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Abstract

Classifying objects based on the simultaneous impact of various parameters has always been challenging due to
heterogeneity, impact conflict, and sometimes parameter uncertainty. The purpose of this study is to provide a method
for classifying such data. In the proposed method, fuzzy hypergraphs were used to define the granular structures in
order to apply the simultaneous effect of heterogeneous and weighted parameters in the classification. This method has
been implemented and validated on Fisher’s intuitive research in relation to the classification of iris flowers. Evaluation
and comparison of the proposed method with Fisher’s experimental results showed higher efficiency and accuracy in
flower classification. The proposed method has been used to assess the seismic risk of 50,000 buildings based on 10
heterogeneous parameters. Seismic risk classification showed that more than 88% of buildings were classified, and 12%
of buildings that could not be classified due to excessive scatter of parameter values were classified using a very small
confidence radius. The results indicate the ability of the proposed method to classify objects with the least similarity
and number of effective parameters in classification.

Keywords: Hypergraph, Fuzzy membership degree, Fuzzy hypergraph, classification, Granular computing, Urban
vulnerability
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1 Introduction

One of the main elements for effective response, before natural disasters, is the assessment of urban vulnerability.
Urban vulnerability assessment requires access to information and advanced methods of information analysis. Past
experiences have shown that earthquakes, as a complex natural phenomenon, are not predictable. However, their
effects can be measured by different mathematical patterns and techniques. Many parameters contribute to the
damage caused by an earthquake. Parameters which, in addition to uncertainties, are also conflicting in estimating
the damage. The multiplicity of parameters, uncertainty and conflict and the placement of the urban zone faces
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many challenges in a risk class. Finally, seismic risk assessment is affected by the challenges of classification. So far,
different approaches have been proposed to assess the urban vulnerability by focusing on the control of uncertainties
and opposite conditions of the parameters.

In spite of the development of a vulnerability structure based on the GIS software, the obtained results are not
above an average estimate of physical and life-threatening losses. This limitation implies discarding the sensitivity of
infrastructure systems. The lack of attention to infrastructure systems leads to a reduction in reliability and cascading
failure [15]. Most of the conventional methods of determining vulnerability risk are merely a specific allocation of risk-
taking [12, 14, 18]. Some studies describe seismic risk using the weight scoring method and cumulative measurement
(total weight) of individual events in each criterion [5, 8]. A method called Diagram Index (DI) is proposed to
determine the interdependence between several properties, based on graph theory. In the DI index, the performance
estimation of the fundamental infrastructure of urban systems is investigated, starting with physical damage and then
the effects that each node has on the performance of other nodes [15]. Previous research has shown that in principle
the resonance descriptors are exacerbating the physical hazards. This increases concerns about social, economic and
non-flexibility, or lack of ability to deal with physical hazards [9, 25, 26].

In some methods, by identifying the different structures, the vulnerability of buildings is defined on the basis
of being in an urban area. Then the relationship between intensity and damage is obtained by means of the harm
matrix [29, 39]. The vulnerability functions and correlation coefficients can also be used according to expected seismic
input intensity [2, 11, 22]. Recently, a model of vulnerability information systems is proposed as ”Common Relevant
Operational Picture” (CROP). In order to minimize the risk of relief in the crop model, the possibility of coordination
between regions is enabled by allocating small subset of a common database for each area [34]. Granular Computing
(GrC) is a novel computational paradigm for processing complex information entities called ”Information Granules”,
which is used to explore hidden, useful and unknown communication in the dataset [13, 19]. In general, the data
granules are a set of entities that are usually placed in a numeric level due to the similarity, functional closeness,
consistency or similar cases, as a whole unit [32]. In addition to being able to be an independent seed, granules can
be a member of another granules. Then we will have a family of the granules, which are considered as a whole. The
granules on one level, though they may be relatively independent, are somehow connected to each other in a certain
degree and generally exhibit a particular structure, which is the inner structure of granules. At present, granules are
more than a coherent set of methods or principles and an approach for data analysis at different levels in order to
detect data, is recommend. As mentioned above, granule computing is not a process or algorithm. There is no specific
method which is called “Granule Computing”. Granule Computing is used to study the data, which recognizes how
different laws in the data can appear at different levels of granularity. With the development of granules, different
models of granular computing are proposed and investigated. Among the models are fuzzy sets, rugged sets, and outer
space as the main computational models [40]. For example, a granular computing-based model is presented based on
data tables, and in this model, different methods for construction, interpretation and representation of the granules
were investigated [41]. Also, some other concepts of granular computing are presented based on fuzzy set [31]. Over
the past half century, graph theory as a classical mathematical tool, has been applied to many applications in different
fields such as economics, computer science, geometry, number theory, optimization, topology and transportation. The
graph theory is currently used in granular computing and the representation of seed structures for computer problems
research. For example, the adjacency matrix of a simple undirected graph (constrained) is interpreted as a Boolean
information table [10].

