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Abstract

In this paper, we consider a mathematical model with fractional derivatives in the sense of Caputo with respect to
time. It describes the spread of an infectious disease that is directly transmitted in an age-structured population and
whose transmission coefficient varies with age. We formulate the basic model as an abstract fractional Cauchy problem
on a Banach space to prove the existence, and uniqueness of a local mild solution and ensure the global existence of
a solution. Moreover, the results for the existence and uniqueness of non-trivial steady states are also demonstrated
under the appropriate conditions.
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1 Introduction

Since the work of Mckendrick [25], It is well known that the dynamics of disease transmission are significantly
influenced by the age composition of a population. Age-related differences in an individual’s capacity for reproduction
and survival are possible. For various age groups, diseases may have varying rates of infection and mortality.

Age differences may also affect an individual’s behavior, and behavioral modifications are essential to the man-
agement and prevention of many infectious diseases. Young people typically participate more actively in interactions
with or between populations and in the spread of disease. As a result, several age-structured epidemic models have
been explored by various authors. As a result, a number of studies have been published that describe the stability of
steady state solutions and analyze the overall behavior of these age-structured epidemic models, and find the threshold
conditions for the disease to become endemic. Age structure should ideally be included in both births and deaths
because, over time, the population’s age distribution could alter, which could have an impact on the dynamics of the
disease.[1, 3, 4, 9, 10, 24, 28, 29, 30, 32].

In this paper, we take a look at a mathematical model for an epidemic spreading in a population with an age
structure, where the transmission coefficient varies with age. The model was developed for a SIR disease in a popula-
tion, meaning that a susceptible person who contracts the disease will become contagious but will eventually recover
with long-lasting immunity. We have one way to express the threshold phenomenon R0 is by referring to the spectral
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radius of a specific integral operator and an endemic steady state is possible if and only if R0 > 1 and if this state
exists, it is unique. While the equilibrium with no disease present always exists.

To represent the dynamics of a SIR epidemic model with age structure, mathematical modeling using fractional
differential equations (FDEs) is an appropriate method. Moreover, fractional differentiation is a generalization of
classical differentiation and integration to arbitrary order. Since it naturally includes both memory and non-local
effects, this is quite relevant to model the spread of epidemics.

The organization of the remainder of this article is as follows: In section 2, we give some known preliminary results
to be used later. In sect 3, we consider the fractional order (0 < α < 1) SIR epidemic model with age structure
with Caputo derivative. In section 4, in order to demonstrate the existence and uniqueness of its local mild solutions,
we describe the fractional SIR epidemic model with age structure as an abstract fractional Cauchy problem on a
Banach space. Next, we’ll make sure the mild solution is present everywhere. Under the right circumstances, we will
demonstrate the model’s existence and uniqueness for non-trivial steady states in section 5. In section 6, we take into
account the process of disease invasion to determine the disease’s threshold.

2 Preliminaries

In this section we introduce notations, definitions and preliminary facts which are used throughout this paper.
We denoted by E2 = L1(0, ω) × L1(0, ω) the Banach space equipped with the norm |ϕ| =

∑2
i=1 |ϕi|1 for ϕ(a) =

(ϕ1(a), ϕ2(a))
T ∈ E, where | · |1 is the ordinary norm of E = L1(0, ω). Let C((0, T ], E2) be the Banach space of

continuous function from [0, T ] into E2 with the norm ∥u∥ = supt∈[0,T ] |u| where u ∈ C((0, T ], E2). We need some
basic definitions and properties of the fractional calculus theory. For more details, see [21, 31, 33].

Definition 2.1. ([21]) The fractional integral of the function h ∈ L1([a, b]) of order α ∈ R+is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds,

where Γ is the gamma function.

Definition 2.2. ([21]) For a function h given on the interval [a, b], the Caputo fractional order derivative of h, is
given by

cDαh(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denote the integer part of α.

Suppose M = supt≥0 ∥T (t)∥ and define

Sα(t) =

∫ ∞

0

hα(θ)T (tαθ) dθ, Pα(t) = α

∫ ∞

0

θhα(θ)T (tαθ) dθ, t ≥ 0,

hα(θ) =
1

α
θ−1−1/αψα

(
θ−1/α

)
≥ 0,

ψα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

where hα is a probability density function defined on (0,∞), that is

hα(θ) ≥ 0, θ ∈ (0,∞),

∫ ∞

0

hα(θ)dθ = 1.

For γ ∈ [0, 1],

∫ ∞

0

θγhα(θ)dθ =
Γ(1 + γ)

Γ(1 + αγ)
.

Lemma 2.3. ([33])

(i) For any fixed t ≥ 0 and any

x ∈ E, ∥Sα(t)x∥ ≤M∥x∥ and ∥Pα(t)x∥ ≤M∥x∥/Γ(α).
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(ii) {Sα(t) : t ≥ 0} and {Pα(t) : t ≥ 0} are strongly continuous.

(iii) For each t > 0,Sα(t) and Pα(t) are compact operators if T (t) is compact.

We recall a generalization of Gronwall’s lemma that we will use in the sequel.

Lemma 2.4. (Generalized Gronwall inequality [31]) Let v : [0, b] −→ [0,+∞) be a real function and ω(·) be a
nonnegative, locally integrable function on [0, b]. Suppose that there exist a > 0 and 0 < α < 1 such that

v(t) ≤ ω(t) + a

∫ t

0

(t− s)−αv(s)ds.

Then there exists a constant m = m(α) such that

v(t) ≤ ω(t) +ma

∫ t

0

(t− s)−αω(s)ds, for t ∈ [0, b].

