The existence of a solution to more general proportional forms of fractional integrals via a measure of noncompactness

Bhuban Chandra Deuri ${ }^{\mathrm{a}, *}$, Anupam Das ${ }^{\text {b }}$
${ }^{a}$ Depth of Mathematics, Rajiv Gandhi University, India
${ }^{b}$ Department of Mathematics, Cotton University, Panbazar, Guwahati-781001, Assam, India

(Communicated by Shahram Saeidi)

Abstract

A fixed point theorem is proved using a newly constructed contraction operator in this article, and the solvability of a more general type of fractional integrals based here on the proportional derivative is analyzed. We also use suitable examples to illustrate our findings.

Keywords: Measure of noncompactness(MNC), integral equation, Fixed point
2020 MSC: 35K90, 47H10

1 Introduction

Fractional integral equations play a decisive role in real-world problems. The importance of fractional order integral equations has gained much research interest. The concept of an MNC is important in fixed point theory. Kuratowski [23] pioneered the idea of an MNC. Using the idea of an MNC, Darbo [12] established a result proving the presence of a fixed point for the so-called condensing operators in 1955. Fixed point theory and the MNC have numerous applications in analyzing various integral equations found in a wide range of real-world problems (see [3, 18, 14, 15, 17, 19, 20, 25, 13]). This theorem was highly valuable in establishing the solvability of several kinds of differential and integral equations ([6, 7, 8, 14, 16, 30], for example).

This article aims to generalize the fixed-point theorem of Darbo and apply this theorem in the control of the solvability of a fractional integral equation.

Let $(\mathfrak{Z},\|\|$.$) be a real Banach space and B(\theta, r)=\{z \in \mathfrak{Z}:\|z-\theta\| \leq r\}$. If $\mathfrak{E}(\neq \emptyset) \subseteq \mathfrak{Z}$. Also, $\overline{\mathfrak{E}}$ and Conv® represent the closure and convex closure of \mathfrak{E}. Furthermore, let

- $\mathfrak{M}_{\mathfrak{Z}}=$ The collection of all non-empty and bounded subsets of \mathfrak{Z},
- $\mathfrak{N}_{3}=$ The collection of all relatively compact sets,
- $\mathbb{R}=(-\infty, \infty)$,
and

[^0]- $\mathbb{R}_{+}=[0, \infty)$.

The definition of an MNC is as follows: [9].
Definition 1.1. A function $\Omega: \mathfrak{M}_{\mathfrak{Z}} \rightarrow[0, \infty)$ is said to be an MNC in \mathfrak{Z} if it fulfills axioms:
(i) for all $\mathfrak{E} \in \mathfrak{M}_{\mathfrak{Z}}, \Omega(\mathfrak{E})=0$ gives \mathfrak{E} is relatively compact.
(ii) $\operatorname{ker} \Omega=\left\{\mathfrak{E} \in \mathfrak{M}_{\mathfrak{Z}}: \Omega(\mathfrak{E})=0\right\} \neq \phi$ and $\operatorname{ker} \Omega \subset \mathfrak{N}_{\mathcal{Z}}$.
(iii) $\mathfrak{E} \subseteq \mathfrak{E}_{1} \Longrightarrow \Omega(\mathfrak{E}) \leq \Omega\left(\mathfrak{E}_{1}\right)$.
(iv) $\Omega(\overline{\mathfrak{E}})=\Omega(\mathfrak{E})$.
(v) $\Omega(\operatorname{ConvE})=\Omega(\mathfrak{E})$.
(vi) $\Omega\left(\chi \mathfrak{E}+(1-\chi) \mathfrak{E}_{1}\right) \leq \chi \Omega(\mathfrak{E})+(1-\chi) \Omega\left(\mathfrak{E}_{1}\right)$ for $\chi \in[0,1]$.
(vii) if $\mathfrak{E}_{c} \in \mathfrak{M}_{\mathfrak{3}}, \mathfrak{E}_{c}=\overline{\mathfrak{E}}_{c}, \mathfrak{E}_{c+1} \subset \mathfrak{E}_{c}$ for $c=1,2,3, \ldots$ and $\lim _{c \rightarrow \infty} \Omega\left(\mathfrak{E}_{c}\right)=0$ then $\bigcap_{c=1}^{\infty} \mathfrak{E}_{c} \neq \emptyset$.

The family $\operatorname{ker} \Omega$ is said to be the kernel of measure Ω. Since $\Omega\left(\mathfrak{E}_{\infty}\right) \leq \Omega\left(\mathfrak{E}_{c}\right), \Omega\left(\mathfrak{E}_{\infty}\right)=0$. So, $\mathfrak{E}_{\infty}=\bigcap_{c=1}^{\infty} \mathfrak{E}_{c} \in$ $k e r \Omega$.

Some important theorems and definitions

The following are some fundamental theorems to recall:
Theorem 1.2. (Shauder [1]) Let \mathfrak{U} be a non-empty, closed and convex subset of a Banach Space \mathfrak{Z}. Then every compactt continuous map $\mathfrak{G}: \mathfrak{U} \rightarrow \mathfrak{U}$ has at least one fixed point.

