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Abstract

In this paper, using variational methods and critical point theory we establish the existence of multiple solutions for
a class of elliptic equations on Carnot groups depending on one real positive parameter and involving a subcritical
nonlinearity. Some recent results are extended and improved.
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1 Introduction

In this paper, we study the existence of two and infinitely many weak solutions for the following problem{
−∆Gu = λf(ξ, u), inD

u|∂D = 0,
(1.1)

where D is a smooth bounded domain of the Carnot group G, ∆G is the subelliptic Laplacian on G, and λ is a positive
real parameter. Study on Carnot-Carathèodory (briefly CC) spaces can be considered as an field which presently
experiencing vast improvement. In these abstract structures, the interactions between analytical and geometric tools
have been performed with prosperous results and they are a particular category of metric spaces. In this situation,
Carnot groups play a primary role, as it is famous, they are finite dimensional, simply connected Lie groups G whose
Lie algebra g of left invariant vector fields is stratified (see Section 2). Approximately Carnot groups can be recognized
as local models of CC spaces. In fact, they are the natural digression spaces to CC spaces, exactly as Euclidean spaces
are digression to manifolds. It is distinguished that many authors have focused on the study of subelliptic equations on
Carnot groups and especially, on the Heisenberg group Hn, see the papers [2, 1, 5, 9, 8, 10, 15, 12, 14, 13] and references
therein. For example, in [13] Molica Bisci and Ferrara, by using variational methods and a direct consequence of the
celebrated Pucci-Serrin theorem, have established the existence of at least two weak solutions for the problem (1.1),
and especially Ferrara et.al [8] have proved the existence of at least one nontrivial solution by using variational methods
for the problem (1.1).

In the present paper, we use a variational method to prove the existence of solutions for the problem (1.1) under
suitable conditions imposed on f (see, the conditions (f0), (f1) and (f2) in Theorem 3.3 and the condition (f0) in
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Theorem 3.4). In Theorem 3.3 we establish the existence of at least two weak solutions for the problem (1.1), while in
Theorem 3.4 we discuss the existence of infinitely many weak solutions for the problem (1.1). The key used theorems
here are completely different from the theorems used in [13]. In addition, we also prove the existence of infinitely
many weak solution for the problem (1.1).

The present paper is organized as follows. In Section 2, we recall some basic definitions and our main tools. In
Section 3, we state and prove the main results of the paper. Then, we give two examples to illustrate our results.

2 Preliminaries and Basic Notation

We now introduce a few basic notations and definitions about Carnot groups. A Carnot group G of step r ≥ 1 is
a simply connected nilpotent Lie group whose Lie algebra g is stratified. This means that g admits a decomposition
as a vector space sum

g =

r⊕
k=1

gk

such that

[g1, gi] = gi+1, for 1 < i ≤ r − 1,

and

[g1, gi] = {0} for i > r.

Note that g is generated as a Lie algebra by g1. The exponential map is a diffeomorphism from g onto G. Using
these exponential coordinates, consider (Rn, ◦), where n = dim g1 + ......+ dim gr and the operation ◦ is given by the
Baker-Campbell-Hausdorff formula. We suppose Rn is endowed with a homogeneous structure by a given family of
Lie group automorphisms {δµ}µ>0 (called dilations) of the form

δµ(ξ
(1), ξ(2), ..., ξ(r)) := (µ1ξ(1), µ2ξ(2), ..., µrξ(r)),

where ξk ∈ Rnk for every k ∈ {1, ..., r} and
∑r

k=1 nk = n.

