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Abstract

A fixed point theorem is proved using a newly constructed contraction operator in this article, and the solvability of
a more general type of fractional integrals based here on the proportional derivative is analyzed. We also use suitable
examples to illustrate our findings.
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1 Introduction

Fractional integral equations play a decisive role in real-world problems. The importance of fractional order
integral equations has gained much research interest. The concept of an MNC is important in fixed point theory.
Kuratowski [23] pioneered the idea of an MNC. Using the idea of an MNC, Darbo [12] established a result proving
the presence of a fixed point for the so-called condensing operators in 1955. Fixed point theory and the MNC have
numerous applications in analyzing various integral equations found in a wide range of real-world problems (see
[3, 18, 14, 15, 17, 19, 20, 25, 13]). This theorem was highly valuable in establishing the solvability of several kinds of
differential and integral equations ([6, 7, 8, 14, 16, 30], for example).

This article aims to generalize the fixed-point theorem of Darbo and apply this theorem in the control of the
solvability of a fractional integral equation.

Let (Z, ∥ . ∥) be a real Banach space and B(θ, r) = {z ∈ Z :∥ z − θ ∥≤ r} . If E(̸= ∅) ⊆ Z. Also, Ē and ConvE
represent the closure and convex closure of E. Furthermore, let

� MZ = The collection of all non-empty and bounded subsets of Z,

� NZ = The collection of all relatively compact sets,

� R = (−∞,∞),
and
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� R+ = [0,∞) .

The definition of an MNC is as follows: [9].

Definition 1.1. A function Ω : MZ → [0,∞) is said to be an MNC in Z if it fulfills axioms:

(i) for all E ∈ MZ, Ω(E) = 0 gives E is relatively compact.

(ii) ker Ω = {E ∈ MZ : Ω (E) = 0} ≠ ϕ and ker Ω ⊂ NZ.

(iii) E ⊆ E1 =⇒ Ω (E) ≤ Ω (E1) .

(iv) Ω
(
Ē
)
= Ω (E) .

(v) Ω (ConvE) = Ω (E) .

(vi) Ω (χE+ (1− χ)E1) ≤ χΩ (E) + (1− χ)Ω (E1) for χ ∈ [0, 1] .

(vii) if Ec ∈ MZ, Ec = Ēc, Ec+1 ⊂ Ec for c = 1, 2, 3, ... and lim
c→∞

Ω (Ec) = 0 then
⋂∞

c=1 Ec ̸= ∅.

The family kerΩ is said to be the kernel of measure Ω. Since Ω(E∞) ≤ Ω(Ec), Ω(E∞) = 0. So, E∞ =
⋂∞

c=1 Ec ∈
kerΩ.

Some important theorems and definitions

The following are some fundamental theorems to recall:

Theorem 1.2. (Shauder [1]) Let U be a non-empty, closed and convex subset of a Banach Space Z. Then every
compactt continuous map G : U → U has at least one fixed point.

Theorem 1.3. (Darbo[12]) Let U be a non-empty, bounded, closed and convex (NBCC) subset of a Banach Space Z.
Let G : U → U be a continuous mapping and there is a constant χ ∈ [0, 1) such that

Ω(GB) ≤ χΩ(B), B ⊆ U.

Then G has a fixed point.

The following related concepts are needed to establish an extension of Darbo’s fixed point theorem:

Definition 1.4. ([26]) Let Λ1,Λ2 : [0,∞) → R be the two functions. Then the pair of maps (Λ1,Λ2) is called a pair
of shifting distance functions, if it satisfies following conditions:

1. For x, y ∈ [0,∞) if Λ1(x) ≤ Λ2(y) then x ≤ y.

2. For xn, yn ∈ [0,∞) such that lim
n→∞

xn = lim
n→∞

yn = z, if Λ1(xn) ≤ Λ2(yn) ∀ n then z = 0.

We denote by Λ a pair (Λ1,Λ2) of shifting distance functions.

As examples, we put Λ1(x) = x, Λ2(x) = ϵx, x ≥ 0 and ϵ ∈ [0, 1). They are obviously a pair of shifting distance
functions.