Theorem 1.3. (Darbo[12]) Let \mathfrak{U} be a non-empty, bounded, closed and convex (NBCC) subset of a Banach Space \mathfrak{Z}. Let $\mathfrak{G}: \mathfrak{U} \rightarrow \mathfrak{U}$ be a continuous mapping and there is a constant $\chi \in[0,1)$ such that

$$
\Omega(\mathfrak{G} \mathfrak{B}) \leq \chi \Omega(\mathfrak{B}), \mathfrak{B} \subseteq \mathfrak{U} .
$$

Then \mathfrak{G} has a fixed point.
The following related concepts are needed to establish an extension of Darbo's fixed point theorem:
Definition 1.4. ([26]) Let $\Lambda_{1}, \Lambda_{2}:[0, \infty) \rightarrow \mathbb{R}$ be the two functions. Then the pair of maps $\left(\Lambda_{1}, \Lambda_{2}\right)$ is called a pair of shifting distance functions, if it satisfies following conditions:

1. For $x, y \in[0, \infty)$ if $\Lambda_{1}(x) \leq \Lambda_{2}(y)$ then $x \leq y$.
2. For $x_{n}, y_{n} \in[0, \infty)$ such that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=z$, if $\Lambda_{1}\left(x_{n}\right) \leq \Lambda_{2}\left(y_{n}\right) \forall n$ then $z=0$.

We denote by Λ a pair $\left(\Lambda_{1}, \Lambda_{2}\right)$ of shifting distance functions.
As examples, we put $\Lambda_{1}(x)=x, \Lambda_{2}(x)=\epsilon x, x \geq 0$ and $\epsilon \in[0,1)$. They are obviously a pair of shifting distance functions.

Definition 1.5. [2] A continuous function $g:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ is a function of \mathcal{C} - class if subsequent axioms hold true:
(1) $g(m, n) \leq m$,
(2) $g(m, n)=m$ implies that either $m=0$ or $n=0$. Also $g(0,0)=0$. A \mathcal{C} - class function is symbolized by \mathcal{C}.

For example,
(1) $g(m, n)=m-n$,
(2) $g(m, n)=a m, 0<a<1$.

Definition 1.6. 22] A function $\xi:[0, \infty) \rightarrow[0, \infty)$ is an alternating distance function if:
(1) $\xi(x)=0$ if and only if $x=0$.
(2) ξ is continuous and increasing.

We use Ξ to denote this class of functions. For example, $\xi(x)=(1-b) x, 0 \leq b<1$.
Definition 1.7. [2] A continuous function $\phi:[0, \infty) \rightarrow[0, \infty)$ is an ultra altering distance function if $\phi(0) \geq 0$ and $\phi(t)>0, t>0$.

We use Φ to denote this class of functions.
Definition 1.8. A continuous function $h:[0, \infty) \rightarrow[0, \infty)$ is a function of \mathcal{A} class if $h(x)>x, x \in(0, \infty)$. Also $h(0)=0$.

For example, $h(x)=\bar{m} x, \bar{m}>1$.
Definition 1.9. Let $\gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous and non-decreasing mapping of \mathcal{B} class if $\gamma(t)=t, t \geq 0$.

2 Main Results

Theorem 2.1. Let \mathbb{U} be a NBCC subset of a Banach space \mathfrak{Z}. Also, let $\mathcal{T}: \mathbb{U} \rightarrow \mathbb{U}$ be continuous mapping with

$$
\begin{equation*}
\Lambda_{1}[h[\xi\{\mu(\mathcal{T} \Omega)+\gamma(\mu(\mathcal{T} \Omega))\}]] \leq \Lambda_{2}[g[\xi\{\mu(\Omega)+\gamma(\mu(\Omega))\}, \phi\{\mu(\Omega)+\gamma(\mu(\Omega))\}]] \tag{2.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{U}$ and μ is an arbitrary MNC and $\left(\Lambda_{1}, \Lambda_{2}\right) \in \Lambda, \phi \in \Phi, \xi \in \Xi, g \in \mathcal{C}, h \in \mathcal{A}$ and $\gamma \in \mathcal{B}$. Then \mathcal{T} has at least one fixed point in \mathbb{U}.

Proof . Let us create a sequence $\left\{\mathbb{U}_{p}\right\}_{p=1}^{\infty}$ with $\mathbb{U}_{1}=\mathbb{U}$ and $\mathbb{U}_{p+1}=\operatorname{Conv}\left(\mathcal{T} \mathbb{U}_{p}\right)$ for $p \in \mathbb{N}$. Also $\mathcal{T} \mathbb{U}_{1}=\mathcal{T} \mathbb{U} \subseteq \mathbb{U}=$ $\mathbb{U}_{1}, \mathbb{U}_{2}=\operatorname{Conv}\left(\mathcal{T} \mathbb{U}_{1}\right) \subseteq \mathbb{U}=\mathbb{U}_{1}$. Continuing in the similar manner gives $\mathbb{U}_{1} \supseteq \mathbb{U}_{2} \supseteq \mathbb{U}_{3} \supseteq \ldots \supseteq \mathbb{U}_{p} \supseteq \mathbb{U}_{p+1} \supseteq \ldots$.