In graph theory, however, some characteristics of the case study may have some sort of uncertainty. For example,
in the earthquake and seismic vulnerability assessment, the effect and distance of buildings from blast centers (gas
stations and gas pumps) are not precise. In such cases, fuzzy sets and fuzzy logic are used to deal with uncertainty
management. To solve new combinatorial problems, it was necessary to develop the concept of graph theory. In 1960,
hypergraph theory was introduced as a generalization of graphs, and one of its primary objectives was to generalize
some classical results of graph theory [6]. The hypergraph theory offers a more powerful tool to analyze and solve
real-world problems in the modeling of complex systems. Graphs have the ability to communicate with a maximum
of two nodes. It is virtually impossible to use graphs for analysis and discussion of more than two node. One of the
motivations for introducing hypergraph is for solving this type of graph problems. Hence, the hypergraph can analyze
the connection between members of the finite set and even the infinite nodes. Unlike ordinary graphs, each edge in the
hypergraph can consist of an arbitrary number of vertices and each edge in this hypergraph is called hyperedge. In the
hypergraph, the vertices can be described in a n-ary relation. Some researchers developed a hypergraph segmentation
algorithm based on multi-level patterns, in which a sequence of successive hypergraphs are constructed [20]. It shows
that a simple granule of the universe can be characterized by a fuzzy equivalence relation or a given partition. For
the first time, Zadeh, introduced a special type of subset X and named it a fuzzy subset, by grading the inaccurate
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degree of belonging of the members of a subset of the reference set X [44]. By combining the benefits of the two fuzzy
concepts and hypergraph, fuzzy hypergraph is presented as a modeling structure with fuzzy relation and multiple
relationships between objects [38]. Previous studies have shown that fuzzy graphs are expressed on the basis of fuzzy
relations [21, 43]. In the studies, some operations have been defined over fuzzy graphs [27, 28]. Fuzzy graph theory
has many applications in various fields, including computer networks, data mining, clustering, differentiation, and
recording. Analog fuzzy logic has been discussed in many of the theoretical concepts of graph theory and in the case of
fuzzy graphs is particularly interesting for researchers [3, 33]. There are also other definitions such as the supplement
of fuzzy graph and the characteristics of fuzzy trees [36, 37]. Recently, the concept of M-fuzzy based graphs and some
of its properties have been proposed [4].

Finally, an interesting concept called fuzzy hypergraph based on the original idea was generalized and redefined
by Kaufman [7]. In addition, the concept of fuzzy hypergraphs has been considered and the concept of interval values
of fuzzy hypergraphs has been introduced [17, 24]. In recent years, the concept of intuitive fuzzy hypergraphs as well
as bipolar fuzzy hypergraphs and some of their basic features have been expressed [23, 30]. Classification is easily
applicable when faced with a small set of attributes. For example, in a collection of white, black, red and beige
cars, we can easily put them in 4 classes. But if the same set includes other features such as year of manufacture,
manufacturer, engine size, price, etc., classification becomes a bit complicated. Now suppose you want to classify in a
collection of thousands of records and hundreds of unordered attributes with conflicting effects. How can classes and
classifying a collection of elements be defined? Increasing the accuracy and focus on some features for classification
reduces the accuracy in influencing other features in defining classes and identifying the appropriate class. Considering
the hierarchical effect of weighted and heterogeneous parameters in the classification of elements, always reduces the
classification accuracy. Highlighting the role of high-level parameters and diminishing the effect of parameters in the
lower layers are the main challenges of classifying elements with equal and heterogeneous properties. In this paper,
to increase the accuracy in seismic vulnerability assessment and the possibility of better and more accurate decision-
making at boundary points, the concepts of fuzzy and granule hypergraphs have been used. To define urban seismic
risk classes with flexible and floating boundaries and limits, a granular structure based on fuzzy hypergraph has been
used. In this method, much more granules are shown. Previous research has been done to investigate how granules
are made in different fields, using hypergraphs [35, 42]. By examining and evaluating each building in the mentioned
granular structure, the risk level of the building is calculated and determined. This approach makes it possible to
make better decisions at the border points of the classes. In this process, in addition to considering the simultaneous
effect of all effective parameters in the classification, the degree of interaction of the parameters with each other is
also considered. For verification, the proposed method was implemented in the classification of iris flowers. Fisher has
intuitively classified irises [16]. The conformity of the classification with Fisher’s experimental and intuitive methods
indicates the efficiency of the presented research method. This method is then used to assess seismic risk.

2 General

In this section, the concepts of granules, granule computing, fuzzy, hypergraph and fuzzy hypergraph are defined.

2.1 Granule, granule computing

Granular computing is a well-known method in computation and applied mathematics for data processing. In-
formation is divided into granules through the granulation process [41]. Information granule is a set of entities that
are obtained from the numerical analysis of the properties of the entity (data) and then it is classified at a certain
level based on similarity, functional proximity, physical proximity, or indistinguishability. Granular data is the lowest
level of data that is targeted into a set. This refers to the degree of detail and the size of the class to which the data
is divided. For example, dividing people’s names into either a single field, consisting of both names and surnames
together, or separate fields. The more segmented and specific the data, the more granularity is considered. Putting the
data at its proper level depends on the level of knowledge and awareness of the impact of data details on granulation.
Classes are described according to whether the grains are large or detailed. The structure of these levels of granulation
is determined by the laws of nature or human cognition.

2.2 Fuzzy sets

The key to understanding the difference between a fuzzy set and a classic set is the concept of fuzzy membership
degree. In classical logic, the concepts of belonging or non-belonging of a member to a set, are quite definite and
precise. So, an object is or is not a member of a set and hence the membership function can only have two values,
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0 and 1. In 1965, Lotfi A. Zadeh, introduced a special type of subset X and called it a fuzzy subset by grading the
inaccurate degree of belonging members of a subset from a reference set X [45].

Definition 2.1. [45] A ”fuzzy subset A” of reference set X or a ”fuzzy set A” in reference set X, characterized with
membership function µA : X → [0, 1] and the membership of each member is graded. The meaning of µA(x) ∈ [0, 1]
degree of membership x ∈ X in ”fuzzy subset A” or ”fuzzy set A”.

The set sup pµA = {x ∈ X|µA(x) > 0} is called the support µA, and h(µA) is the height display µ such that
h(µA) = max{µA(x)|x ∈ X}.

If u and v are fuzzy sets, then u ∧ v = min{u, v} and u ∨ v = max{u, v}. We write u ≤ v if u(x) ≤ v(x) for all
x ∈ X also u < v if u ≤ v and u(x) < v(x) for some x ∈ X.

2.3 Hypergraph and fuzzy hypergraph

In 1960, the theory of hypergraphs was introduced as a generalization of graphs. Unlike normal graphs, each edge
in a hypergraph can contain an arbitrary number of vertices [6].