3 The basic model

First, we take into account a closed, one-sex, age-structured population within the context of demographic stability.
Consider P (t, a) to be the age distribution of the host population at time t, µ(a) to represent the age-specific natural
death rate, and f(a) to represent the age-specific fertility rate. The McKendrick equation would thus be used to
represent the host population dynamics as follows:(

∂

∂t
+

∂

∂a

)
P (t, a) = −µ(a)P (t, a), (3.1)

P (t, 0) =

∫ ω

0

f(a)P (t, a)da, (3.2)

P (0, a) = P0(a), (3.3)

where ω <∞ is the maximum age and P0(a) contains the beginning data. The stable population model in demography
is known as the system (3.1)-(3.3).

According to the stable population theory [14, 17], the system represented by (3.1) and (3.2) has a distinct persistent
age profile that is as follows:

ψ(a) :=
e−r0aℓ(a)∫ ω

0
e−r0aℓ(a)da

,

where ℓ(a) is the survival rate denoted by the expression

ℓ(a) := exp

(
−
∫ a

0

µ(σ)dσ

)
,

and the dominant real root of the Euler-Lotka characteristic equation gives the value of r0, often known as the intrinsic
rate of natural increase: ∫ ω

0

e−raf(a)ℓ(a)da = 1. (3.4)

Since ω is the oldest age that can be achieved, that is, ℓ(ω) = 0, we assume that µ ∈ L1
+,loc

(0, ω) and
∫ ω

0
µ(σ)dσ =

∞.
Let’s next divide the host population into three different groups based on their age-density functions: the susceptible
class, the infected class, and the recovered class. These groups are represented by the symbols S(t, a), I(t, a), and
R(t, a), respectively. Let γ(a) be the recovery rate at age a and β(a, σ) be the transmission rate between susceptible
individuals aged a and infected individuals aged σ. Moreover, we can suppose that the steady-state host population
is a demographic stationary population provided by

P (t, a) = P0(a) := Bℓ(a) ∀t > 0,
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where B is the birth rate (number of new borns per unit time). Hence, ψ(a) = b0ℓ(a), where b0 =
1∫ ω

0
ℓ(a)da

denotes

the crude birth rate in the stationary population. Then we obtain the following system of equations that describe the
dynamics of the model: 

(
∂α

∂tα
+

∂

∂a

)
S(t, a) = −λ(t, a)S(t, a)− µ(a)S(t, a),(

∂α

∂tα
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a)− γ(a)I(t, a)− µ(a)I(t, a),(

∂α

∂tα
+

∂

∂a

)
R(t, a) = γ(a)I(t, a)− µ(a)R(t, a),

S(t, 0) =

∫ ω

0

f(a)S(t, a)da,

I(t, 0) = 0,

R(t, 0) = 0,

(3.5)

where
∂α

∂tα
is the Caputo fractional derivative of order 0 < α < 1 and the force of infection λ(t, a) is given by

λ(t, a) =
1

P (t)

∫ ω

0

β(a, σ)I(t, σ)dσ,

where

P (t) :=

∫ ω

0

P (t, a)da,

is the total size of the population and

P (t, a) = S(t, a) + I(t, a) +R(t, a).

We can introduce the ratio age distributions for each epidemiological class as follows since we assume that the
epidemic has no effect on the demographic factors:

s(t, a) :=
S(t, a)

P (t, a)
, i(t, a) :=

I(t, a)

P (t, a)
, r(t, a) :=

R(t, a)

P (t, a)
.

Then the new system is given by:

(
∂α

∂tα
+

∂

∂a

)
s(t, a) = −λ(t, a)s(t, a),(

∂α

∂tα
+

∂

∂a

)
i(t, a) = λ(t, a)s(t, a)− γ(a)i(t, a),(

∂α

∂tα
+

∂

∂a

)
r(t, a) = γ(a)i(t, a),

s(t, 0) = 1,

i(t, 0) = 0,

r(t, 0) = 0.

(3.6)

Additionally, it follows from the definition that

s(t, a) + i(t, a) + r(t, a) = 1. (3.7)

In the parts that follow, we mainly concentrate on the normalized system (3.6) under the condition (3.7) and the
technical supposition that:

Assumption 3.1. β ∈ L∞
+ ((0, ω)× (0, ω)) and γ, f ∈ L∞

+ (0, ω).
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Instead of the whole system (3.6), we can take into consideration the SI system from the normalized condition
(3.7): 

(
∂α

∂tα
+

∂

∂a

)
s(t, a) = −λ(a | i)s(t, a),(

∂α

∂tα
+

∂

∂a

)
i(t, a) = λ(a | i)s(t, a)− γ(a)i(t, a),

s(t, 0) = 1,

i(t, 0) = 0,

(3.8)

where λ[a|i] is given by the integral operator defined by

λ[a|ϕ] :=
∫ ω

0

β(a, σ)ψ(σ)ϕ(σ)dσ, ϕ ∈ L1(0, ω).

The state space of the system (3.8) is

Ω :=
{
(s, i) ∈ E2

+, 0 ≤ s+ i ≤ 1
}
,

where E2
+ is the positive cone of E2 = L1(0, ω)× L1(0, ω). Let us define operators A and F on E2 as follows:

(Aϕ)(a) =

(
− d

da 0
0 − d

da

)(
ϕ1(a)
ϕ2(a)

)
,

F (ϕ)(a) =

(
−λ [a | ϕ2]ϕ1(a)

λ [a | ϕ2]ϕ1(a)− γ(a)ϕ2(a)

)
,

where ϕ = (ϕ1, ϕ2)
T ∈ E2, and the domain of the differential operator A is defined by

D(A) =

{
ϕ =

(
ϕ1
ϕ2

)
∈ E2 : ϕj ∈ AC(0, ω),

(
ϕ1(0)
ϕ2(0)

)
=

(
1
0

)}
,

where AC(0, ω) represents the set of absolutely continuous functions on (0, ω). Let us define a E2-valued function
u(t) = (s(t, ·), i(t, ·))T . As a result, the Cauchy problem in E2 can be written as follows:

dαu(t)

dtα
= Au(t) + F (u(t)), u(0) = u0. (3.9)

The operator A generates a C0 semigroup (T (t))t≥0 such that M = supt≥0 ∥T (t)∥, and F : Ω −→ E2 is lipschitz
continuous;

∥F (u)− F (v)∥ ≤ L∥u− v∥,

and
N = sup

u∈E2

∥F (u)∥.