If there exists $p_{0} \in \mathbb{N}$ satisfying $\mu\left(\mathbb{U}_{p_{0}}\right)=0$ then $\mathbb{U}_{p_{0}}$ is a compact set. In this case Schauder's theorem implies \mathcal{T} has a FP in \mathbb{U}. Let $\mu\left(\mathbb{C}_{p}\right)>0, p \in \mathbb{N}$. Now, for $p \in \mathbb{N}$, we have

$$
\begin{aligned}
\Lambda_{1}\left[h\left[\xi\left\{\mu\left(\mathbb{U}_{p+1}\right)+\gamma\left(\mu\left(\mathbb{U}_{p+1}\right)\right)\right\}\right]\right] & =\Lambda_{1}\left[h\left[\xi\left\{\mu\left(\operatorname{Conv} \mathcal{T} \mathbb{U}_{p}\right)+\gamma\left(\mu\left(\operatorname{Conv} \mathcal{T} \mathbb{U}_{p}\right)\right)\right\}\right]\right] \\
& =\Lambda_{1}\left[h\left[\xi\left\{\mu\left(\mathcal{T} \mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathcal{T} \mathbb{U}_{p}\right)\right)\right\}\right]\right] \\
& \leq \Lambda_{2}\left[g\left[\xi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}, \phi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}\right]\right] .
\end{aligned}
$$

Using the condition (1) of definition 1.4, we get

$$
\begin{aligned}
h\left[\xi\left\{\mu\left(\mathbb{U}_{p+1}\right)+\gamma\left(\mu\left(\mathbb{U}_{p+1}\right)\right)\right\}\right] & \leq g\left[\xi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}, \phi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}\right] \\
& \leq \xi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}
\end{aligned}
$$

Clearly $\left\{\xi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}\right\}_{p=1}^{\infty}$ is a non-negative and non-increasing sequence hence there exists $a \geq 0$ such that

$$
\lim _{p \rightarrow \infty} \xi\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}=a
$$

If possible let $a>0$. As $p \rightarrow \infty$, we get

$$
h(a) \leq a
$$

which is a contradiction hence $a=0$, i.e.,

$$
\xi\left[\lim _{p \rightarrow \infty}\left\{\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right\}\right]=0
$$

i.e.,

$$
\lim _{p \rightarrow \infty}\left[\mu\left(\mathbb{U}_{p}\right)+\gamma\left(\mu\left(\mathbb{U}_{p}\right)\right)\right]=0
$$

Using the definition 1.9 , we get

$$
\lim _{p \rightarrow \infty} \mu\left(\mathbb{U}_{p}\right)=0
$$

Since $\mathbb{U}_{p} \supseteq \mathbb{U}_{p+1}$, by definition 1.1 , we get $\mathbb{U}_{\infty}=\bigcap_{p=1}^{\infty} \mathbb{U}_{p}$ is a nonempty, closed and convex subset of \mathbb{U} and \mathbb{U}_{∞} is \mathcal{T} invariant. Thus theorem 1.2 implies that \mathcal{T} has a fixed point in \mathbb{U}. This completes the proof.

Theorem 2.2. Let \mathbb{U} be a NBCC subset of a Banach space \mathfrak{Z}. Also \mathcal{T} : $\mathbb{U} \rightarrow \mathbb{U}$ is a continuous mapping with

$$
\begin{equation*}
h[\xi\{\mu(\mathcal{T} \Omega)+\gamma(\mu(\mathcal{T} \Omega))\}] \leq k g[\xi\{\mu(\Omega)+\gamma(\mu(\Omega))\}, \phi\{\mu(\Omega)+\gamma(\mu(\Omega))\}] \tag{2.2}
\end{equation*}
$$

where $\Omega \subset \mathbb{U}$ and μ is an arbitrary MNC and $\phi \in \Phi, \xi \in \Xi, g \in \mathcal{C}, h \in \mathcal{A}$ and $\gamma \in \mathcal{B}$. Then \mathcal{T} has at least one fixed point in \mathbb{U}.

Proof. The result follows by taking $\Lambda_{1}(x)=x$ and $\Lambda_{2}(x)=k x$ in Theorem 2.1.
Theorem 2.3. Let \mathbb{U} be a NBCC subset of a Banach space \mathfrak{Z}. Also, let $\mathcal{T}: \mathbb{U} \rightarrow \mathbb{U}$ be a continuous mapping with

$$
\begin{equation*}
h[\xi\{2 \mu(\mathcal{T} \Omega)\}] \leq k g[\xi\{2 \mu(\Omega)\}, \phi\{2 \mu(\Omega)\}] \tag{2.3}
\end{equation*}
$$

where $\Omega \subset \mathbb{U}$ and μ is an arbitrary MNC and $\phi \in \Phi, \xi \in \Xi, g \in \mathcal{C}$ and $h \in \mathcal{A}$. Then \mathcal{T} has at least one fixed point in \mathbb{U}.