Definition 1.5. [2] A continuous function g : [0,∞)× [0,∞) → R is a function of C- class if subsequent axioms hold
true:
(1) g(m,n) ≤ m,
(2) g(m,n) = m implies that either m = 0 or n = 0. Also g(0, 0) = 0. A C- class function is symbolized by C.

For example,

(1) g(m,n) = m− n,

(2) g(m,n) = am, 0 < a < 1.

Definition 1.6. [22] A function ξ : [0,∞) → [0,∞) is an alternating distance function if:
(1) ξ(x) = 0 if and only if x = 0.
(2) ξ is continuous and increasing.
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We use Ξ to denote this class of functions. For example, ξ(x) = (1− b)x, 0 ≤ b < 1.

Definition 1.7. [2] A continuous function ϕ : [0,∞) → [0,∞) is an ultra altering distance function if ϕ(0) ≥ 0 and
ϕ(t) > 0, t > 0.

We use Φ to denote this class of functions.

Definition 1.8. A continuous function h : [0,∞) → [0,∞) is a function of A class if h(x) > x, x ∈ (0,∞). Also
h(0) = 0.

For example, h(x) = m̄x, m̄ > 1.

Definition 1.9. Let γ : R+ → R+ is a continuous and non-decreasing mapping of B class if γ(t) = t, t ≥ 0.

2 Main Results

Theorem 2.1. Let U be a NBCC subset of a Banach space Z. Also, let T : U → U be continuous mapping with

Λ1[h [ξ {µ (T Ω) + γ (µ (T Ω))}]] ≤ Λ2[g [ξ {µ (Ω) + γ (µ (Ω))} , ϕ {µ (Ω) + γ (µ (Ω))}]] (2.1)

where Ω ⊂ U and µ is an arbitrary MNC and (Λ1,Λ2) ∈ Λ, ϕ ∈ Φ, ξ ∈ Ξ, g ∈ C, h ∈ A and γ ∈ B. Then T has at
least one fixed point in U.

Proof . Let us create a sequence {Up}∞p=1 with U1 = U and Up+1 = Conv(T Up) for p ∈ N. Also T U1 = T U ⊆ U =

U1, U2 = Conv(T U1) ⊆ U = U1. Continuing in the similar manner gives U1 ⊇ U2 ⊇ U3 ⊇ . . . ⊇ Up ⊇ Up+1 ⊇ . . . .

If there exists p0 ∈ N satisfying µ(Up0) = 0 then Up0 is a compact set. In this case Schauder’s theorem implies T
has a FP in U. Let µ(Cp) > 0, p ∈ N. Now, for p ∈ N, we have

Λ1[h[ξ {µ (Up+1) + γ (µ (Up+1))}]] = Λ1[h [ξ {µ (ConvT Up) + γ (µ (ConvT Up))}]]
= Λ1[h [ξ {µ (T Up) + γ (µ (T Up))}]]
≤ Λ2[g [ξ {µ (Up) + γ (µ (Up))} , ϕ {µ (Up) + γ (µ (Up))}]].

Using the condition (1) of definition 1.4, we get

h[ξ {µ (Up+1) + γ (µ (Up+1))}] ≤ g [ξ {µ (Up) + γ (µ (Up))} , ϕ {µ (Up) + γ (µ (Up))}]
≤ ξ {µ (Up) + γ (µ (Up))} .

Clearly {ξ {µ (Up) + γ (µ (Up))}}∞p=1 is a non-negative and non-increasing sequence hence there exists a ≥ 0 such
that

lim
p→∞

ξ {µ (Up) + γ (µ (Up))} = a.

If possible let a > 0. As p→ ∞, we get
h(a) ≤ a

which is a contradiction hence a = 0, i.e.,

ξ[ lim
p→∞

{µ (Up) + γ (µ (Up))}] = 0

i.e.,
lim
p→∞

[µ (Up) + γ (µ (Up))] = 0.

Using the definition 1.9 ,we get
lim
p→∞

µ (Up) = 0.