Definition 2.2. [1] The pair H = (X,E) is called a hypergraph on a finite set X if E is a finite family of non-empty
subsets X such that:

1. ∀ Ei ∈ E, Ei ̸= Ø i = 1, ...,m

2.
⋃m

i=1 Ei = X

Each Ei ∈ E is called an edge, and each edge contains a number of elements called vertices. Sometimes a set of
vertices is represented by X(H) and the edge set by E(H).

A hypergraph is called a simple hypergraph if E does not contain duplicate edges and ∀ A,B ∈ E,A ⊂ B then
A = B.

Example 2.3. Suppose X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and E = {E1, E2, E3, E4} such that E1 = {1, 3, 8, 10}, E2 =
{1, 4, 5}, E3 = {5, 6, 8, 9}, E4 = {2, 7, 8}.

By Definition 2.2, H(X,E) is a hypergraph on the set X. Each of the subsets E1, E2, E3, E4 edges and their
members are the vertices of the hypergraph.

Figure 1: Diagram of two fuzzy relations defined on the X set

Definition 2.4. [17] Let X is a finite set and εa finite family of nontrivial fuzzy subsets on the setX such that
X =

⋃
{sup pµ|µ ∈ ε}, then the pair H = (X, ε) is a fuzzy hypergraph on the set X, and X the set of vertices and ε

is called the set of fuzzy edges (the family of edges fuzzy) of H.

Definition 2.5. [17] A fuzzy hypergraph H = (X, ε) is called simple if ε does not contain duplicate fuzzy edges and
whenever u, v ∈ ε, u ≤ v then u = v.
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Definition 2.6. [17] Suppose H = (X, ε) is a fuzzy hypergraph and µ ∈ ε and 0 ≤ λ ≤ 1. λ− cut of µ is defined as
follows µλ = {x ∈ X|µ(x) ≥ λ}.

Also, assuming that Eλ = {µλ|µ ∈ ε} and Xλ =
⋃
{µλ|µ ∈ ε}. If Eλ ̸= Ø then the hypergraph Hλ = (Xλ, Eλ) is

called a λ-level hypergraph of H.

Example 2.7. By defining a fuzzy relation, we define a fuzzy hypergraph on X.

� Relation µA a set of numbers close to 7

Table 1:
x 1 2 3 4 5 6 7 8 9 10
µA 0 0 0.3 0.7 0.8 0.9 1 0.9 0.8 0.7

Then sup pµA = {3, 4, 5, 6, 7, 9, 10}. If λ = 0.6, then µA0.6
= {4, 5, 6, 7, 8, 9, 10}.

� Relation µB a set of numbers that is neither too big nor too small.

Table 2:
x 1 2 3 4 5 6 7 8 9 10
µB 0 0.2 0.6 0.8 1 0.8 0.6 0.2 0 0

Then sup pµB = {2, 3, 4, 5, 6, 7, 8, 9}. If λ = 0.6, then µB0.6 = {4, 5, 6, 7}.

If ε = {µA, µB}, then X ̸= sup pµA

⋃
sup pµB = {2, 3, 4, 5, 6, 7, 8, 9, 10}, by Definition 2.4 the pair H = (X, ε) isn’t

a fuzzy hypergraph on the X. Figure 1 shows the fuzzy relations µA, µB with sets µA0.6
, µB0.6

.

Now we define under Relation µC on X set. µC a set of numbers close to 0.

Table 3:
x 1 2 3 4 5 6 7 8 9 10
µC 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 0 0

Then sup pµB = {1, 2, 3, 4, 5, 6, 7, 8}.
If E = {µA, µC}, then X = sup pµA

⋃
sup pµC = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, by Definition 2.4 the pair H = (X,E)

is a fuzzy hypergraph on the X set.

3 Methodology

In hierarchical structures, not all the properties that affect classification are considered at the same time. This
problem-solving method actually simplifies the problem by ignoring some features, and then the problem-solving
pattern is gradually modified at different levels. Finally, the main problem, which is usually complex, is solved. The
proposed method in this paper provides the possibility of classification, taking into account all the effective classification
features simultaneously. Defining the structure of classes is one of the main challenges in classifying elements with the
simultaneous impact of several properties. In this method, granular structure based on fuzzy hypergraphs is defined
to create the class structure. The proposed granular structure is very flexible based on the classes defined in each
of the properties. This flexible structure, in addition to increasing the accuracy of decision-making at border points,
also has the ability to classify elements with high dispersion of properties and the least similarity. The definition of
classes in set X derives from the concept of these classes in each set of properties of the elements of X set. Finally, the
proposed methods implemented in classifying 50,000 buildings to determine the seismic risk level by considering the
simultaneous impact of 10 properties.

Definition 3.1. Suppose X = {(x1, x2, ..., xn)|xi ∈ Xi, i = 1, 2, ..., n} is a finite set. So that each element of X has
n properties. Xi are sets of property values.

let K1,K2, ...,Km are m title classes on set X. Note that at this stage there is no precise definition for the classes
on the set X.
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Each Eij class is the concept of Kj class on the Xj property for i = 1, 2, ..., n, j = 1, 2, ...,m. We define the E
matrix:

E =

E11 · · · E1m

...
. . .

...
En1 · · · Enm


The elements of E matrix in each row are the classes defined on properties value set. For example, elements
E11, E12, ..., E1m are m classes defined on X1 set.

Lemma 3.2.
⋃m

j=1 Eij = Xi where Eij ”are clases on sets” Xi, i = 1, 2, .., n (sets located in a row).

Proof . From Definition 3.1, Eij ⊆ Xi for any i = 1, 2, ..., n, j = 1, 2, ...,m, thus

m⋃
j=1

Eij ⊆ Xi (3.1)

Conversely, since for any i = 1, 2, ..., n, j = 1, 2, ...,m, Eij sets are classes defined on Xi sets so:

∀ a ∈ Xi∃ t ∈ {1, 2, ...,m} such that a ∈ Eit, then Xi ⊆
m⋃
j=1

Eij (3.2)

Combining (3.1), (3.2) we have
⋃m

j=1 Eij = Xi for i = 1, 2, ..., n. □

Lemma 3.3. The pair Hi = (Xi, Ei) is hypergraph on Xi sets, when Ei = {Eij |Eij ̸= Ø, j = 1, 2, ..,m} and
i = 1, 2, .., n.