Proof . The result follows by taking $\gamma(x)=x$ in Theorem 2.2
Theorem 2.4. Let \mathbb{U} be a NBCC subset of a Banach space \mathfrak{Z}. Also, let $\mathcal{T}: \mathbb{U} \rightarrow \mathbb{U}$ be a continuous mapping with

$$
\begin{equation*}
h[\xi\{2 \mu(\mathcal{T} \Omega)\}] \leq k \xi\{2 \mu(\Omega)\} \tag{2.4}
\end{equation*}
$$

where $\Omega \subset \mathbb{U}$ and μ is an arbitrary MNC and $\xi \in \Xi$ and $h \in \mathcal{A}$. Then \mathcal{T} has at least one fixed point in \mathbb{U}.
Proof. Use $g(m, n) \leq m$ in Theorem 2.3
Corollary 2.5. Let \mathbb{U} be a NBCC subset of a Banach space \mathfrak{Z}. Also, let $\mathcal{T}: \mathbb{U} \rightarrow \mathbb{U}$ be a continuous mapping with

$$
\begin{equation*}
\mu(\mathcal{T} \Omega) \leq \lambda \mu(\Omega), \lambda=\frac{k}{\bar{k}} \in(0,1) \tag{2.5}
\end{equation*}
$$

where $\Omega \subset \mathbb{U}$ and μ is an arbitrary MNC. Then \mathcal{T} has at least one fixed point in \mathbb{U}.

Proof . Using $\xi(x)=x$ and $h(x)=\bar{k} x$ where $0<k<1, \bar{k}>1$ in Theorem 2.4 we get DPFT.

3 Measure of noncompactness on $C([0, I])$

Consider the space $\mathfrak{Z}=C(U)$ which is the set of real continuous functions on U, where $U=[0, I]$. Then \mathfrak{Z} is a Banach space with the norm

$$
\|\Lambda\|=\sup \{|\Lambda(t)|: t \in U\}, \Lambda \in \mathfrak{Z}
$$

Let $T(\neq \emptyset) \subseteq \mathfrak{Z}$ be bounded. For $\Lambda \in T$ and $\varepsilon>0$, denote by $\mu(\Lambda, \varepsilon)$ the modulus of the continuity of Λ, i.e.,

$$
\mu(\Lambda, \varepsilon)=\sup \left\{\left|\Lambda\left(t_{1}\right)-\Lambda\left(t_{2}\right)\right|: t_{1}, t_{2} \in U,\left|t_{1}-t_{2}\right| \leq \varepsilon\right\}
$$

Moreover, we set

$$
\mu(T, \varepsilon)=\sup \{\mu(\Lambda, \varepsilon): \Lambda \in T\} ; \mu_{0}(T)=\lim _{\varepsilon \rightarrow 0} \mu(T, \varepsilon)
$$

It is well-known that the function μ_{0} is a MNC in \mathfrak{Z} such that the Hausdorff MNC Γ is given by $\Gamma(T)=\frac{1}{2} \mu_{0}(T)$ (see [9]).

4 Solvability of a fractional integral equation

For $h \in(0,1]$ and $\omega \in \mathbb{C}, \operatorname{Re}(\omega)>0$, we define the left fractional integral of w by [21]

$$
\left({ }_{a} U^{\omega, h, \sigma} w\right)(\varphi)=\frac{1}{h^{\omega} \Gamma(\omega)} \int_{a}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} w(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta
$$

In this section, we will study the fractional integral equation shown below

$$
\begin{equation*}
\mathcal{H}(\varphi)=\Psi\left(\varphi, \mathcal{J}(\varphi, \mathcal{H}(\varphi)),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right) \tag{4.1}
\end{equation*}
$$

where $\omega>0, h \in(0,1], \varphi \in U=[0, I]$. Let

$$
D_{e_{0}}=\left\{\mathcal{H} \in \mathfrak{Z}:\|\mathcal{H}\| \leq e_{0}\right\}
$$

Assume that
(A) $\Psi: U \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \mathcal{J}: U \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and there exists constants $\beta_{1}, \beta_{2}, \beta_{3} \geq 0$ satisfying

$$
\left|\Psi\left(\varphi, \mathcal{J}, U_{1}\right)-\Psi\left(\varphi, \overline{\mathcal{J}}, \bar{U}_{1}\right)\right| \leq \beta_{1}|\mathcal{J}-\overline{\mathcal{J}}|+\beta_{2}\left|U_{1}-\bar{U}_{1}\right|, \varphi \in U ; \mathcal{J}, U_{1}, \overline{\mathcal{J}}, \bar{U}_{1} \in \mathbb{R}
$$

and

$$
\left|\mathcal{J}\left(\varphi, L_{1}\right)-\mathcal{J}\left(\varphi, L_{2}\right)\right| \leq \beta_{3}\left|L_{1}-L_{2}\right|, L_{1}, L_{2} \in \mathbb{R}
$$

(B) There exists $e_{0}>0$ satisfying

$$
\bar{\Psi}=\sup \left\{\left|\Psi\left(\varphi, \mathcal{J}, U_{1}\right)\right|: \varphi \in U, \mathcal{J} \in[-\hat{\mathcal{J}}, \hat{\mathcal{J}}], U_{1} \in[-\hat{\mathcal{U}}, \hat{\mathcal{U}}]\right\} \leq e_{0}
$$

and

$$
\beta_{1} \beta_{3}<1
$$

where

$$
\hat{\mathcal{J}}=\sup \left\{|\mathcal{J}(\varphi, \mathcal{H}(\varphi))|: \varphi \in U, \mathcal{H}(\varphi) \in\left[-e_{0}, e_{0}\right]\right\}
$$

and

$$
\hat{U}=\sup \left\{\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right|: \varphi \in U, \mathcal{H}(\varphi) \in\left[-e_{0}, e_{0}\right]\right\}
$$