4 Main results

It is suitable to rewrite the Cauchy problem (3.9) in the equivalent integral equation.

u(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1F (u(s))ds, (4.1)

for t ∈ [0, T ]. Note that the Laplace transform of an abstract function f ∈ L1 (R+, X) is defined by f̂(λ) :=∫∞
0
e−λtf(t)dt (λ > 0). Applying the Laplace transform to (4.1) we get

û(λ) =
u0
λ

− 1

λα
Aû(λ) +

F̂ (u(λ))

λα
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that is,
û(λ) = λα−1 (λα +A)

−1
u0 + (λα +A)

−1
F̂ (u(λ)).

û(λ) = λα−1

∫ ∞

0

e−λα

T (t)u0dt+

∫ ∞

0

e−λαtT (t)F̂ (λ)dt. (4.2)

Consider the one-sides stable probability density

ψα(θ) ==
1

π

∞∑
n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα).

Whose Laplace transform is given by∫ ∞

0

e−λθψα(θ)dθ = e−λα

α ∈ (0, 1). (4.3)

Using (4.2) and (4.3), we get

û(λ) =

∫ ∞

0

e−λt
[ ∫ ∞

0

ψα(θ)T

(
tα

θα

)
dθ + α

∫ t

0

∫ ∞

0

ψα(θ)T

(
(t− s)α

θα

)
(t− s)α−1 (t− s)α−1

θα
F (u(s))dθds

]
dt.

Now we can invert the last Laplace transform to get

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)F (u(s))ds, t ∈ (0, T ].

We give the following definition of the mild solution of (3.9).

Definition 4.1. By a mild solution of problem (3.9), we mean a function u ∈ C((0, T ];E2) satisfying

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)F (u(s))ds, t ∈ (0, T ]. (4.4)

Theorem 4.2. Let u0 ∈ Ω and assume that hypothesis MLTα

Γ(α+1) < 1 and M∥u0∥+ MNTα

Γ(α+1) < 1 hold, then the fractional

problem (3.9) has a unique mild solution defined on [0, T ].

Proof . Consider the mapping H given by

(Hu)(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)F (u(s))ds, t ∈ (0, T ].

We see that (Hu)(t) ∈ C((0, T ];E2). First, we show that H(Ω) ⊂ Ω. Let t ∈ [0, T ] and u ∈ Ω

|(Hu)(t)| ≤ |Sα(t)u0|+
∫ t

0

(t− s)α−1|Pα(t− s)F (u(s))|ds

≤M | u0 | + M

Γ(α)

∫ t

0

(t− s)α−1 | F (u(s)) | ds.

∥H(u)∥ ≤M∥u0∥+
MNTα

Γ(α+ 1)
< 1.

Then H maps Ω into itself. Next, we shall show that H is a strict contraction on Ω which will ensure the existence
of a unique mild solution. Let u and v two elements in Ω, by the assumption on F and MLTα

Γ(α+1) < 1, we have:

|(Hu)(t)− (Hv)(t)| ≤
∫ t

0

(t− s)α−1|Pα(t− s)(F (u(s))− F (v(s)))|ds

≤ ML

Γ(α)

∫ t

0

(t− s)α−1|u(s)− v(s)|ds

∥(Hu)− (Hv)∥ ≤ MLTα

Γ(α+ 1)
∥u− v∥.
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This yields that H is a contraction on Ω. So H has a unique fixed point u ∈ Ω by the Banach Fixed point Theorem,
which is a mild solution to problem (3.9) on [0, T ]. □

Remark 4.3. If u0 ∈ D(A), the mild solution becomes a classical solution.

For concrete application, the global existence of the solution of the fractional differential equation always becomes
a main concern.

Theorem 4.4. Let u0 ∈ Ω, the mapping F : Ω −→ E2 is Lipschitz continuous and there exist a positive constants c1
et c2 such that

∥F (u)∥ ≤ c1 + c2∥u∥. (4.5)

Then the problem (3.9) has a global mild solution.

Proof . We have

F (ϕ)(a) =

(
−λ [a | ϕ2]ϕ1(a)

λ [a | ϕ2]ϕ1(a)− γ(a)ϕ2(a)

)
.

Let
F1(ϕ)(a) = −λ [a | ϕ2]ϕ1(a), F2(ϕ)(a) = λ [a | ϕ2]ϕ1(a)− γ(a)ϕ2(a).

If we define λ+ = supλ and γ+ = sup γ, we obtain

|F (ϕ)| =
2∑

i=1

|Fi(ϕ)|1

= λ [a | ϕ2] |ϕ1|1 + |λ [a | ϕ2]ϕ1 − γ(a)ϕ2|1
≤ 2λ+|ϕ1|1 + γ+|ϕ2|1
≤ 2λ+|ϕ|+ γ+|ϕ|
≤ c1 + c2|ϕ|,

with c1 = 0, c2 = 2λ++ γ+ and we go to the sup, we know that (4.5) holds. Next, we assume that the mild solution u
admits a maximal existence interval (0, Tmax) (Tmax is the maximum time of existence). Suppose there is a sequence
tn −→ Tmax such that |u(tn)| −→ ∞. Then for 0 < t < Tmax, substitution of (4.5) in the equation (4.4) leads to the
following estimation.

|u(t)| ≤ |Sα(t)u0|+
∫ t

0

(t− s)α−1|Pα(t− s)|(c|u(s)|)ds.