The structure G := (Rn, ◦, δµ) is called a homogeneous group with homogeneous dimension

dimh G =

r∑
k=1

knk. (2.1)

In this paper, we let dimh G ≥ 3. A Carnot group is a homogeneous group G such that the Lie algebra g associated
to G is stratified. Moreover, the subelliptic Laplacian operator on G is the second order differential operator, given by

∆G :=

n1∑
k=1

X2
nk

where {X1, ..., Xn1
} is a basis of g1 and

∆G := (X1, ..., Xn1)

the related horizontal gradient. The following Sobolev-type inequality plays a crucial role in the functional analysis
on Carnot groups: ∫

D

|u(ξ)|2
∗
dξ ≤ C

∫
D

|∇Gu(ξ)|2dξ, ∀u ∈ C∞
0 , (2.2)

(see [6]). In the above expression, C is a positive constant (independent of u) and

2∗ =
2dimh G

dimh G− 2
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is the critical Sobolev exponent. Inequality (2.2) ensures that if D is a bounded open (smooth) subset of G, then the
function

u → ∥u∥S1
0
:= (

∫
D

|∇Gu(ξ)|2dξ)
1
2 (2.3)

is a norm in C∞
0 (D).

We will mean by S1
0(D) the Folland-Stein space defined as the completion of C∞

0 (D) with respect to the norm
∥.∥S1

0(D). The exponent 2
∗ is critical for ∆G since, as in the classical Laplacian setting, the embedding S1

0(D) ↪→ Lq(D)
is compact when 1 ≤ q < 2∗, while it is only continuous if q = 2∗ (see Folland and Stein [7]).

Definition 2.1. We say u : D → R where u ∈ X is a weak solution of (1.1), if∫
D

< ∇Gu(ξ),∇Gu(ξ) > dξ = λ

∫
D

f(ξ, u(ξ))v(ξ)dξ, ∀v ∈ S1
0(D) (2.4)

Weak solutions to the problem (1.1) mean the critical points of the associated energy functional Jλ acting on the
space S1

0(D). We consider the functional Jλ : S1
0(D) → R denoted by

Jλ =
1

2
∥u∥2S1

0(D) −
∫
D

F (x, u)dx ∀u ∈ S1
0(D) (2.5)

where λ ∈ R, and F (ξ, t) =
∫ t

0
f(ξ, τ)dτ . Now, under our growth condition on f the functional Jλ ∈ C1(S1

0(D)) and
its derivative at u ∈ S1

0(D) is defined by

< J ′
λ(u), v >=

∫
D

< ∇Gu(ξ),∇Gv(ξ) > dξ − λ

∫
D

f(ξ, u(ξ))v(ξ)dξ, ∀v ∈ S1
0(D) (2.6)

for all v ∈ S1
0(D). Therefore, the weak solutions of the problem (1.1) are the critical points of the energy functional

Jλ.

Definition 2.2. Consider E to be a real reflexive Banach space. If any sequence {uk} ⊂ E for which {J(uk)} is
bounded and J ′(uk) → 0 as k → 0 possesses a convergent subsequence. Then we say J satisfies Palais-Smale condition
(denoted by PS condition in short).

The proofs of our theorems are based on Theorems 2.3 and 2.4 below.

Theorem 2.3. [16, Theorem 4.10] Assume J ∈ C1(X,R), and J satisfies the PS condition. Let that there exist
u0, u1 ∈ X and a bounded neighborhood Ω of u0 satisfying u1 /∈ Ω and

inf
u∈∂Ω

J(u) > max{J(u0), J(u1)},

then there exists a critical point u of J, i.e. J ′(u) = 0 with J(u) > max{J(u0), J(u1)}.

Theorem 2.4. [17, Theorem 9.12] Let E be an infinite dimensional real Banach space. Let J ∈ C1(E,R) be an even
functional which satisfies the (PS)-condition, and J(0) = 0. Consider that E = V

⊕
X, where V is finite dimensional,

and J satisfies that

(i1) There exist α > 0 and ρ > 0 such that J(u) ≥ α for all u ∈ X with ∥u∥ = ρ;

(i2) For any finite dimensional subspace W ⊂ E there is R = R(W ) such that J(u) ≤ 0 on W \BR.

Then J possesses an unbounded sequence of critical values.