(C) Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing continuous function.
(D) $|\Psi(\varphi, 0,0)|=0, \mathcal{J}(\varphi, 0)=0$.
(E) There exists a positive solution e_{0} of the inequality

$$
\beta_{1} \beta_{3} e_{0}+\frac{\beta_{2} e_{0} I^{\omega-1}}{h^{\omega-1}(h-1) \Gamma(\omega)} . e^{\frac{(h-1) I}{h}} \leq e_{0}
$$

Theorem 4.1. If conditions (A)-(E) hold, then the Eq. 4.1) has a solution in $\mathfrak{Z}=C(U)$.
Proof. Set the operator $\mathcal{S}: \mathfrak{Z} \rightarrow \mathfrak{Z}$ as follows:

$$
(\mathcal{S H})(\varphi)=\Psi\left(\varphi, \mathcal{J}(\varphi, \mathcal{H}(\varphi)),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right)
$$

Step 1: We show that the function \mathcal{S} maps $D_{e_{0}}$ into $D_{e_{0}}$. Let $\mathcal{H} \in D_{e_{0}}$. We have

$$
\begin{aligned}
|(\mathcal{S H})(\varphi)| & \leq\left|\Psi\left(\varphi, \mathcal{J}(\varphi, \mathcal{H}(\varphi)),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right)-\Psi(\varphi, 0,0)\right|+|\Psi(\varphi, 0,0)| \\
& \leq \beta_{1}|\mathcal{J}(\varphi, \mathcal{H}(\varphi))-0|+\beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)-0\right| \\
& \leq \beta_{1} \beta_{3}|\mathcal{H}(\varphi)|+\beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right|
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right| & =\left|\frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta\right| \\
& \leq \frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} \sigma^{\prime}(\vartheta)|\mathcal{H}(\vartheta)| d \vartheta \\
& \leq \frac{e_{0}}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} \sigma^{\prime}(\vartheta) d \vartheta \\
& \leq \frac{e_{0} I^{\omega-1} e^{\frac{(h-1) I}{h}}}{h^{\omega-1}(h-1) \Gamma(\omega)} .
\end{aligned}
$$

Hence, $\|\mathcal{S}\|<e_{0}$ gives

$$
\|\mathcal{S}\| \leq \beta_{1} \beta_{3} e_{0}+\frac{\beta_{2} e_{0} I^{\omega-1}}{h^{\omega-1}(h-1) \Gamma(\omega)} \cdot e^{\frac{(h-1) I}{h}} \leq e_{0}
$$

Due to the assumption (E), \mathcal{S} maps $D_{e_{0}}$ into $D_{e_{0}}$.
Step 2: We show that \mathcal{S} is continuous on $D_{e_{0}}$. Let $\varepsilon>0$ and $\mathcal{H}, \overline{\mathcal{H}} \in D_{e_{0}}$ such that $\|\mathcal{H}-\overline{\mathcal{H}}\|<\varepsilon$. We now have

$$
\begin{aligned}
|(\mathcal{S H})(\varphi)-(\mathcal{S} \overline{\mathcal{H}})(\varphi)| & \leq\left|\Psi\left(\varphi, \mathcal{J}(\varphi, \mathcal{H}(\varphi)),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)\right)-\Psi\left(\varphi, \mathcal{J}(\varphi, \overline{\mathcal{H}}(\varphi)),\left({ }_{0} U^{\omega, h, \sigma} \overline{\mathcal{H}}\right)(\varphi)\right)\right| \\
& \leq \beta_{1}|\mathcal{J}(\varphi, \mathcal{H}(\varphi))-\mathcal{J}(\varphi, \overline{\mathcal{H}}(\varphi))|+\beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)-\left({ }_{0} U^{\omega, h, \sigma} \overline{\mathcal{H}}\right)(\varphi)\right|
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)(\varphi)-\left({ }_{0} U^{\omega, h, \sigma} \overline{\mathcal{H}}\right)(\varphi)\right| & =\left|\frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} \sigma^{\prime}(\vartheta)\{\mathcal{H}(\vartheta)-\overline{\mathcal{H}}(\vartheta)\} d \vartheta\right| \\
& \leq \frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi} e^{\frac{(h-1)(\sigma(\varphi)-\sigma(\vartheta))}{h}}(\sigma(\varphi)-\sigma(\vartheta))^{\omega-1} \sigma^{\prime}(\vartheta)|\mathcal{H}(\vartheta)-\overline{\mathcal{H}}(\vartheta)| d \vartheta \\
& <\frac{\varepsilon I^{\omega-1} e^{\frac{(h-1) I}{h}}}{h^{\omega-1}(h-1) \Gamma(\omega)} .
\end{aligned}
$$

Hence, $\|\mathcal{H}-\overline{\mathcal{H}}\|<\varepsilon$ gives

$$
|(\mathcal{S H})(\varphi)-(\mathcal{S} \overline{\mathcal{H}})(\varphi)|<\beta_{1} \beta_{3} \varepsilon+\frac{\varepsilon \beta_{2} I^{\omega-1} e^{\frac{(h-1) I}{h}}}{h^{\omega-1}(h-1) \Gamma(\omega)} .
$$