Therefore,

|u(t)| ≤M |u0|+
Mc

Γ(α)

∫ t

0

(t− s)α−1|u(s)|ds.

If we take
ω(t) =M |u0|,

which is bounded, and

a =
Mc

Γ(α)
,

it follows, in accordance with Lemma 2.4, that v(t) = |u(t)| is bounded. Which contradicts the fact that limt→Tmax |u(t)| =
∞. So Tmax = ∞. □
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5 Existence of steady states

Let (s∗(a), i∗(a))
T
the endemic steady state solution satisfying the following ODE system:

d

da
s∗(a) = −λ∗(a)s∗(a),

d

da
i∗(a) = λ∗(a)s∗(a)− γ(a)i∗(a),

s∗(0) = 1,

i∗(0) = 0,

(5.1)

where

λ∗(a) :=

∫ ω

0

β(a, σ)ψ(σ)i∗(σ)dσ, (5.2)

δ(a) := exp

(
−
∫ a

0

γ(σ)dσ

)
.

We have the following expressions after formally solving the preceding ODEs:

s∗(a) = e−
∫ a
0

λ∗(σ)dσ, (5.3)

i∗(a) =

∫ a

0

δ(a)

δ(σ)
λ∗(σ)e−

∫ σ
0

λ∗(s)dsdσ. (5.4)

Substituting (5.4) into (5.2) and changing the order of integration, we obtain an equation for λ∗(a).

λ∗(a) =

∫ ω

0

π(a, η)λ∗(η)e−
∫ η
0

λ∗(s)dsdη, (5.5)

where

π(a, η) =

∫ ω

η

β(a, σ)ψ(σ)
δ(σ)

δ(η)
dσ. (5.6)

From (5.2), it follows that |λ∗(a)| ≤ b0∥β∥∞|i∗|1 where ∥·∥∞, | · |1 denote an L∞−norm and L1−norm respectively.
Then it follows from i∗ ∈ L1(0, ω) that λ∗ ∈ L∞

+ (0, ω). It is clear that one solution of (5.5) is λ∗(a) ≡ 0, which is
equivalent to the disease-free equilibrium state. We define a nonlinear operator Φ(x) to study a nontrivial solution to
(5.5) in the Banach space E = L1(0, ω) with the positive cone E+ = {ϕ ∈ E, ϕ > 0, a.e.} by

(Φx)(a) =

∫ ω

0

π(a, η)x(η)e−
∫ η
0

x(s)dsdη, x ∈ E. (5.7)

As the range of Φ is included in L∞(0, ω), the solutions of (5.5) correspond to fixed points of Φ. Note that the
operator Φ has a positive linear majorant K defined by

(Kx)(a) =

∫ ω

0

π(a, η)x(η)dη, x ∈ E. (5.8)

Here, we review some fundamental nonsupporting operator notions. Let B(Y ) be the set of bounded linear
operators from Y to Y , where Y is a Banach space with a positive cone Y+. L ∈ B(Y ) is said to be positive if
L(Y+) ⊂ Y+. L ∈ B(Y ) is said to be strongly positive if ⟨f, Lψ⟩ > 0 for every pair ψ ∈ Y+\{0}, f ∈ Y ∗

+\{0}, where
Y ∗
+ is the space of positive linear functionals on Y . For L, V ∈ B(Y ), we say L ≥ V if (L− V )(Y+) ⊂ Y+. A positive

operator L ∈ B(Y ) is said to be nonsupporting if for every pair ψ ∈ Y+\{0} and f ∈ Y ∗
+\{0}, there exists a positive

integer p = p(ψ, f) such that ⟨f, Lnψ⟩ > 0 for all n ≥ p. r(L) denotes the spectral radius of L ∈ B(Y ).

If a nonsupporting compact operator T has positive radius, the Perron-Frobenius type theorem holds (Sawashima
1964, Marek 1970).
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Proposition 5.1. Let the cone E+ be total, K is compact, nonsupporting with respect to E+ and r(K) > 0.
Then the following holds:

r(K) is a point spectrum and is simple pole of the resolvent.

1.2. The eigenspace corresponding to r(K) is one-dimensional and its eigenvector v0 ∈ E+ is a quasi-interior point.
Any eigenvector in E+is proportional to v0.

3. The eigenspace of the dual operator K∗ corresponding to r(K) is also one-dimensional and is spanned by a
strictly positive functional.

4. Let S, T ∈ B(E) be compact and nonsupporting. Then S ≤ T , S ̸= T and r(T ) ̸= 0 implies r(S) < r(T ).

After making the aforementioned preparations, we initially think about the nature of the majorant operator K de-
scribed by (5.8). We’ll assume the following in what follows:

Assumption 5.2. 1. There exist numbers δ0 ∈ (0, ω) and β > 0 such that

β(a, η) ≥ β for almost all (a, η) ∈ (0, ω)× (ω − δ0, ω) . (5.9)

2. β ∈ L∞
+ ((0, ω)× (0, ω)) is extended into L∞

+

(
R2

)
by β(a, σ) = 0 for (a, σ) /∈ (0, ω)× (0, ω) and satisfies

lim
h→0

∫ ω

0

|β(a+ h, η)− β(a, η)|da = 0 uniformly for η ∈ R. (5.10)

Lemma 5.3. The operator K : E −→ E is nonsupporting and compact under Assumption (5.2).