Proof . From Lemma 3.2,
⋃m

j=1 Eij = Xi for i = 1, 2, .., n, by Definition 2.2 the pair Hi = (Xi, Ei) is hypergraph on
Xi. □

Definition 3.4. Corresponding to matrix E in the Definition 3.1, we define θx matrix for all x ∈ X, as follows:

θx =

θ11(x1) · · · θ1m(x1)
...

. . .
...

θn1(xn) · · · θnm(xn)


such that:

θij(xi) =

{
µij(xi), where xi ∈ Eij

−µc
ij(xi), where xi /∈ Eij

where:
µij : Eij → [0, 1], µc

ij : E
c
ij → [0, 1], Ec

ij = Xi − Eij for i = 1, 2, ..., n, j = 1, 2, ...,m.

For each e ∈ Eij , value of the µij(e) function is called e-membership degree in the Eij set, also the value of the µc
ij(e)

function is called e-membership degree in the Ec
ij set. The elements of the matrix are functions.

Definition 3.5. The jth score of the element x ∈ X = {(x1, x2, x3, ..., xn)|xi ∈ Xi, i = 1, 2, ..., n} is a special number,
that can be calculated from the matrix θx as follows:

scorej(x) =

n∑
i=1

θij(x) where θij(x) ∈ θx for j = 1, 2, ...,m.

For example, the sum of the elements of the first column in the matrix θx is score1(x).

Definition 3.6. Let x ∈ X = {(x1, x2, x3, ..., xn)|xi ∈ Xi, i = 1, 2, ..., n}, from Definition 3.5 we define:

Lj = {x ∈ X|scorej(x) ≥ 0} where j = 1, 2, ...,m
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and
Lm+1 = {x ∈ X|scorej(x) < 0} for all j = 1, 2, ...,m.

Each of sets Lj are granules. By Definition 2.2 H = (X,L) is a hypergraph on X. The proposed granular structure
is shown in Figure 2.

The elements of L1, L2, ..., Lm granules have at least a scorej(x) ≥ 0 value (see Figure 2). Zone A contains an
element of set X that has no value scorej(x) ≥ 0 and only has scorej(x) < 0 values (set Lm+1). In other words, they
are not in any granule (class). Zone B is composed of elements that have a scorej(x) ≥ 0 in all granules (classes).

Figure 2: The proposed granular structure

Definition 3.7. Let x ∈ X = {(x1, x2, x3, ..., xn)|xi ∈ Xi, i = 1, 2, ..., n} based on the scorej(x) for j = 1, 2, ...,m
defined several DoMscorej values (degree of membership) or DoNMscorej values (non-membership) as follows:

if scorej(x) ≥ 0, then DoMscorej (x) = µ(scorej(x)) where µ : Lj → [0, 1] for j = 1, 2, ...,m.

if scorej(x) < 0, then DoNMscorej (x) = η(scorej(x)) where η : Lm+1 → [0, 1] for j = 1, 2, ...,m.

Definition 3.8. Let x ∈ X = {(x1, x2, x3, ..., xn)|xi ∈ Xi, i = 1, 2, ..., n} from Definition 3.7 we define:

DoM(x) = max{DoMscorej (x) for j = 1, 2, ...,m}

Kj = {x|DoM(x) = DoMscorej (x)} for j = 1, 2, ...,m

If DoM(x) doesn’t exists, define DoNM(x) as follows:

DoNM(x) = min{DoNMscorej (x) for j = 1, 2, ...,m}

Km+1 = {x|∃DoNM(x)}.
By Definition 3.7, a fuzzy hypergraph on the set X is defined. The elements of the set X that have the highest
DoMscorej (x) value form the subset, which in turn defines Kj class in Definition 3.1.

This way of constructing subsets defines the granular structure, which is considered as a class. The other values
of DoMscorej (x) indicate the belonging of element x ∈ X to other classes, with different degrees of membership. The
absence of a value of DoMscorej (x) for x ∈ X indicates that the property values are too scattered. Such elements
simply have different degrees of DoNMscorej (x) non-belonging to classes. The set of all these elements are considered
a subset of X as a class Km+1 (the smallest degree of non-belonging DoNMscorej (x)).

Lemma 3.9. X =
⋃m+1

j=1 Kj where Kj are classes on set X.

Proof . Let x ∈
⋃m+1

j=1 Kj ⇒ ∃l ≤ t ≤ m+ 1 such that

x ∈ Kt ⊂ X ⇒
m+1⋃
j=1

Kj ⊆ X (3.3)
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Conversely,

Case 1.

For any x ∈ X there exists t ∈ {1, 2, ...,m} such that scoret(x) ≥ 0. From Definition 3.8 DoM(x) value is defined
and x ∈ Kt, then

x ∈
m⋃
j=1

Kj ⇒ X ⊆
m⋃
j=1

Kj ⊆
m+1⋃
j=1

Kj . (3.4)

Case 2.

scoret(x) < 0 for any t ∈ {1, 2, ...,m} by Definition 3.6 x ∈ Lm+1. From Definition 3.8 DoNM(x) value is defined
and x ∈ Km+1, then

x ∈
m+1⋃
j=1

Kj ⇒ X ⊆
m+1⋃
j=1

Kj (3.5)

By (3.3), (3.4), (3.5) we have X =
⋃m+1

j=1 Kj . □

Figure 3: Diagram of the proposed method
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Lemma 3.10. X = (X,E) is fuzzy hypergraph on X, where E = {Kj |Kj ̸= Ø, j = 1, 2, ...,m+ 1}.

Proof . By Lemma 3.9 X =
⋃m+1

j=1 Kj , from Definition 2.4 pair X = (X,E) is a fuzzy hypergraph on the set X.