As $\varepsilon \rightarrow 0$, we get $|(\mathcal{S H})(\varphi)-(\mathcal{S} \overline{\mathcal{H}})(\varphi)| \rightarrow 0$. This shows that \mathcal{S} is continuous on $D_{e_{0}}$.
Step 3: An estimate of \mathcal{S} with respect to μ_{0} : Assume that $\Delta(\neq \emptyset) \subseteq D_{e_{0}}$. Let $\varepsilon>0$ be arbitrary and choose $\mathcal{H} \in \Delta$ and $\varphi_{1}, \varphi_{2} \in U$ such that $\left|\varphi_{2}-\varphi_{1}\right| \leq \varepsilon$ and $\varphi_{2} \geq \varphi_{1}$.

Now,

$$
\begin{aligned}
\left|(\mathcal{S H})\left(\varphi_{2}\right)-(\mathcal{S H})\left(\varphi_{1}\right)\right| & =\left|\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{2}, \mathcal{H}\left(\varphi_{2}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)\right)-\Psi\left(\varphi_{1}, \mathcal{J}\left(\varphi_{1}, \mathcal{H}\left(\varphi_{1}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)\right| \\
& \leq\left|\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{2}, \mathcal{H}\left(\varphi_{2}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)\right)-\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{2}, \mathcal{H}\left(\varphi_{2}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)\right| \\
& +\left|\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{2}, \mathcal{H}\left(\varphi_{2}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)-\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{1}, \mathcal{H}\left(\varphi_{1}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)\right| \\
& +\left|\Psi\left(\varphi_{2}, \mathcal{J}\left(\varphi_{1}, \mathcal{H}\left(\varphi_{1}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)-\Psi\left(\varphi_{1}, \mathcal{J}\left(\varphi_{1}, \mathcal{H}\left(\varphi_{1}\right)\right),\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right)\right| \\
& \leq \beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right|+\beta_{1}\left|\mathcal{J}\left(\varphi_{2}, \mathcal{H}\left(\varphi_{2}\right)\right)-\mathcal{J}\left(\varphi_{1}, \mathcal{H}\left(\varphi_{1}\right)\right)\right|+\mu_{\Psi}(U, \varepsilon) \\
& \leq \beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right|+\beta_{1} \beta_{3}\left|\mathcal{H}\left(\varphi_{2}\right)-\mathcal{H}\left(\varphi_{1}\right)\right|+\mu_{\Psi}(U, \varepsilon),
\end{aligned}
$$

where

$$
\mu_{\Psi}(U, \varepsilon)=\sup \left\{\begin{array}{c}
\left|\Psi\left(\varphi_{2}, \mathcal{J}, U_{1}\right)-\Psi\left(\varphi_{1}, \mathcal{J}, U_{1}\right)\right|:\left|\varphi_{2}-\varphi_{1}\right| \leq \varepsilon ; \varphi_{1}, \varphi_{2} \in U ; \\
\mathcal{J} \in[-\mathcal{J}, \hat{\mathcal{J}}] ; U_{1} \in[-\hat{\mathcal{U}}, \hat{\mathcal{U}}]
\end{array}\right\} .
$$

Also,

$$
\begin{aligned}
\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right| & =\left\lvert\, \frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi_{2}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta\right. \\
& \left.-\frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi_{1}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta \right\rvert\, \\
& \leq \frac{1}{h^{\omega} \Gamma(\omega)} \left\lvert\, \int_{0}^{\varphi_{2}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{\varphi_{1}} e^{\left.\frac{(h-1)\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)}{h}\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta \right\rvert\,} \\
& \leq \frac{1}{h^{\omega} \Gamma(\omega)} \left\lvert\, \int_{0}^{\varphi_{2}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h^{2}}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta\right. \\
& \left.-\int_{0}^{\varphi_{1}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h^{2}}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta \right\rvert\, \\
& +\frac{1}{h^{\omega} \Gamma(\omega)} \left\lvert\, \int_{0}^{\varphi_{1}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta\right. \\
& \left.-\int_{0}^{\varphi_{1}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)^{\omega-1} \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta) d \vartheta \right\rvert\, \\
& \leq \frac{1}{h^{\omega} \Gamma(\omega)} \int_{\varphi_{1}}^{\varphi_{2}} e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1}|\mathcal{H}(\vartheta)| \sigma^{\prime}(\vartheta) d \vartheta \\
& +\frac{1}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi_{1}}\left|\left(e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1}-e^{\frac{(h-1)\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)^{\omega-1}\right) \mathcal{H}(\vartheta) \sigma^{\prime}(\vartheta)\right| d \vartheta \\
& \leq \frac{-e^{\frac{(h-1) I}{h}}}{h^{\omega-1}(h-1) \Gamma(\omega)}\|\mathcal{H}\|\left(\varphi_{2}-\varphi_{1}\right)^{\omega-1} \\
& +\frac{\|\mathcal{H}\|}{h^{\omega} \Gamma(\omega)} \int_{0}^{\varphi_{1}}\left|\left(e^{\frac{(h-1)\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{2}\right)-\sigma(\vartheta)\right)^{\omega-1}-e^{\frac{(h-1)\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)}{h}}\left(\sigma\left(\varphi_{1}\right)-\sigma(\vartheta)\right)^{\omega-1}\right) \sigma^{\prime}(\vartheta)\right| d \vartheta .
\end{aligned}
$$