Since Up ⊇ Up+1, by definition 1.1, we get U∞ =
⋂∞

p=1 Up is a nonempty, closed and convex subset of U and U∞
is T invariant. Thus theorem 1.2 implies that T has a fixed point in U. This completes the proof. □
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Theorem 2.2. Let U be a NBCC subset of a Banach space Z. Also T : U → U is a continuous mapping with

h [ξ {µ (T Ω) + γ (µ (T Ω))}] ≤ kg [ξ {µ (Ω) + γ (µ (Ω))} , ϕ {µ (Ω) + γ (µ (Ω))}] (2.2)

where Ω ⊂ U and µ is an arbitrary MNC and ϕ ∈ Φ, ξ ∈ Ξ, g ∈ C, h ∈ A and γ ∈ B. Then T has at least one fixed
point in U.

Proof . The result follows by taking Λ1(x) = x and Λ2(x) = kx in Theorem 2.1. □

Theorem 2.3. Let U be a NBCC subset of a Banach space Z. Also, let T : U → U be a continuous mapping with

h [ξ {2µ (T Ω)}] ≤ kg [ξ {2µ (Ω)} , ϕ {2µ (Ω)}] (2.3)

where Ω ⊂ U and µ is an arbitrary MNC and ϕ ∈ Φ, ξ ∈ Ξ, g ∈ C and h ∈ A. Then T has at least one fixed point in
U.

Proof . The result follows by taking γ(x) = x in Theorem 2.2. □

Theorem 2.4. Let U be a NBCC subset of a Banach space Z. Also, let T : U → U be a continuous mapping with

h [ξ {2µ (T Ω)}] ≤ kξ {2µ (Ω)} (2.4)

where Ω ⊂ U and µ is an arbitrary MNC and ξ ∈ Ξ and h ∈ A. Then T has at least one fixed point in U.

Proof . Use g(m,n) ≤ m in Theorem 2.3. □

Corollary 2.5. Let U be a NBCC subset of a Banach space Z. Also, let T : U → U be a continuous mapping with

µ (T Ω) ≤ λµ (Ω) , λ =
k

k̄
∈ (0, 1). (2.5)

where Ω ⊂ U and µ is an arbitrary MNC. Then T has at least one fixed point in U.

Proof . Using ξ(x) = x and h(x) = k̄x where 0 < k < 1, k̄ > 1 in Theorem 2.4. we get DPFT. □

3 Measure of noncompactness on C([0, I])

Consider the space Z = C(U) which is the set of real continuous functions on U, where U = [0, I]. Then Z is a
Banach space with the norm

∥ Λ ∥= sup {|Λ(t)| : t ∈ U} , Λ ∈ Z.

Let T (̸= ∅) ⊆ Z be bounded. For Λ ∈ T and ε > 0, denote by µ(Λ, ε) the modulus of the continuity of Λ, i.e.,

µ(Λ, ε) = sup {|Λ(t1)− Λ(t2)| : t1, t2 ∈ U, |t1 − t2| ≤ ε} .

Moreover, we set
µ(T, ε) = sup {µ(Λ, ε) : Λ ∈ T} ; µ0(T ) = lim

ε→0
µ(T, ε).

It is well-known that the function µ0 is a MNC in Z such that the Hausdorff MNC Γ is given by Γ(T ) = 1
2µ0(T )

(see [9]).

4 Solvability of a fractional integral equation

For h ∈ (0, 1] and ω ∈ C, Re(ω) > 0, we define the left fractional integral of w by [21]

(
aU

ω,h,σw
)
(φ) =

1

hωΓ(ω)

∫ φ

a

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1w(ϑ)σ
′
(ϑ)dϑ.
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In this section, we will study the fractional integral equation shown below

H(φ) = Ψ(φ,J
(
φ,H(φ)),

(
0U

ω,h,σH
)
(φ)
)
, (4.1)

where ω > 0, h ∈ (0, 1], φ ∈ U = [0, I]. Let

De0 = {H ∈ Z :∥ H ∥≤ e0} .