Thus, the flexural granular structure is defined based on fuzzy hypergraphs that have the ability to classify data
with the least similarity. An example is given below which uses the proposed method to assess the seismic vulnerability
of buildings. The steps of the proposed method are shown in Figure 3. In this diagram i = 1, 2, ..., n, j = 1, 2, ...,m.
□

3.1 Validation

In 1936, Fischer, field-examined 150 irises [16]. As shown in Table 4, he used his intuitive experience to classify these
flowers into three categories based on four characteristics (see Table 5). For validation, iris flowers were examined and
classified by Fisher (data and results of the study are available) and then classified again using the proposed method.

Table 4: Types of irises

Row Flower Name
1 Setosa
2 Virginica
3 Versicolor

Table 5: Characteristics of flowers
Row Characteristics Size (cm)
1 Sepal length {4.3, 4.4, ..., 7.9}
2 Sepal width {2, 2.1, ..., 4.4}
3 Petal length {1, 1.1, ..., 6.9}
4 Petal Width {0.1, 0.2, ..., 2.5}

The collection of flowers is defined and introduced as follows:

X = {(x1, x2, x3, x4)|xj ∈ Xj , j = 1, ..., 4}

such that X1 = {4.3, 4.4, ..., 7.9}, X2 = {2, 2.1, ..., 4.4}, X3 = {1, 1.1, ..., 6.9}, X4 = {0.1, 0.2, ..., 2.5}. In the next
step, we implement the concept of the classes in Table 4 for each of the properties of Table 5 as sets Xi. With this
implementation, classes (sets Eij) are defined in each property. Now, according to the definition of 3.1, we form a
matrix E:

E =


{4.3, 4.4, ..., 5.8} {4.9, 5.0, ..., 7.0} {4.9, 5.0, ..., 7.9}
{2.0, 2.1, ..., 3.4} {2.2, 2.3, ..., 3.8} {2.3, 2.4, ..., 4.4}
{1.0, 1.1, ..., 1.9} {3.0, 3.1, ..., 5.1} {4.5, 4.6, ..., 6.9}
{0.1, 0.2, ..., 0.6} {1.0, 1.1, ..., 1.8} {1.4, 1.5, ..., 2.5}


3.2 Description

The elements of the first row of the matrix, the classes defined on the set of values of the sepals, are one of the four
characteristics of the lily (set X1). This classification is defined based on Fisher’s intuitive observations (the other
lines are the same). These classes define H1 = (X1, E1), H2 = (X2, E2), H3 = (X3, E3), H4 = (X4, E4), hypergraphs
on four sets of Fisher values (Lemma 3.3), respectively. The sepal length property is classified E11, E12, E13 such
that:

E11 = {4.3, 4.4, ..., 5.8}, E12 = {4.9, 5.0, ..., 7.0}, E13 = {4.9, 5.0, ..., 7.9}

Clearly, E1j ̸= Ø, for j = 1, 2, 3 and E1

⋃3
j=1 E1j (Lemma 3.3).

Each class represents a type of flower.

Each of the classes in Table 5 represents a type of iris. The proposed method for determining the structure and
members of each type of iris defines a fuzzy hypergraph on the X set. Based on Definition 3.4, we form a matrix of
θx for each iris flower. For this purpose, we define fuzzy membership functions µij(x), µc

ij(x) on sets Ec
ij , Eij .

µc
ij(x) : E

c
ij → [0, 1] such that µc

ij(x) = 0 µij(x) : Eij → [0, 1]
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µij(x) =


(x−modeEij

)

modeEij
−minEij

+ 1, where x ≤ modeEij
,modeEij

̸= minEij

(x−modeEij
)

modeEij
−maxEij

+ 1, where x > modeEij
,modeEij

̸= maxEij

0.00001× (x−modeEij
) + 1, where modeEij

= minEij
or modeEij

= maxEij

i = 1, 2, 3, 4 j = 1, 2, 3

It is clear that modeEij
is a member of Eij with the most repetition.

Now, using Definition 3.5, the values of scorej(x) ≥ 0 for the elements of set X are calculated. To better clarify the
content, a sample of iris, which is shown with the symbol x, has been placed in the process of the proposed method.
Consider the sample iris with specifications x = (5.1, 3.5, 1.4, 0.2). We form matrix θx based on membership functions
µij(x) and µc

ij(x):

θx =


0.875 0.95 0.967
0.643 0 0.375
0.8 0 0
1 0 0


Then, by Defining 3.5, the values of scorej(x) are calculated:

score1(x) = 3.318

score2(x) = 0.95

score3(x) = 1.341

Now by Defining 3.7 and using the membership function µ, the values of DoMscorej for j = 1, 2, 3 are calculated.

µ : [0, 4] → [0, 1] such that µ(x) = x/4

DoMscore1 = 0.829464286

DoMscore2 = 0.2375

DoMscore3 = 0.33512931

According to the Definition 3.8, the sample iris belongs to class K1 (see Table 6) with a membership degree of
0.829464286. In Table 7, the performed classification and Fisher’s experimental classification are given and compared
for some samples of irises.

In samples 1-2-3-54-56-59-60-61, the experimental results are consistent with the classification of the proposed
method. This agreement is more than 90% in 150 samples. In sample 58, the experimental results do not match the
classification of the proposed method. But the degree of membership to each class is very low, and this is due to
the over-dispersion of the sample property values. The experimental results do not match to the classification of the
proposed method for No. 53.