As $\varepsilon \rightarrow 0$, then $\varphi_{2} \rightarrow \varphi_{1}$ and so, $\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right| \rightarrow 0$. Hence,

$$
\left|(\mathcal{S H})\left(\varphi_{2}\right)-(\mathcal{S H})\left(\varphi_{1}\right)\right| \leq \beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right|+\beta_{1} \beta_{3} \mu(\mathcal{H}, \varepsilon)+\mu_{\Psi}(U, \varepsilon),
$$

gives

$$
\mu(\mathcal{S H}, \varepsilon) \leq \beta_{2}\left|\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{2}\right)-\left({ }_{0} U^{\omega, h, \sigma} \mathcal{H}\right)\left(\varphi_{1}\right)\right|+\beta_{1} \beta_{3} \mu(\mathcal{H}, \varepsilon)+\mu_{\Psi}(U, \varepsilon) .
$$

By the uniform continuity of Ψ on $U \times[-\hat{\mathcal{J}}, \hat{\mathcal{J}}] \times[-\hat{\mathcal{U}}, \hat{\mathcal{U}}]$ we have $\mu_{\Psi}(U, \varepsilon) \rightarrow 0$, as $\varepsilon \rightarrow 0$.
Taking $\sup _{\mathcal{H} \in \Delta}$ and $\varepsilon \rightarrow 0$ we get,

$$
\mu_{0}(\mathcal{S} \Delta) \leq \beta_{1} \beta_{3} \mu_{0}(\Delta) .
$$

Thus by Corollary $2.5 \mathcal{S}$ has a fixed point in $\Delta \subseteq D_{e_{0}}$ i.e. equation (4.1) has a solution in \mathcal{J}.
Example 4.2. Consider the equation below

$$
\begin{equation*}
\mathcal{H}(\varphi)=\frac{\mathcal{H}(\varphi)}{9+\varphi^{4}}+\frac{\left({ }_{0} U^{1, \frac{1}{3}, \varphi} \mathcal{H}\right)(\varphi)}{20} \tag{4.2}
\end{equation*}
$$

for $\varphi \in[0,3]=U$.
We have

$$
\begin{gathered}
\sigma(\varphi)=\varphi ; \\
\left({ }_{0} U^{1, \frac{1}{3}, \varphi} \mathcal{H}\right)(\varphi)=\frac{3}{\Gamma(1)} \int_{0}^{\varphi} e^{-2(\varphi-\vartheta)} \mathcal{H}(\vartheta) d \vartheta .
\end{gathered}
$$

Also, $\Psi\left(\varphi, \mathcal{J}, U_{1}\right)=\mathcal{J}+\frac{U_{1}}{20}$ and $\mathcal{J}(\varphi, \mathcal{H})=\frac{\mathcal{H}}{9+\varphi^{4}}$. It is trivial that both Ψ, \mathcal{J} are continuous satisfying

$$
\left|\mathcal{J}\left(\varphi, L_{1}\right)-\mathcal{J}\left(\varphi, L_{2}\right)\right| \leq \frac{\left|L_{1}-L_{2}\right|}{9},
$$

and

$$
\left|\Psi\left(\varphi, \mathcal{J}, U_{1}\right)-\Psi\left(\varphi, \overline{\mathcal{J}}, \bar{U}_{1}\right)\right| \leq|\mathcal{J}-\overline{\mathcal{J}}|+\frac{1}{20}\left|U_{1}-\bar{U}_{1}\right| .
$$

Therefore, $\beta_{1}=1, \beta_{2}=\frac{1}{20}, \beta_{3}=\frac{1}{9}$ and $\beta_{1} \beta_{3}=\frac{1}{9}<1$. If $\|\mathcal{H}\| \leq e_{0}$ then

$$
\hat{\mathcal{J}}=\frac{e_{0}}{9}
$$

and

$$
\hat{U}=\frac{3 e_{0}}{2}\left(1-\frac{1}{e^{6}}\right)
$$

Further,

$$
\left|\Psi\left(\varphi, \mathcal{J}, U_{1}\right)\right| \leq \frac{e_{0}}{9}+\frac{3 e_{0}}{40}\left(1-\frac{1}{e^{6}}\right) \leq e_{0}
$$

If we choose $e_{0}=3$ then

$$
\hat{\mathcal{J}}=\frac{1}{3}, \hat{U}=\frac{9}{2}\left(1-\frac{1}{e^{6}}\right),
$$

which gives

$$
\bar{\Psi} \leq 3
$$

For $e_{0}=3$, however, assumption (E) is also satisfied. We can see that all of Theorem 4.1 s assumptions are achieved, from (A) to (E). Equation 4.2, according to Theorem 4.1, has a solution in $\mathfrak{Z}=C(U)$.