Proof . Let’s define the positive linear functional f0 ∈ E∗
+ by

⟨f0, ϕ⟩ :=
∫ ω

0

∫ ω

η

β0(σ)ψ(σ)
δ(σ)

δ(η)
dσϕ(η)dη,

where

β0(σ) =

{
β for σ ∈ (ω − δ0, ω) ,

0 otherwise .
(5.11)

Then Kϕ ≥ ⟨f0, ϕ⟩ e, for all ϕ ∈ E+, where e = 1 ∈ E+, which implies

Kn+1ϕ ≥ ⟨f0, ϕ⟩ ⟨f0, e⟩n e, ∀n ∈ N.

Thus for arbitrary F ∈ E∗
+\{0}, ϕ ∈ E+\{0} and n ≥ 1,

⟨F,Knϕ⟩ ≥ ⟨f0, ϕ⟩ ⟨f0, e⟩n−1 ⟨F, e⟩ > 0.

This shows K is nonsupporting. Next observe that∫ ω

0

|π(a+ h, σ)− π(a, σ)|da ≤ b0

∫ ω

0

∫ ω

0

|β(a+ h, σ)− β(a, σ)|dσda. (5.12)

In order to prove the compactness of K, we identify the Banach space E with the subspace of L1(R) such that
E = {ϕ ∈ L1(R), ϕ(a) = 0 for a ∈ (−∞, 0) ∪ (ω,∞)}. Then we can interpret K as an operator on L1(R) such that
E is its invariant subspace, so it is sufficient to show that the operator K is compact in L1(R). Let T a bounded
subset of L1(R). Then it follows immediately that K(T ) is also a bounded subset. Observe that∫

R
|(Kϕ)(a+ h)− (Kϕ)(a)|da ≤

∫
R

∫
R
|π(a+ h, σ)− π(a, σ)||ϕ(σ)|dσda

≤ ∥ϕ∥ sup
0≤σ≤ω

∫
R
|π(a+ h, σ)− π(a, σ)|da
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Together with conditions (5.10) and (5.12), It follows that the family K(T ) in the L1-norm is an equicontinuous
family. Moreover, it follows from K(T ) ⊂ E that∫

|σ|≥ω

|(Kϕ)(σ)|dσ = 0, ϕ ∈ T.

Thus, we can use the Fréchet-Kolmogorov compactness criterion [8, 27], that is, K(T ) is relatively compact in
L1(R). Thus, K is a compact operator. This completes the proof. □

It follows from the proposition that The unique positive eigenvalue with a positive eigenvector and an eigenvalue
of the dual operator K∗ with a strictly positive eigenfunctional is the spectral radius r(K) of the operator K. Now
we can show the main theorem in this section:

Theorem 5.4. 1. If R0 ≤ 1, the equation Φ(x) = x has no solution except the trivial solution x ≡ 0.
2. if R0 > 1, the equation Φ(x) = x has at least one non-zero positive solution.

Proof . Supposing that R0 = r(K) ≤ 1, it is easily checked that Kϕ − Φ(ϕ) ∈ E+\{0} for ϕ ∈ E+\{0}. If there
exists an ϕ0 ∈ E+\{0} being a solution of ϕ = Φ(ϕ), then ϕ0 = Φ(ϕ0) ≤ K (ϕ0). Let F ∗

0 ∈ E∗
+\{0} be the adjoint

eigenvector for K that corresponds to r(K). Taking duality pairing, we find

⟨F ∗
0 ,K (ϕ0)− ϕ0⟩ = ⟨(K∗ − I∗)F ∗

0 , ϕ0⟩ = (r(K)− 1) ⟨F ∗
0 , ϕ0⟩ > 0,

due to the fact that F ∗
0 is strictly positive and K (ϕ0)−ϕ0 ∈ E+\{0}. Then, r(K) > 1, a contradiction, results. Next,

we suppose that R0 = r(K) > 1. The operator Φ is a completely continuous operator in the Banach space E, under
Assumption (5.2), in the same way as the proof of Lemma (5.3). In addition, if the number M0 is defined by

M0 = sup
0≤σ≤ω

∫ ω

0

π(a, σ)da,

the set Ω0 := {ϕ ∈ E+ : |ϕ| ≤M0} is invariant (in fact Φ(E+) ⊂ Ω0) under the operator Φ. We define an operator Φr

by:

Φr(x) =

{
Φ(x), if |x|1 ≥ r, x ∈ E+,

Φ(x) + (r − |x|1)x0, if |x|1 ≤ r, x ∈ E+,

where x0 is the positive eigenvector of K corresponding to r(K) > 1. Let

Ωr = {x ∈ E+, |x| ≤M0 + r|x0|} .

Then Φr is completely continuous and transforms the set Ωr into itself. Since Ωr is bounded, convex and closed in
E, Φr has a fixed point xr ∈ Ωr (Schauder’s principle). Notice that the operator K does not have in E+ eigenvectors
that correspond to the eigenvalue one of the function Φ(x) at x = 0. If r is sufficiently small, it can be demonstrated
that the norms of these fixed points are greater than r by using the method of Krasnoselskii [22, Theorem 4.11]. That
is, Φ has a positive fixed point. This completes the proof. □

We then introduce the idea of a concave operator [22], in order to study the uniqueness issue for nontrivial positive
fixed points of the operator Φ.

Definition 5.5. Let E+ be a cone in a real Banach space E and < be the partial ordering defined by E+. A positive
operator A : E+ −→ E+ is called a concave operator if there exists a u0 ∈ E+ \ {0} which satisfies the following

1. For any x ∈ E+ \ {0}, there exist α = α(x) > 0 and β = β(x) > 0 such that αu0 ≤ Ax ≤ βu0, that is, Ax is
comparable with u0.