Assume that

(A) Ψ : U × R× R → R, J : U × R → R be continuous and there exists constants β1, β2, β3 ≥ 0 satisfying∣∣Ψ(φ,J , U1)−Ψ(φ, J̄ , Ū1)
∣∣ ≤ β1

∣∣J − J̄
∣∣+ β2

∣∣U1 − Ū1

∣∣ , φ ∈ U ; J , U1, J̄ , Ū1 ∈ R

and
|J (φ,L1)− J (φ,L2)| ≤ β3 |L1 − L2| , L1, L2 ∈ R.

(B) There exists e0 > 0 satisfying

Ψ̄ = sup
{
|Ψ(φ,J , U1)| : φ ∈ U,J ∈ [−Ĵ , Ĵ ], U1 ∈ [−Û , Û ]

}
≤ e0,

and
β1β3 < 1,

where
Ĵ = sup {|J (φ,H(φ))| : φ ∈ U,H(φ) ∈ [−e0, e0]}

and
Û = sup

{∣∣(
0U

ω,h,σH
)
(φ)
∣∣ : φ ∈ U,H(φ) ∈ [−e0, e0]

}
.

(C) Let σ : R → R be a strictly increasing continuous function.

(D) |Ψ(φ, 0, 0)| = 0, J (φ, 0) = 0.

(E) There exists a positive solution e0 of the inequality

β1β3e0 +
β2e0I

ω−1

hω−1(h− 1)Γ(ω)
.e

(h−1)I
h ≤ e0.

Theorem 4.1. If conditions (A)-(E) hold, then the Eq.(4.1) has a solution in Z = C(U).

Proof . Set the operator S : Z → Z as follows:

(SH)(φ) = Ψ(φ,J
(
φ,H(φ)),

(
0U

ω,h,σH
)
(φ)
)
.

Step 1: We show that the function S maps De0 into De0 . Let H ∈ De0 . We have

|(SH)(φ)| ≤
∣∣Ψ(φ,J

(
φ,H(φ)),

(
0U

ω,h,σH
)
(φ)
)
−Ψ(φ, 0, 0)

∣∣+ |Ψ(φ, 0, 0)|
≤ β1 |J (φ,H(φ))− 0|+ β2

∣∣(
0U

ω,h,σH
)
(φ)− 0

∣∣
≤ β1β3 |H(φ)|+ β2

∣∣(
0U

ω,h,σH
)
(φ)
∣∣ .

Also, ∣∣(
0U

ω,h,σH
)
(φ)
∣∣ = ∣∣∣∣ 1

hωΓ(ω)

∫ φ

0

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

∣∣∣∣
≤ 1

hωΓ(ω)

∫ φ

0

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1σ
′
(ϑ) |H(ϑ)| dϑ

≤ e0
hωΓ(ω)

∫ φ

0

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1σ
′
(ϑ)dϑ

≤ e0I
ω−1e

(h−1)I
h

hω−1(h− 1)Γ(ω)
.
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Hence, ∥ S ∥< e0 gives

∥ S ∥≤ β1β3e0 +
β2e0I

ω−1

hω−1(h− 1)Γ(ω)
.e

(h−1)I
h ≤ e0.

Due to the assumption (E), S maps De0 into De0 .

Step 2: We show that S is continuous on De0 . Let ε > 0 and H, H̄ ∈ De0 such that ∥ H − H̄ ∥< ε. We now have∣∣(SH) (φ)−
(
SH̄
)
(φ)
∣∣ ≤ ∣∣Ψ (φ,J (φ,H(φ)),

(
0U

ω,h,σH
)
(φ)
)
−Ψ

(
φ,J (φ, H̄(φ)),

(
0U

ω,h,σH̄
)
(φ)
)∣∣

≤ β1
∣∣J (φ,H(φ))− J (φ, H̄(φ))

∣∣+ β2
∣∣(

0U
ω,h,σH

)
(φ)−

(
0U

ω,h,σH̄
)
(φ)
∣∣ .