References

[1] R.P. Agarwal, M Meehan and D. O'regan, Fixed point theory and applications, Vol. 141, Cambridge University Press, 2001.
[2] A.H. Ansari, Note on $\phi-\psi$-contractive type mappings and related fixed point, 2nd Region. Conf. Math. Appl., Payame Noor University, 2014, pp. 380.
[3] R. Arab, H.K. Nashine, N.H. Can and T.T. Binh, Solvability of functional-integral equations (fractional order) using measure of noncompactness, Adv. Differ. Equ. 2020 (2020), no. 1, 1-13.
[4] S. Banaei, M. Mursaleen, and V. Parvaneh, Some fixed point theorems via measure of noncompactness with applications to differential equations, Comput. Appl. Math. 39 (2020), 1-12.
[5] S. Banaei, V. Parvaneh, and M. Mursaleen, Measures of noncompactness and infinite systems of integral equations of Urysohn type in $L_{\infty}(\mathfrak{G})$, Carpath. J. Math. 37 (2021), no. 3, 407-416.
[6] J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal.: Theory Meth. Appl. 69 (2008), no. 7, 1945-1952.
[7] J. Banaś and B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl. Mathematics Letters, 16 (2003), no. 1, 1-6.
[8] A. Das, I. Suwan, B.C. Deuri and T. Abdeljawad, On solution of generalized proportional fractional integral via a new fixed point theorem, Adv. Differ. Equ. 2021 (2021), no. 1, 1-12.
[9] J. Banaś and K. and Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980.
[10] J. Banas and M. Krajewska, Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electronic J. Diff. Equ., 60 (2017), 1-28.
[11] S.S. Chang, Y.J. Cho, and N.J. Huang, Coupled fixed point theorems with applications, J. Korean Math. Soc. 33 (1996), no. 3, 575-585.
[12] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Seminar. Mat. Della Univer. Padova 24 (1955), 84-92.
[13] A. Das and B.C. Deuri, Solution of Hammerstein type integral equation with two variables via a new fixed point theorem, J. Anal. (2022), https://doi.org/10.1007/s41478-022-00537-4
[14] A. Das, B. Hazarika, and P. Kumam, Some new generalization of Darbo's fixed point theorem and its application on integral equations, Mathematics, 7 (2019), no. 3, 214.
[15] A. Das, B. Hazarika, R. Arab, and M. Mursaleen, Applications of a fixed point theorem to the existence of solutions to the nonlinear functional integral equations in two variables, Rend. Circ. Mat. Palermo Series 268 (2019), 139-152.
[16] A. Das, B. Hazarika, and M. Mursaleen, Application of measure of noncompactness for solvability of the infinite system of integral equations in two variables in $\ell_{p}(1<p<\infty)$, Rev. Real Acad. Cien. Exact. Físic. Natur. Serie A. Mate. 113 (2019), 31-40.
[17] A. Das, B. Hazarika, V. Parvaneh, and M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci. 15 (2021), 241-251.
[18] A. Das, S.A. Mohiuddine, A. Alotaibi and B.C. Deuri, Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces, Alexandria Engin. J. 61 (2022), no. 3, 2010-2015.
[19] B. Hazarika, R. Arab, and M. Mursaleen, Applications of measure of noncompactness and operator type contraction for existence of solution of functional integral equations, Complex Anal. Oper. Theory 13 (2019), 3837-3851.
[20] B. Hazarika, R. Arab, and M. Mursaleen, Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in ℓ_{p}-space, Filomat 33 (2019), no. 7, 2181-2189.
[21] F. Jarad, M.A. Alqudah and T. Abdeljawad, On more general forms of proportional fractional operators, Open Math. 18 (2020), no. 1, 167-176.
[22] M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), no. 1, 1-9.
[23] K. Kuratowski, Sur les espaces complets, Fund. Math. 1 (1930), no. 15, 301-309.
[24] M. Mursaleen, Differential equations in classical sequence spaces, Rev. Real Acad. Cien. Exact. Físic. Natur. Ser. A. Mat. 111 (2017), 587-612.
[25] M. Mursaleen and S. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in ℓ_{p} spaces, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), no. 4, 2111-2115.
[26] H.K. Nashine, R. Arab, R.P. Agarwal, and M. De la Sen, Positive solutions of fractional integral equations by the technique of measure of noncompactness, J. Inequal.Appl. 2017 (2017), 1-16.
[27] V. Parvaneh, S. Banaei, J.R. Roshan, and M. Mursaleen, On tripled fixed point theorems via measure of noncompactness with applications to a system of fractional integral equations, Filomat 35 (2021), no. 14, 4897-4915.
[28] V. Parvaneh, M. Khorshidi, M. De La Sen, H. Işık, and M. Mursaleen, Measure of noncompactness and a generalized Darbo's fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ. 2020 (2020), no. 1, 243.
[29] M. Rabbani, A. Das, B. Hazarika, and R. Arab, Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations, Chaos Solitons Fractals 140 (2020), 110221.
[30] H.M. Srivastava, A. Das, R. Hazarika, and S. Mohiuddine, Existence of solution for non-linear functional integral equations of two variables in Banach algebra, Symmetry 11 (2019), no. 5, 674.

[^0]: * Corresponding author

 Email addresses: bhuban.math@gmail.com (Bhuban Chandra Deuri), math.anupam@gmail.com (Anupam Das)