Table 6: Flower Class
Row Flower Name Class
1 Setosa K1

2 Virginica K2

3 Versicolor K3

Table 7: Flower Sample

Sample

No

Flower characteristics Flower type based on

experimental method

Flower type based

on proposed method

Degree of belonging

to the class

Class membership rate (DoMscorej
)

Sepal

length

Sepal

width

Petal

length

Petal

Width

Iris-setosa Iris-virginica Iris-versicolor

1 5.1 3.5 1.4 0.2 Iris-setosa Iris-setosa 0.829464286 0.829464286 0.33512931 0.2375

2 4.9 3 1.4 0.2 Iris-setosa Iris-setosa 0.914285714 0.914285714 0.25 0.25

3 4.7 3.2 1.3 0.2 Iris-setosa Iris-setosa 0.757142857 0.757142857 0.1875 0.125

53 6.9 3.1 4.9 1.5 Iris-versicolor Iris-virginica 0.76329023 0.232142857 0.76329023 0.433333333

54 5.5 2.3 4 1.3 Iris-versicolor Iris-versicolor 0.679166667 0.09375 0.238146552 0.679166667
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56 5.7 2.8 4.5 1.3 Iris-versicolor Iris-versicolor 0.8625 0.209821429 0.627155172 0.8625

58 4.9 2.4 3.3 1 Iris-versicolor Iris-setosa 0.25 0.25 0.0625 0

59 6.6 2.9 4.6 1.3 Iris-versicolor Iris-versicolor 0.733333333 0.214285714 0.570402299 0.733333333

60 5.2 2.7 3.9 1.4 Iris-versicolor Iris-versicolor 0.75 0.330357143 0.389008621 0.75

61 5 2 3.5 1 Iris-versicolor Iris-versicolor 0.333333333 0.25 0.25 0.333333333

In this method, in addition to the possibility of classifying samples with any number of characteristics and any
amount of information scatter, it is also possible to determine the degree of membership to the class. There is also a
lot of flexibility in this method by selecting membership functions according to the classification structure. The results
of the proposed method are shown in the following diagrams.

Figure 4: Setosa membership degree chart

Figure 4 shows that 95% of the elements with a membership degree of more than 0.3 are in the Iris-setosa flower
class, and this shows the accuracy of the method.

Figure 5: Versicolor membership degree chart

Figure 5 also shows that the membership of elements in the Iris-versicolor flower class is more than 0.3.

Figure 6 shows that a number of elements with a membership of less than 0.2 are in the Iris-virginica class. This
is due to the high dispersion of data, but the proposed method has the ability to classify, which is one of the strengths
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Figure 6: Virginica membership degree chart

of this method. The comparison of the classes of Table 8 shows the differences between the proposed method and the
results of the field study and Fisher’s intuitive experiences.

Table 8: Comparison of the classes

Sample

No

Flower characteristics Flower type based on

experimental method

Flower type based

on proposed method

Degree of belonging

to the class

Class membership rate

Sepal

length

Sepal

width

Petal

length

Petal

Width

Iris-setosa Iris-virginica Iris-versicolor

51 7 3.2 4.7 1.4 Iris-versicolor Iris-virginica 0.494252874 0.214285714 0.494252874 0.491666667

52 6.4 3.2 4.5 1.5 Iris-versicolor Iris-virginica 0.816810345 0.214285714 0.816810345 0.6

53 6.9 3.1 4.9 1.5 Iris-versicolor Iris-virginica 0.76329023 0.232142857 0.76329023 0.433333333

55 6.5 2.8 4.6 1.5 Iris-versicolor Iris-virginica 0.797772989 0.178571429 0.797772989 0.620833333

57 6.3 3.3 4.7 1.6 Iris-versicolor Iris-virginica 0.748347701 0.196428571 0.748347701 0.416666667

58 4.9 2.4 3.3 1 Iris-versicolor Iris-setosa 0.25 0.25 0.0625 0

67 5.6 3 4.5 1.5 Iris-versicolor Iris-virginica 0.948275862 0.3125 0.948275862 0.825

69 6.2 2.2 4.5 1.5 Iris-versicolor Iris-virginica 0.646551724 0 0.646551724 0.55

71 5.9 3.2 4.8 1.8 Iris-versicolor Iris-virginica 0.753663793 0.214285714 0.753663793 0.3875

73 6.3 2.5 4.9 1.5 Iris-versicolor Iris-virginica 0.690014368 0.071428571 0.690014368 0.445833333

78 6.7 3 5 1.7 Iris-versicolor Iris-virginica 0.751364943 0.25 0.751364943 0.379166667

79 6 2.9 4.5 1.5 Iris-versicolor Iris-virginica 0.882543103 0.214285714 0.882543103 0.75

84 6 2.7 5.1 1.6 Iris-versicolor Iris-virginica 0.732543103 0.142857143 0.732543103 0.4

85 5.4 3 4.5 1.5 Iris-versicolor Iris-virginica 0.965517241 0.375 0.965517241 0.85

86 6 3.4 4.5 1.6 Iris-versicolor Iris-virginica 0.763793103 0.178571429 0.763793103 0.475

87 6.7 3.1 4.7 1.5 Iris-versicolor Iris-virginica 0.801364943 0.232142857 0.801364943 0.541666667

135 6.1 2.6 5.6 1.4 Iris-versicolor Iris-versicolor 0.4625 0.107142857 0.41558908 0.4625

Table 9: Title of risk
Row Risk level Class
1 Low-risk K1

2 Moderate-risk K2

3 High-risk K3

4 Very High-risk K4
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4 Case study

In this example, the proposed method is used to assess the seismic risk of 50,000 buildings. The classification of
buildings is done in four classes in Table 9, taking into account the simultaneous impact of ten building Characteristics
of Table 10.