Also,

∣∣(
0U

ω,h,σH
)
(φ)−

(
0U

ω,h,σH̄
)
(φ)
∣∣ = ∣∣∣∣ 1

hωΓ(ω)

∫ φ

0

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1σ
′
(ϑ)
{
H(ϑ)− H̄(ϑ)

}
dϑ

∣∣∣∣
≤ 1

hωΓ(ω)

∫ φ

0

e
(h−1)(σ(φ)−σ(ϑ))

h (σ(φ)− σ(ϑ))ω−1σ
′
(ϑ)
∣∣H(ϑ)− H̄(ϑ)

∣∣ dϑ
<

εIω−1e
(h−1)I

h

hω−1(h− 1)Γ(ω)
.

Hence, ∥ H − H̄ ∥< ε gives

∣∣(SH) (φ)−
(
SH̄
)
(φ)
∣∣ < β1β3ε+

εβ2I
ω−1e

(h−1)I
h

hω−1(h− 1)Γ(ω)
.

As ε→ 0, we get
∣∣(SH) (φ)−

(
SH̄
)
(φ)
∣∣→ 0. This shows that S is continuous on De0 .

Step 3: An estimate of S with respect to µ0: Assume that ∆( ̸= ∅) ⊆ De0 . Let ε > 0 be arbitrary and choose
H ∈ ∆ and φ1, φ2 ∈ U such that |φ2 − φ1| ≤ ε and φ2 ≥ φ1.

Now,

|(SH) (φ2)− (SH) (φ1)| =
∣∣Ψ(φ2,J

(
φ2,H(φ2)),

(
0U

ω,h,σH
)
(φ2)

)
−Ψ(φ1,J

(
φ1,H(φ1)),

(
0U

ω,h,σH
)
(φ1)

)∣∣
≤
∣∣Ψ(φ2,J

(
φ2,H(φ2)),

(
0U

ω,h,σH
)
(φ2)

)
−Ψ(φ2,J

(
φ2,H(φ2)),

(
0U

ω,h,σH
)
(φ1)

)∣∣
+
∣∣Ψ(φ2,J

(
φ2,H(φ2)),

(
0U

ω,h,σH
)
(φ1)

)
−Ψ(φ2,J

(
φ1,H(φ1)),

(
0U

ω,h,σH
)
(φ1)

)∣∣
+
∣∣Ψ(φ2,J

(
φ1,H(φ1)),

(
0U

ω,h,σH
)
(φ1)

)
−Ψ(φ1,J

(
φ1,H(φ1)),

(
0U

ω,h,σH
)
(φ1)

)∣∣
≤ β2

∣∣(
0U

ω,h,σH
)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣+ β1 |J (φ2,H(φ2))− J (φ1,H(φ1))|+ µΨ(U, ε)

≤ β2
∣∣(

0U
ω,h,σH

)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣+ β1β3 |H(φ2)−H(φ1)|+ µΨ(U, ε),

where

µΨ(U, ε) = sup

{
|Ψ(φ2,J , U1)−Ψ(φ1,J , U1)| : |φ2 − φ1| ≤ ε;φ1, φ2 ∈ U ;

J ∈ [−Ĵ , Ĵ ];U1 ∈ [−Û , Û ]

}
.

Also,

∣∣(
0U

ω,h,σH
)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣ = ∣∣∣∣∣ 1

hωΓ(ω)

∫ φ2

0

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

− 1

hωΓ(ω)

∫ φ1

0

e
(h−1)(σ(φ1)−σ(ϑ))

h (σ(φ1)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

∣∣∣∣∣
≤ 1

hωΓ(ω)

∣∣∣∣∣
∫ φ2

0

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ
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−
∫ φ1

0

e
(h−1)(σ(φ1)−σ(ϑ))

h (σ(φ1)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

∣∣∣∣∣
≤ 1

hωΓ(ω)

∣∣∣∣∣
∫ φ2

0

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

−
∫ φ1

0

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

∣∣∣∣∣
+

1

hωΓ(ω)