2. A(tx) > tAx for 0 < t < 1 and for every x ∈ E+ such that

α(x)u0 ≤ x ≤ β(x)u0, (α(x) > 0, β(x) > 0).

Lemma 5.6. Suppose that the operator A : E+ −→ E+ is monotone and concave. If for any x ∈ E+ satisfying
α1u0 ≤ x ≤ β1u0 (α1 = α1(x) > 0, β1 = β1(x) > 0), and 0 < t < 1, there exists η = η(x, t) > 0 such that

A(tx) ≥ tAx+ ηu0, (5.13)

then A has at most one positive fixed point.
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Another assumption is made in this case.

Assumption 5.7. For all (a, η) ∈ [0, ω)× [0, ω), the inequality

β(a, η)ψ(η)− γ(η)π(a, η) ≥ 0 (5.14)

holds.

Then we can prove the following.

Theorem 5.8. Suppose that Assumption (5.7) holds. If r(K) > 1, then Φ has only one positive fixed point.

Proof . From Lemma (5.6) and Theorem (5.4), it is sufficient to show that under Assumption (5.7), the operator Φ
is a monotone concave operator satisfying condition (5.13). From (5.7) and (5.6), it follows that

Φ(x)(a) =

∫ ω

0

π(a, η)x(η)e−
∫ η
0

x(s)dsdη,

=

∫ ω

0

π(a, η)

(
− d

dη
e−

∫ η
0

x(s)ds

)
dη,

=
[
− π(a, η)e−

∫ η
0

x(s)ds
]η=ω

η=0
+

∫ ω

0

e−
∫ η
0

x(s)ds d

dη
π(a, η)dη,

= π(a, 0) +

∫ ω

0

e−
∫ η
0

x(s)ds ×
[
− β(a, η)ψ(η)

δ(η)

δ(η)
+

∫ ω

η

β(a, s)ψ(s)
d

dη

δ(s)

δ(η)
ds
]
dη,

= π(a, 0) +

∫ ω

0

e−
∫ η
0

x(s)ds ×
[
− β(a, η)ψ(η) +

∫ ω

η

β(a, s)ψ(s)
δ(s)

δ(η)
γ(η)ds

]
dη,

= π(a, 0)−
∫ ω

0

e−
∫ η
0

x(s)ds
[
β(a, η)ψ(η)− γ(η)π(a, η)

]
dη,

from which, together with Assumption (5.7), we know that Φ is a monotonic operator. Next from (5.7) and (5.6), we
observe that

α(x)u0 ≤ Φ(x)(a) ≤ β(x)u0,

where u0 ≡ 1 and

α(x) =

∫ ω

0

g(η)x(η)e−
∫ η
0

x(s)dsdη,

β(x) =

∫ ω

0

h(η)x(η)e−
∫ η
0

x(s)dsdη,

where g(η) and h(η) are defined by

g(η) :=

∫ ω

η

β0(σ)ψ(σ)
δ(σ)

δ(η)
dσ,

h(η) := sup |β|
∫ ω

η

ψ(σ)
δ(σ)

δ(η)
dσ.

It follows that α(x) > 0 and β(x) > 0 for x ∈ E+ \ {0}. Moreover, we obtain

Φ(tx)(a)− tΦ(x)(a) = t

∫ ω

0

π(a, η)x(η)e−
∫ η
0

x(s)ds
[
e(1−t)

∫ η
0

x(s)ds − 1
]
dη,

≥ t

∫ ω

0

g(η)x(η)e−
∫ η
0

x(s)ds
[
e(1−t)

∫ η
0

x(s)ds − 1
]
dη,

from which we deduce that Φ is a concave operator and condition (5.13) holds by letting u0 ≡ 1 and

η(x, t) = t

∫ ω

0

g(η)x(η)e−
∫ η
0

x(s)ds
[
e(1−t)

∫ η
0

x(s)ds − 1
]
dη.

This completes the proof. □
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Note that Assumption (5.7) holds if

ℓ(a) ≥ k
(
1− e−(ω−a)∥γ∥∞

)
, (5.15)

where k is defined by

k :=
supβ(a, b)

inf β(a, b)
, (5.16)

is finite. In fact, we have

β(a, η)ψ(η)− γ(η)

∫ ω

η

β(a, σ)ψ(σ)
δ(σ

δ(η)
dσ =β(a, η)b0ℓ(η)− γ(η)

∫ ω

η

β(a, σ)b0ℓ(σ)e
−

∫ σ
η

γ(s)dsdσ,

≥ inf β(a, η)b0ℓ(η)− ∥γ∥∞b0 supβ(a, σ)
∫ ω

η

e−(σ−η)∥γ∥∞dσ,

≥ inf β(a, η)b0

[
ℓ(η)− k

(
1− e−(ω−η)∥γ∥∞

)]
.

We adhere to the separable mixing assumption. This implies that there is no relationship between the age of the
infected both those of the susceptible persons and those of the individuals.

Assumption 5.9. There exist β1, β2 ∈ L∞
+ (0, ω) such that

β(a, σ) = β1(a)β2(σ).

with β1(a) representing susceptibility and β2(σ) denoting the infectiousness. In particular, we have the proportionate
mixing assumption if β1 = β2. Without making a distinction between separable and proportional, these presumptions
are traditionally referred to as the proportionate mixing assumption [7, 11]. Under the separable mixing assumption,
(5.5) can be written as

λ∗(a) = β1(a)

∫ ω

0

∫ ω

η

β2(σ)ψ(σ)
δ(σ)

δ(η)
dσλ∗(η)e−

∫ η
0

λ∗(s)dsdη. (5.17)

As a result, (5.17) is reduced to a one-dimensional equation, and its solution is expressed as λ∗(a) = cβ1(a), where
c is a constant. We get at an equation for the unknown integer c by putting this expression into (5.17).