Table 10: Characteristics of building

Risk level in Characteristics
Index Rate Low Moderate High Very High
Danger of earth liquefaction (Slope of the earth

in percentage)

X1 = [0 − 45] E11 = [0 − 3.86] E12 = [3.86 − 12.11] E13 = [12.11 − 23.35] E14 = [23.35 − 45]

Earth movement (Magnitude of Mercalli earth-

quake)

X2 = [1 − 10] E21 = [1 − 3] E22 = [3 − 5] E23 = [5 − 6] E24 = [6 − 10]

Distance of buildings from explosive stations

(gas and gas stations) in meters

X3 = [0 − 2000] E31 = [100 − 2000] E32 = [50 − 100] E33 = [100 − 2000] E34 = [0 − 20]

Type of materials and structures used in build-

ings

X4 = {1, 2, ..., 8} E41 = {1, 2} E42 = {3, 4} E43 = {5} E44 = {7, 8}

Type of work of buildings (per person) X5 = [0 − 1000] E51 = [1 − 25] E52 = [25 − 75] E53 = [70 − 100] E54 = [100 − 1000]

Age of buildings (by year) X6 = [0 − 100] E61 = [0 − 5] E62 = [5 − 15] E63 = [15 − 25] E64 = [25 − 100]

Height of buildings (in meters) X7 = [1 − 200] E71 = [1 − 3] E72 = [3 − 5] E73 = [5 − 15] E74 = [15 − 200]

Building quality X8 = {1, 2, 3, 4} E81 = 1 E82 = 2 E83 = 3 E84 = 4

Density of buildings (in percentage) X9 = [0 − 100] E91 = [0 − 25] E92 = [25 − 50] E93 = [50 − 75] E94 = [75 − 100]

Passage width (in meters) X10 = [0 − 100] E10 1 = [20 − 100] E10 2 = [15 − 20] E10 3 = [12 − 15] E10 4 = [1 − 12]

We display the set of buildings as set X as follows:

X = {(x1, x2, x3, ..., x10)|xi ∈ Xi, i = 1, ..., 10}, Xi sets are defined in Table10.

Table 11: Characteristics frequency table

Characteristics Min Max Average Standard deviation
x1 1 44.998 3.7758 12.6818
x2 1 10 2.3182 2.8091
x3 0 2000 19.6833 514.5335
x4 1 8 2.1224 2.2875
x5 1 1000 16.2825 406.8242
x6 0 100 5.9288 31.8835
x7 2 200 7.2686 53.8127
x8 1 4 1.5818 1.1188
x9 0 100 5.9418 31.8808
x10 1 100 5.9477 31.7565

The boundaries of the classes for each of the ten properties are specified in Table 10 (risk level in characteristics
columns). As mentioned earlier, defining the class structure in Table 9 for buildings (set X) is one of the main challenges.
For this purpose, based on the proposed method, we define a granular structure based on fuzzy hypergraphs. In the
first step, based on the Definition 3.1 elements of the matrix E, which are the classes of each property, Xi is defined
based on the concept of the classes in Table 9. As shown in Table 10, these classes are listed in four columns: Low,
Moderate, High, Very High. To provide the best data, the frequency tables of properties (see Table 11) and the
percentage of class properties (Table 12) and the composition chart (see Figure 7) of the class properties are given.

Table 12: Percentage of characteristics belonging to classes table

Characteristics Symbol Low-risk Moderate-risk High-risk Very high-risk
x1 18.996% 43.714% 12.704% 24.586%
x2 20.434% 20.798% 10.2% 48.568%
x3 46.37% 14.552% 8.486% 30.592%
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x4 24.846% 25.108% 25.116% 24.93%
x5 31.882% 15.174% 7.558% 45.386%
x6 18.034% 24.956% 6.452% 50.558%
x7 4.31% 8.978% 26.526% 60.186%
x8 25.08% 24.628% 25.288% 25.004%
x9 49.276% 16.82% 16.534% 17.37%
x10 53.928% 3.328% 2.112% 40.632%

Figure 7: Percentage of characteristics belonging to classes chart

Now we define the fuzzy membership functions on the Eij interval. In this example, Gaussian functions are used
to determine the degree of membership of properties to each of the four classes defined on the characteristics set.
Functions are defined as follows:

It is clear Eij ⊂ Xi, Ec
ij = Xi − Eij for i = 1, 2, ..., 10, j = 1, 2, 3, 4.

µi1 : Ei1 → [0, 1] such that µi1(x) = e
ln(0.001)×(x−ai1)2

c2
i1 where Ei1 = [ai1, ci1], i = 1, 2, 3, ..., 10

µc
i1 : Ec

i1 → [0, 1] such that µc
i1(x) = e

ln(0.001)×(x−bi1)2

b2
i1 where Ec

i1 = (ci1, bi1], i = 1, 2, 3, ..., 10

µi2 : Ei2 → [0, 1] such that µi2(x) = e

ln(0.001)×(x− ci2+di2
2

)2

( ci2+di2
2 )

2

where Ei2 = [ci2, di2], i = 1, 2, 3, ..., 10

µc
i2 : Ec

i2 → [0, 1] such that µc
i2(x) =

 e
ln(0.001)×(x+(bi2− (ci2+di2)

2
))2

b2
i2 , where x ∈ [ai2, ci2)

e
ln(0.001)×(x−(bi2− (ci2+di2)

2
))2

b2
i2 , where x ∈ (di2, bi2]

i = 1, 2, 3, ..., 10

µi3 : Ei3 → [0, 1] such that µi3(x) = e

ln(0.001)×(x− di3+ei3
2

)2

( di3+ei3
2 )

2

where Ei3 = [di3, ei3], i = 1, 2, 3, ..., 10

µc
ic : E

c
i3 → [0, 1] such that µc

i3(x) =

 e
ln(0.001)×(x+(bi3− (ei3+di3)

2
))2

b2
i3 , where x ∈ [ai3, di3)

e
ln(0.001)×(x−(bi3− (ei3+di3)

2
))2

b2
i3 , where x ∈ (ei3, bi3]

i = 1, 2, 3, ..., 10

µi4 : Ei4 → [0, 1] such that µi4(x) = e
ln(0.001)×(x−bi4)2

(bi4−ei4)2 where Ei4 = [ei4, bi4], i = 1, 2, 3, ..., 10

µc
i4 : Ec

i4 → [0, 1] such that µc
i4(x) = e

ln(0.001)×(x−ai4)2

e2
i4 where Ec

i4 = [ai4, ei4), i = 1, 2, 3, ..., 10
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In the following, the membership of x10 = (5, 4, 669, 2, 60, 43, 103, 3, 11, 49) element in the four risk categories is
examined. We form matrix θx (Definition 3.4) based on the above membership functions. By forming matrix θx, the
score values are calculated based on the Definition 3.5.

