the solutions of (51) can be gained as

ϑ11(x, y, t) = ±
√

−−3s3 + 3sr + 3k

3s− 1
cos

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

) (
1− sin

(√
−−2s3 + 2sr + 2k

3s− 1
ξ

))−1

(93)

by merging equations (50) and (97), then we obtain

ϱ11(x, y, t) =

±
√

−−3s3 + 3sr + 3k

3s− 1
cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

)(
1− sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−1

e−i(kt+ry−sx)

(94)

the second part of (51) is expressed as follows:

Ψ11(x, y, t) =

± 1

3

−3s3 + 3sr + 3k

3s− 1

(
cos

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))2(
1− sin

(√
−−2s3 + 2sr + 2k

3s− 1
(kt+ x+ y)

))−2

(95)
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4 Graphical Representation

In this section, by drawing two-dimensional and three-dimensional shapes based on the appropriate values of the
parameters to some of the acquired results as well as by describing their values in their captions we finalizes the last
section. By employing the extension rational sin-cos as well as sinh-cosh techniques the wave behaviours of the Hirota
equation and Hirota-maccari system have been checked.

In this section, Figure 1 demonstrates the two-dimensional and three-dimensional surfaces of the dark wave soliton
solution of the Eq. |ϱ1(x, t)| for the values r = 0.5, s = 0.5, and Ω = 1. In Figure 2, by adopting the appropriate
values of s = 1, r = 0.5 and Ω = 1 the 2D and 3D surfaces of the cusp wave solution of the Eq. |ϱ4(x, t)| has drawn.
Figure 3 illustrates two-dimensional and three-dimensional dark wave surfaces of Eq. |ϱ6(x, t)| for the proper values of
s = 1, r = 0.5 and Ω = 1 for the Hirota equation. The three-dimensional and two-dimensional of Figure 4 illustrates
the behaviours of cusp wave soliton solution of the Eq. |ϱ9(x, t)| by the proper values of s = 1, r = 0.5 and Ω = 1.
Figure 5 demonstrates the two-dimensional and three-dimensional surfaces of the dark wave soliton solution of the
Eq. |ϱ1(x, y, t)| for the values r = 0.5, s = 0.5, k = 0.5.

The three-dimensional and two-dimensional of Figure 6 illustrates the behaviours of the Eq. |Ψ1(x, y, t)| by proper
values of s = 0.5, r = 0.5, k = 0.5 which has dark wave soliton solution. In Figure 7, by adopting the appropriate
values of r = 0.5, s = 0.5, k = 0.5 the 2D and 3D surfaces of the cusp wave solution of the Eq. |φ4(x, y, t)| has drawn.
In figure 8, by indicating the 2D and 3D surfaces of the cusp soliton solution of the Eq. |Ψ4(x, y, t)| by the values
of r = 0.5, s = 0.5, k = 0.5 the visualization of the Hirota-maccari equation will be completed. Figure 9 illustrates
two-dimensional and three-dimensional dark wave surfaces of Eq. |φ6(x, y, t)| for the proper values of r = 0.5, s = 0.5,
k = 0.5 for the Hirota-maccari system.

Figure 10, by adopting the suitable values of r = 0.5, s = 0.5, k = 0.5 we could draw the 2D and 3D dark wave
solution surfaces of the Eq. |Ψ6(x, y, t)|.
The three-dimensional and two-dimensional of Figure 11 illustrates the behaviours of cusp wave soliton solution of the
Eq. |φ9(x, y, t)| by the proper values of r = 0.5, s = 0.5, k = 0.5. Figure 12 demonstrates the two-dimensional and
three-dimensional cusp wave soliton solutios surfaces of the Eq. |Ψ9(x, y, t)| for the values r = 0.5, s = 0.5, k = 0.5.

(a) (b)

Figure 1: The three-dimensional surfaces of the Equation (18) by regarding the values r = 0.5, s = 0.5, Ω = 1 in
figure. (a) and fig. (b) represents the two-dimensional surface of the Equation (18) by regarding the values of r = 0.5,
s = 0.5, Ω = 1.
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(a) (b)

Figure 2: The three-dimensional surfaces of the Equation (27) by regarding the values r = 0.5, s = 1, Ω = 1 in figure.
(a) and fig. (b) represents the two-dimensional surface of the Equation (27) by regarding the values of r = 0.5, s = 1,
Ω = 1.

(a) (b)

Figure 3: The three-dimensional surfaces of the Equation (35) by considering the values r = 0.5, s = 1, Ω = 1 in
figure. (a) and fig. (b) represents the Equation (35) by considering the values of r = 0.5, s = 1, Ω = 1.
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(a) (b)

Figure 4: The three-dimensional forms of the Equation (45) by considering the values r = 0.5, s = 1, Ω = 1 in figure.
(a) and fig. (b) represents the Equation (45) by regarding the values of r = 0.5, s = 1, Ω = 1.

(a) (b)

Figure 5: The three-dimensional forms of the Equation (57) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig. (b) represents the Equation (57) by regarding the values of r = 0.5, s = 0.5, k = 0.5.

(a) (b)

Figure 6: The three-dimensional surfaces of the Equation (58) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig. (b) represents the Equation (58) by regarding the values of r = 0.5, s = 0.5, k = 0.5.



Precise solutions to the Hirota equation and Hirota-maccari system 15

(a) (b)

Figure 7: The three-dimensional forms of the Equation (69) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig. (b) represents the Equation (69) by regarding the values of r = 0.5, s = 0.5, k = 0.5.

(a) (b)

Figure 8: The three-dimensional surfaces of the Equation (70) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig.(b) represents the Equation (70) by regarding the values of r = 0.5, s = 0.5, k = 0.5.

(a) (b)

Figure 9: The three-dimensional forms of the Equation (79) by regarding the values r = 0.5, s = 0.5, k = 0.5 in figure.
(a) and fig. (b) represents the Equation (79) by regarding the values of r = 0.5, s = 0.5, k = 0.5.
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(a) (b)

Figure 10: The three-dimensional surfaces of the Equation (80) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig. (b) represents the Equation (80) by regarding the values of r = 0.5, s = 0.5, k = 0.5.

(a) (b)

Figure 11: The three-dimensional surfaces of the Equation (92) by considering the values r = 0.5, s = 0.5, ω = 1 in
figure. (a) and fig. (b) represents the two-dimensional surface of the Equation (92) by regarding the values of r = 0.5,
s = 0.5, ω = 1.

(a) (b)

Figure 12: The three-dimensional forms of the Equation (93) by considering the values r = 0.5, s = 0.5, k = 0.5 in
figure. (a) and fig. (b) represents the two-dimensional form of the Equation (93) by considering the values of r = 0.5,
s = 0.5, k = 0.5.
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