1 =

∫ ω

0

∫ ω

η

β2(σ)ψ(σ)
δ(σ)

δ(η)
dσβ1(η)e

−c
∫ η
0

β1(s)dsdη. (5.18)

The right-hand side of equation (5.18) is a strictly decreasing function of c that goes to zero as c −→ ∞. As a
result, if the condition ∫ ω

0

β1(η)

∫ ω

η

β2(σ)ψ(σ)
δ(σ)

δ(η)
dσdη > 1, (5.19)

holds, the characteristic equation (5.18) has a unique positive solution.
The basic reproduction number R0 of the system (3.6) is provided on the left-hand side of the threshold condition
(5.19). So, the following is how we can sum up the argument:

Proposition 5.10. If and only if the fundamental reproduction number is bigger than unity, there exists a unique
endemic steady state for the normalized epidemic system (3.6) with the separable mixing assumption.

R0 for the separable mixing case is given by

R0 =

∫ ω

0

∫ ω

η

β2(σ)ψ(σ)
δ(σ)

δ(η)
dσβ1(η)dη. (5.20)
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6 The invasion process

First let us consider the situation that very small infectious population invade into totally susceptible population.
In this initial phase of epidemic, the growth of infected is described by the following linearized equation

(
∂α

∂tα
+

∂

∂a

)
i(t, a) = P0(a)

∫ ω

0

β(a, σ)i(t, σ)dσ − γ(a)i(t, a),

i(t, 0) = 0, i(0, a) = i0(a),
(6.1)

since we may ignore the fact that the infection process causes a drop in the density of susceptibles. Let î(a, τ), τ ∈ C
be the Laplace transform of i(t, a)

î(a, τ) :=

∫ ∞

0

e−τti(t, a)dt. (6.2)

It is easily seen that using a priori estimate for i(t, a), the integral (6.2) exists for τ with large real part. From
(6.1), we have

∂

∂a
î(a, τ) = τα−1i0(a)−

(
γ(a) + τα

)
î(a, τ) + P0(a)

∫ ω

0

β(a, σ)̂i(σ, τ)dσ. (6.3)

By the variation of constants formula, we have

î(a, τ) =

∫ a

0

e−
∫ a
σ
(γ(s)+τα)ds

[
τα−1i0(σ) + P0(σ)

∫ ω

0

β(a, η)̂i(η, τ)dη
]
dσ. (6.4)

From (6.4), it follows that∫ ω

0

β(a, σ)̂i(σ, τ)dσ = (I − Tτ )
−1

∫ ω

0

β(·, σ)
∫ σ

0

e−
∫ σ
η
(γ(s)+τα)dsτα−1i0(η)dηdσ, (6.5)

where the linear operator Tτ is defined by

(Tτx)(a) :=

∫ ω

0

φτ (a, η)x(η)dη, (6.6)

φτ (a, η)

∫ ω

η

β(a, σ)P0(σ)e
−

∫ σ
η
(γ(s)+τα)dsdσ. (6.7)

Since I−Tτ is invertible for τ with large real part, there exists a number σ such that the inverse Laplace transform
exist.

i(t, a) =
1

2πi

∫ σ+i∞

σ−i∞
eτtî(a, τ)dτ. (6.8)

Therefore, we know that the behavior of i(t, a) can be determined by the method of residues. Let Σ := {τ ∈ C :
I − Tτ is not invertible}. Under our condition (5.10) that Tτ is a compact operator from L1(0, ω) into L1(0, ω) for
all τ ∈ C. Then it follows that Σ := {τ ∈ C : 1 ∈ Pσ(Tτ )} and the function τ −→ (I − Tτ )

−1 is meromorphic in the
complex domain. Hence Σ is a discrete set whose elements are pole of (I − Tτ )

−1 of finite order. On real axis, Tτ is
a positive operator and its spectral radius r(Tτ ) is non-increasing with respect to τ . Since Tτ is a compact operator,
it follows from Krein-Rutman theorem that nonzero spectral radius gives a positive eigenvalue. Hence, characteristic
root of the equation r(Tτ ) = 1 become element of Σ.

Moreover, it follows from the condition (5.9) that for real τ , there exists a strictly positive functional Fτ and a
quasi-interior point e with respect to natural cone L1

+ such that Tτx ≥ ⟨Fτ , x⟩e, limτ−→−∞⟨Fτ , e⟩ = +∞. Hence Tτ
is a nonsupporting operator in the sense of Sawashima (1964) and from the comparison theorem of positive operator
the spectral radius r(Tτ ) is monotonically decreasing from +∞ to zero with respect to τ ∈ R and the characteristic
equation has a unique root τ0 ∈ Σ. Therefore, From monotonicity of r(Tτ ), we obtain that τ0 > 0 if r(T0) > 1, τ0 = 0
if r(T0) = 1, τ0 < 0 if r(T0) < 1. Using the similar argument as Theorem 6.13 of Heijmans (1986)[33, Theorem 6.13],
we can prove that τ0 is the dominant singular point which determines the local stability of the disease-free steady
state of the population, since τ0 is the growth rate of the principal part of i(t, a).
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Lemma 6.1. if τ ∈ Σ, τ ̸= τ0, then Re(τ) < τ0.

Proof . For any τ ∈ Σ, there exists a corresponding eigenfunction ψτ such that Tτψτ = ψτ . Then we have

|ψτ | = |Tτψτ | ≤ TReτ |ψτ |.

Let fRe(τ) be an adjoint positive eigenfunctional of TRe(τ) corresponding to the eigenvalue unity. It follows that

⟨fRe(τ), TRe(τ)|ψτ |⟩ = r(TRe(τ)⟨fRe(τ), |ψτ |⟩ ≥ ⟨fRe(τ), |ψτ |⟩.