Theorem 2.5. [18, Theorem 38] For the functional F : M ⊆ X −→ [−∞,+∞] with M ̸= ∅,minu∈M F (u) = α has a
solution in case the following conditions hold:

(i3) X is a real reflexive Banach space,
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(i4) M is bounded and weak sequentially closed,

(i5) F is weak sequentially lower semi-continuous on M , i.e., by definition, for each sequence {un} in M such that
un ⇀ u as n → ∞, we have F (u) ≤ limn→∞ inf F (un) holds.

We refer to the papers [3, 19] in which Theorems 2.3 and 2.4 have been applied to obtain the existence of multiple
solutions for some boundary value problems. Moreover, in the paper [20], Theorem 2.4 has been successfully applied
to obtain the existence of infinitely many solutions for a boundary value problem.

3 Main results

We take the following assumptions on the function f :

(f0) there exist constants ν > 2 and T > 0 such that 0 < νF (x, t) ≤ tf(x, t), |t| > T.

(f1) f : D × R −→ R satisfies Carathèodory condition and there exists c > 0 such that

|f(x, t)| ≤ c(1 + |t|q−1) for t ∈ R,

where q ∈ (2, 2∗) and x ∈ D.

(f2) f(x, t) = o(|t|), t −→ 0, for x ∈ D uniformly.

We need the following lemmas to prove our main results.

Lemma 3.1. If (f0) holds. Then Jλ(u) satisfies the (PS)-condition.

Proof .To prove the lemma, we use [4, Lemma 2.4]. Let that {un} be a sequence in X such that {Jλ(un)} is bounded
and J ′

λ(un) → 0 as n → +∞. Then, there exists a positive constant c0 such that |Jλ(un)| ≤ c0 and |J ′
λ(un)| ≤ c0 for

all n ∈ N. Therefore, by the assumptions (f0) and definition of J ′
λ, we have

c0 + ∥un∥S1
0(D) ≥ Jλ(un)−

1

ν
J ′
λ(un)(un)

≥ (
1

2λ
− 1

λν
)∥u∥2S1

0(D) +

∫
Ω

(
1

ν
f(x, un)un − F (x, un)

)
dx

≥ (
1

2λ
− 1

λν
)∥u∥2S1

0(D)

Since ν > 2, this implies that {un} is bounded. By using the same argument given in [4, Lemma 2.4], it can easily
be proved that {un} converges strongly to u in X. Overall, this implies Jλ satisfies the (PS)-condition. □

Lemma 3.2. ([21, Lemma 2.2]) If condition (f0) holds, then for every x ∈ D, the following inequalities hold:

F (x, t) ≤ F (x,
t

|t|
)|t|ν , if 0 < |t| ≤ 1;

F (x, t) ≥ F (x,
t

|t|
)|t|ν , if |t| ≥ 1.

In view Lemma 3.2, (f0) implies that for every x ∈ D,

F (x, t) ≤ a3|t|ν , if |t| ≤ 1

and

F (x, t) ≥ a1|t|ν , if |t| ≥ 1 (3.1)
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where a3 = maxx∈D,|t|=1 F (x, t) and a1 = minx∈D,|t|=1 F (x, t). Assumption (f0) implies a1, a3 > 0. In addition, since
F (x, t)− a1|t|ν is continuous on D × [0, T ], there exists a constant a2 > 0 such that

F (x, t) ≥ a1|t|ν − a2 for all (x, t) ∈ D × [0, T ]. (3.2)

Then, it follows from (3.1) and (3.2) that

F (x, t) ≥ a1|t|ν − a2 for all (x, t) ∈ D × R. (3.3)

Now, we state our main results as follows.

Theorem 3.3. Suppose that (f0), (f1) and (f2) hold. Then, if f(x, t) ≥ 0 for all (x, t) ∈ D × R, the problem (1.1)
has at least two weak solutions.

Proof . By Lemma 3.1 we know that J satisfies the (PS)-condition, also from the definition of Jλ implies that
Jλ(0) = 0.