∣∣∣∣∣
∫ φ1

0

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

−
∫ φ1

0

e
(h−1)(σ(φ1)−σ(ϑ))

h (σ(φ1)− σ(ϑ))ω−1H(ϑ)σ
′
(ϑ)dϑ

∣∣∣∣∣
≤ 1

hωΓ(ω)

∫ φ2

φ1

e
(h−1)(σ(φ2)−σ(ϑ))

h (σ(φ2)− σ(ϑ))ω−1 |H(ϑ)|σ
′
(ϑ)dϑ

+
1

hωΓ(ω)

∫ φ1

0

∣∣∣∣∣
(
e

(h−1)(σ(φ2)−σ(ϑ))
h (σ(φ2)− σ(ϑ))ω−1 − e

(h−1)(σ(φ1)−σ(ϑ))
h (σ(φ1)− σ(ϑ))ω−1

)
H(ϑ)σ

′
(ϑ)

∣∣∣∣∣dϑ
≤ −e

(h−1)I
h

hω−1(h− 1)Γ(ω)
∥ H ∥ (φ2 − φ1)

ω−1

+
∥ H ∥
hωΓ(ω)

∫ φ1

0

∣∣∣∣∣
(
e

(h−1)(σ(φ2)−σ(ϑ))
h (σ(φ2)− σ(ϑ))ω−1 − e

(h−1)(σ(φ1)−σ(ϑ))
h (σ(φ1)− σ(ϑ))ω−1

)
σ

′
(ϑ)

∣∣∣∣∣dϑ.
As ε→ 0, then φ2 → φ1 and so,

∣∣(
0U

ω,h,σH
)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣→ 0. Hence,

|(SH) (φ2)− (SH) (φ1)| ≤ β2
∣∣(

0U
ω,h,σH

)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣+ β1β3µ(H, ε) + µΨ(U, ε),

gives
µ(SH, ε) ≤ β2

∣∣(
0U

ω,h,σH
)
(φ2)−

(
0U

ω,h,σH
)
(φ1)

∣∣+ β1β3µ(H, ε) + µΨ(U, ε).

By the uniform continuity of Ψ on U × [−Ĵ , Ĵ ]× [−Û , Û ] we have µΨ(U, ε) → 0, as ε→ 0.

Taking supH∈∆ and ε→ 0 we get,
µ0(S∆) ≤ β1β3µ0(∆).

Thus by Corollary 2.5, S has a fixed point in ∆ ⊆ De0 i.e. equation (4.1) has a solution in Z. □

Example 4.2. Consider the equation below

H(φ) =
H(φ)

9 + φ4
+

(
0U

1, 13 ,φH
)
(φ)

20
(4.2)

for φ ∈ [0, 3] = U.

We have
σ(φ) = φ;(

0U
1, 13 ,φH

)
(φ) =

3

Γ(1)

∫ φ

0

e−2(φ−ϑ)H(ϑ)dϑ.

Also, Ψ(φ,J , U1) = J + U1

20 and J (φ,H) = H
9+φ4 . It is trivial that both Ψ, J are continuous satisfying

|J (φ,L1)− J (φ,L2)| ≤
|L1 − L2|

9
,

and ∣∣Ψ(φ,J , U1)−Ψ(φ, J̄ , Ū1)
∣∣ ≤ ∣∣J − J̄

∣∣+ 1

20

∣∣U1 − Ū1

∣∣ .
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Therefore, β1 = 1, β2 = 1
20 , β3 = 1

9 and β1β3 = 1
9 < 1. If ∥ H ∥≤ e0 then

Ĵ =
e0
9

and

Û =
3e0
2

(
1− 1

e6

)
.

Further,

|Ψ(φ,J , U1)| ≤
e0
9

+
3e0
40

(
1− 1

e6

)
≤ e0.

If we choose e0 = 3 then

Ĵ =
1

3
, Û =

9

2

(
1− 1

e6

)
,

which gives
Ψ̄ ≤ 3.

For e0 = 3, however, assumption (E) is also satisfied. We can see that all of Theorem 4.1’s assumptions are
achieved, from (A) to (E). Equation (4.2), according to Theorem 4.1, has a solution in Z = C(U).
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