Therefore, we have r(TRe(τ) ≥ 1 and Re(τ) ≤ τ0 because r(Tx) is monotone decreasing with respect to x ∈ R
and r(Tτ0) = 1. If Re(τ) = τ0, we obtain Tτ0 |ψτ | = |ψτ |. In fact, if Tτ0 |ψτ0 | > |ψτ0 |, applying the eigenfunctional
fτ0 to r(Tτ0) = 1, we have ⟨fτ0 , Tτ0 |ψτ |⟩ = ⟨fτ0 , |ψτ |⟩ > ⟨fτ0 , |ψτ |⟩, which is a contradiction. Therefore, we can write
|ψτ | = cψ0 using the eigenfunction ψ0 corresponding to the eigenvalue r(Tτ0) = 1. Without loss of generality, we can
assume that c = 1 and that there exists a real function α(a) such that ψτ (a) = ψ0(a)e

iα(a). Substituting this relation
into

Tτ0ψ0 = ψ0 = ψτ = |Tτψτ |,

we obtain the following∫ ω

0

∫ ω

η

β(a, σ)P0(σ)e
−

∫ σ
η
(γ(s)+τα)dsdσψ0(η)dη =

∣∣∣ ∫ ω

0

∫ ω

η

β(a, σ)P0(σ)e
−

∫ σ
η
[γ(s)+(τ0+Im(τ))α]dsdσψ0(η)e

iα(η)dη
∣∣∣.

From [33, Lemma 6.12], it follows that, there exists a constant θ such that −Imτ(σ − η) + α(η) = θ. It follows
from Tτψτ = ψτ that eiθTτ0ψ0 = ψ0e

iθ. We then have θ = α(a), which implies that Im(τ) = 0. Thus, there is no
element τ ∈ Σ \ {τ0} such that Re(τ) = τ0 which complete the proof. □

Therefore, we have the threshold criterion: the disease can invade if r(T0) > 1, whereas it can not if r(T0) < 1.
Then r(T0) can be interpreted as the basic production number R0 = r(K).
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[2] C. Barril, À. Calsina and J. Rippol, A practical approach to R0 in continuous time ecological models, Math. Meth.
Appl. Sci. 41 (2017), 8432–8445.

[3] S. Busenberg, M. Iannelli and H. Thieme, Global behavior of an age-structured epidemic model, SIAM J. Math.
Anal. 22 (1991), no. 4, 1065–1080.

[4] Y. Cha, M. Iannelli, and E. Milner, Existence and uniqueness of endemic states for the age-structured SIR epidemic
model, Math. Biosci. 150 (1998), 177–190.

[5] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis
and Interpretation, Wiley, Chichester, 2000.

[6] O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction
ratio R in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), 365–382.

[7] K. Dietz and D. Schenzle, Proportionate mixingmodels for age-dependent infection transmission, J. Math. Biol.
22 (1985), 117–120.

[8] N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience publishers, New York,
1958.

[9] M. El-Doma, Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate
mixing assumption, Math. Comput. Model. 29 (1999), 31–43.

[10] D. Greenhalgh, Analytical threshold and stability results on age-structured epidemic models with vaccination,
Theor. Popul. Bio. 33 (1988), 266–290.



An age structured SIR epidemic model 93

[11] D. Greenhalgh and K. Dietz, Some bounds on estimates for reproductive ratios derived from the age-specific force
of infection, Math. Biosci. 124 (1994), 9–57.

[12] M.E. Gurtin and R.C. MacCamy, Product Solutions and Asymptotic Behavior for Age-Dependent, Dispersing
Populations, 1981.

[13] H.J. Heijmans, The dynamical behaviour of the age-size-distribution of a cell population, Springer Berlin Heidel-
berg, 1986, pp. 185–202.

[14] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa,
1995.

[15] H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math.Bio. 65
(2012), 309–348.

[16] H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Bio. 28 (1990), 149–175.

[17] H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process, Math.
Popul. Stud. 1 (1988), 49–77.

[18] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.

[19] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics I, Proc. R. Soc.
115 (1927), 700–721.

[20] S.G. Kilbas, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications,
Gordon and Breach, Yverdon, 1993

[21] A.A. Kilbas, H.H. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, .
Vol. 204, Elsevier, 2006.

[22] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Groningen, Noordhoff, 1964.

[23] M. Langlais, Large time behaviour in a nonlinear age-dependent population dynamics problem with spatial diffu-
sion, J. Math. Bio. 26 (1988), no. 3, 319–346. Math., 19(3): 607-628 (1970).

[24] R.M. May and R.M. Anderson, Endemic infections in growing populations, Math. Biosci. 77 (1985), 141–156.

[25] A. Mckendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc. 44 (1926), 98–130.

[26] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley,
1993.

[27] H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics
118, Amer. Math. Soc. Providence, Rhode Island, 2011.

[28] D.W. Tudor, An age-dependent epidemic model with applications to measles, Math. Biosci. 73 (1985), 131–147.

[29] G.B. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, New York and Basel, 1985.

[30] H.M. Yang, Directly transmitted infections modeling considering an age-structured contact rate, Math. Comput.
Model. 29 (1999), 39–48.

[31] H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential
equation J. Math. Anal. Appl. 328 (2007), no. 2, 1075–1081.

[32] M. Zbair, A.Qaffou, F. Cherkaoui and K. Hilal, Bayesian Inference of a Discrete Fractional SEIRD Model,
Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization, Cham: Springer
International Publishing, 2022, pp. 138–146.

[33] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl.
59 (2010), no. 3, 1063–1077.


	Introduction
	Preliminaries
	The basic model
	Main results
	Existence of steady states
	The invasion process