Step 1. We shall prove that there exists M > 0 such that the functional Jλ has a local minimum u0 ∈ BM =
{u ∈ X; ∥u∥S1

0(D) < M}. To show this, we will apply Mazur’s lemma (see, e.g., [11]) which states that any weakly
convergent sequence in a Banach space has a sequence of convex combinations of its members that converges strongly
to the same limit. Let {un} ⊆ BM and un ⇀ u as n → ∞, then there exists a sequence of convex combinations

vn =

n∑
j=1

anj
uj ,

n∑
j=1

anj
= 1, anj

≥ 0, j ∈ N

such that vn → u in X. Since BM is a closed convex set, we have {vn} ⊆ BM and u ∈ BM . Since Jλ is weak
sequentially lower semi-continuous on BM , and X is a reflexive Banach space, then by Theorem 2.5 we can imply that
Jλ has a local minimum u0 ∈ BM .

Now, we assume that Jλ(u0) = minu∈BM
J(u), and show that

Jλ(u0) < inf
u∈∂BM

J(u).

We have the embedding X ↪→ L2(D) and X ↪→ Lq(D) which means that there exists c2, cq > 0 such that
|u|2 ≤ c2∥u∥s10(D) and |u|q ≤ cq∥u∥s10(D), ∀u ∈ X. Let ε > 0 be small enough such that εc2 < 1

4λ , by the assumptions
(f1) and (f2), we have

F (x, t) ≤ ε|t|2 + c|t|q for (x, t) ∈ Ω× R. (3.4)

Then, from (3.4) it reads

Jλ(u) ≥
1

2λ
∥u∥2s10(D) − ε

∫
D

|u|2dx− c

∫
D

|u|qdx

≥ 1

2λ
∥u∥2s10(D) − εc2∥u∥2S1

0(D) − ccq∥u∥qS1
0(D)

≥ 1

4λ
∥u∥2s10(D) − ccq∥u∥qS1

0(D)
, when ∥u∥S1

0(D) < 1

Since q > 2, therefore, there exist r, δ > 0 such that Jλ(u) ≥ δ > 0 for every ∥u∥S1
0(D) = r < 1. If we let M = r,

then Jλ(u) > 0 = Jλ(0) ≥ Jλ(u0) for u ∈ ∂BM . Hence u0 ∈ BM and J ′
λ(u0) = 0.

Step 2. Since u0 is a minimum point of Jλ on X, we can assume M > 0 be sufficiently large such that Jλ(u0) ≤
0 < infu∈∂BM

Jλ(u), where BM = {u ∈ X; ∥u∥S1
0(D) < M}.

Now we will show that there exists u1 ∈ X with ∥u1∥S1
0(D) > M such that Jλ(u1) < inf∂BM

Jλ(u). To prove this claim,
consider e1(x) ∈ X and u1 = γe1, γ > 0 and ∥e1∥S1

0(D) = 1. By (f0) and (3.4) there exist constants a1, a2 > 0 such

that F (x, t) ≥ a1|t|ν − a2 for all x ∈ D, |t| ≥ T . Thus

Jλ(u1) =
1

2λ
∥γe1∥2S1

0(D) −
∫
Ω

F (x, γe1)dx ≤ 1

2λ
∥γe1∥2S1

0(D) − a1γ
ν

∫
Ω

|e1|νdx+ a2.
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Since ν > 2, there exists sufficiently large γ such that γ > M > 0 which infers Jλ(γe1) < 0. Hence, inf∂BM
Jλ(u) >

max{Jλ(u0), Jλ(u1)}. Then, Theorem 2.3 assures the existence of the second critical point u∗. Therefore, u0, u
∗ are

two critical points of Jλ, which are two nontrivial solutions of the problem (1.1). □

Theorem 3.4. Suppose that (f0) holds. Then, if f(x, t) is odd in t, the problem (1.1) has infinitely many weak
solutions.