θx =



−0.0043 0.3809 −0.02870 −0.9183
−0.0832 1 −0.0068 −0.537
0.0469 −0.0329 −0.0399 −0.0441

1 −0.1667 −0.5 −0.8333
−0.0022 0.7586 −0.0015 −0.9762
−0.106 −0.045 −0.0166 0.0185
−0.1969 −0.1718 −0.1359 0.1497
−0.6667 −0.3333 1 −0.3333
0.2625 −0.024 −0.1969 −0.9198
0.1658 −0.0391 −0.0565 −0.0983


From Definition 3.5:

score1(x) = 0.4159

score2(x) = 1.3267

score3(x) = 0.0172

score4(x) = −4.5179

By Definition 3.7 and functions µ, η the values DoNMscorej , DoMscorej are calculated for i = 1, 2, 3, 4.

µ : [0, n] → [0, 1] such that µ(x) = e
−6.90×(x−10)2

100

η : [−n, 0] → [0, 1] such that η(x) = e
−6.90×(x+10)2

100

From Definition 3.7

DoMscore1(x) = µ(score1(x)) = µ(0.4159) = 0.0018

DoMscore2(x) = µ(score2(x)) = µ(1.3267) = 0.0056

DoMscore3(x) = µ(score3(x)) = µ(0.0172) = 0.001

DoMscore4(x) = η(score4(x)) = η(−4.5179) = 0.1253.

Because there exists the largest membership degree therefore, by Definition 3.8 we consider element x10= (5, 4, 669,
2, 60, 43, 103, 3, 11, 49) to belong to the moderate-risk class with a membership grade of 0.0056. Due to the high
dispersion of the properties of this element, the membership grade is not strong in any of the grade classes, but this
method has the ability to classify with the least similarity. This is how other buildings are classified. Table 13 shows
the percentage of 50,000 buildings belonging to the four classes.

Table 13: Percentage of affiliation

Low-risk Moderate-risk High-risk Very-high No classification
15.154% 10.882% 26.936% 35.468% 11.56%

5 Conclusions

In this paper, a method for assessing the vulnerability of urban areas was presented using granular calculations
and the concepts of fuzzy hypergraphs. In the proposed model, it was shown that fuzzy hypergraphs, compared
to other methods, have the ability to define a flexible granular structure for different urban hazard classes. As an
innovation of the proposed method, we can mention its flexibility in classifying elements, considering the role of
all effective parameters, both equal weight and heterogeneity in classification. In verifying the proposed method, it
has been shown that the classification of iris flowers with the proposed method is more than 90% consistent with
the intuitive classification of Fisher.The low degree of membership of some flowers in all three classes indicates an
excessive dispersion of characteristics. Using the proposed method in assessing the seismic vulnerability of 50,000



204 Zarandi Baghini, Babaei, Tabatabaei Mirhosseini, Torkzadeh Tabrizi

buildings, it is possible to simultaneously play the role of 10 heterogeneous and sometimes equal weight properties
in the classification. Examination of the obtained results indicates the flexibility and accuracy of the proposed
method in classifying elements with any number of heterogeneous and equal parameters. This study shows that fuzzy
hypergraphs have the ability to define a flexible granular structure, taking into account the simultaneous role of all
effective parameters in classification.

Declarations

� Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.

� Competing interests

The authors declare that they have no competing interests.

� Funding

There are no sources of funding for the research reported.

� Authors’ contributions

Zarandi Baghini performed a new method of granular computing and developed the fuzzy hypergraphs and also
analyzed and interpreted the computer proceeding data regarding the urban vulnerability and the verification
of the previous experimental study. Tabatabaei Mirhosseini performed the background to the study, and was a
major contributor in writing the manuscript. Babaei read and approved the final manuscript.

� Acknowledgements

Not applicable

References

[1] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, 1973.

[2] A. Bernardini, The vulnerability of buildings-Evaluation on the national scale of the seismic vulnerability of
ordinary buildings, CNR-GNDT, Rome, 2000.

[3] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recogn. Lett. 6 (1987), no. 5, 297–302.

[4] K.R. Bhutani and A. Battou, On M-strong fuzzy graphs, Inf. Sci. 155 (2003), no. 1–2, 103–109.

[5] R. Bilham, The seismic future of cities, Bull. Earthquake Eng. 7 (2009), no. 4, 839–887.

[6] A. Bretto, Hypergraph Theory, An Introduction Mathematical Engineering, Cham: Springer, 2013.

[7] S.H. Bustince and L.P. Burillo, A theorem for constructing interval-valued intuitionistic fuzzy sets from intuition-
istic fuzzy sets, Notes Intuition. Fuzzy Sets 1 (1995), 5–16.

[8] O. Cardona, Indicators of disaster risk and risk management: Summary report, Inter-American Development
Bank, 2005.

[9] M.L. Carreño, O.D. Cardona and A.H. Barbat, New methodology for urban seismic risk assessment from a holistic
perspective, Bull. Earthquake Eng. 10 (2012), no. 2, 547–565.

[10] G. Chiaselotti, D. Ciucci, T. Gentile and F. Infusino, Rough set theory applied to simple undirected graphs, Int.
Conf. Rough Sets Knowledge Technol., Springer, 2015, pp. 423–434.

[11] A. Corsanego and V. Petrini, Evaluation of criteria of seismic vulnerability of the existing building patrimony on
the national territory, Seismic Eng. 1 (1994), 76–106.

[12] R. Davidson, EERI annual student paper award a multidisciplinary urban earthquake disaster risk index, Earth-
quake Spectra 13 (1997), no. 2, 211–223.

[13] L. De Angelis and J.G. Dias, Mining categorical sequences from data using a hybrid clustering method, Eur. J.
Oper. Res. 234 (2014), no. 3, 720–730.



New approach based on fuzzy hypergraphs in granular computing 205
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