Proof . By definition Jλ we infer that Jλ is even and Jλ(0) = 0. The rest of the proof is split into two steps:

Step 1. Since its proof is straightforward, we only depict briefly how Jλ satisfies condition (i1) in Theorem 2.4.
Since, Jλ is coercive and also satisfies (PS)-condition, by the minimization theorem [16, Theorem 4.4], the functional
Jλ has a minimum critical point u ∈ X with Jλ(u) ≥ α > 0 and ∥u∥S1

0(D) = ρ for ρ > 0 small enough.

Step 2. Now, we will show that J satisfies condition (i2) in Theorem 2.4. Let W ⊂ X be a finite dimensional
subspace. Any non-zero vector u ∈ W has a unique representation u = θe2, where θ = ∥u∥S1

0(D) and ∥e2∥S1
0(D) = 1.

Then, similar to Step 2 in the proof of Theorem 3.3, it follows

Jλ(θe2) =
1

2λ
∥θe2∥2S1

0
−
∫
Ω

F (x, θe2)dx ≤ 1

2λ
∥θe2∥2S1

0
− a1θ

ν

∫
Ω

|e2|νdx+ a2.

The above inequality implies that there exists θ0 such that ∥θe2∥ > ρ and J(θe2) < 0 for every θ ≥ θ0 > 0. Since W
is a finite dimensional subspace, there exists R = R(W ) > 0 such that for all u ∈ W \BR, that is, when ∥u∥S1

0(D) ≥ R,
we have Jλ(u) ≤ 0. According to Theorem 2.4, the functional Jλ(u) possesses infinitely many critical points, i.e., the
problem (1.1) has infinitely many weak solutions. □

Remark 3.5. According to the condition used in Theorem 3.4 , the solutions obtained in this theorem are different
from the two solutions obtained in [13].

Finally, we give two examples to illustrate the applicability of our results.

Example 3.6. Consider λ = 2 and T = 1, and let D be a smooth and bounded domain of a Carnot group G with

dimh G = 3 so 2∗ = 6. Let f(x, t) = t4 + sin2 t for all (x, t) ∈ D × R. We have F (x, t) = t5

5 + 1
2 t −

1
4 sin 2t for all

(x, t) ∈ D × R. We have f(x, t) = o(|t|), t → 0, and by choosing q = 5 and c = 3, we observe |f(x, t)| < c(1 + |t|q−1)

for all t ∈ R. Since limt→∞
tf(x,t)
F (x,t) = limt→∞

t5+t sin2 t
t5

5 + 1
2 t−

1
4 sin 2t

= 5, by choosing ν = 5, that ν > 2 then 5F (x, t) ≤ tf(x, t),

so we see that the conditions (f0), (f1), and (f2) are satisfied, and f(x, t) ≥ 0. Hence, using Theorem 3.3 the problem{
−∆Gu = 2(u4 + sin2 u), inD

u|∂D = 0,
(3.5)

has at least two nontrivial weak solutions.

Example 3.7. Choose λ = T = 1, and let D be a smooth and bounded domain of a Carnot group G with dimh G = 4

so 2∗ = 4. Let f(x, t) = t3 + sin t for all (x, t) ∈ D × R. By the expression of f , we have F (x, t) = t4

4 − cos t for all

(x, t) ∈ D×R. Since limt→∞
tf(x,t)
F (x,t) = limt→∞

t4+t sin t
t4

4 −cos t
= 4, by choosing ν = 4, that ν > 2 we have 4F (x, t) ≤ tf(x, t),

so we see that the condition (f0) is satisfied, and f(x, t) is odd in t, therefore, applying Theorem 3.4 the problem{
−∆Gu = u3 + sinu, inD

u|∂D = 0,
(3.6)

has infinitely many weak solutions.

4 Conclusion

In this article, using variational methods and critical point theory, we have proved the existence of multiple solutions
for the problem (1.1) under suitable conditions imposed on the nonlinear term f . We have illustrated the results by
giving convenience examples.
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