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Abstract

We consider in this paper a Neumann p⃗(x)−elliptic problems of the type
−∆p⃗(x)u+ λ(x)|u|p0(x)−2u = αf(x, u) + βg(x, u) in Ω,
N∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi
γi = 0 on ∂Ω.

We prove the existence of three weak solutions in the framework of anisotropic Sobolev spaces with variable exponent
W 1,p⃗(·)(Ω) under some hypotheses. The approach is based on a recent three critical points theorem for differentiable
functionals.
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1 Introduction

In this paper, we study the existence of three weak solutions of the following non-linear anisotropic problem
−

N∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi

)
+ λ(x)|u|p0(x)−2u = αf(x, u) + βg(x, u) in Ω,

N∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi
γi = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, and let γ⃗ be the outward unit normal vector on
∂Ω and let γi, i ∈ {1 . . . N}, α, β > 0 are real numbers, and pi(x) ∈ C+(Ω) for i = 1, . . . , N. The functions f(x, t) and
g(x, t) in the right-hand side of equation (1.1) satisfies some suitable conditions which will be specified later in this
article.
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It’s clear that this p⃗(·)-Laplace operator

∆p⃗(·)u =

N∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi

)
, (1.2)

is a generalization of the p(·)-Laplace operator

∆p(·)u = div
(
|∇u|p(x)−2∇u

)
. (1.3)

The p(·)-Laplacian is a meaningful generalization of the p-Laplacian operator

∆pu = div
(
|∇u|p−2∇u

)
, (1.4)

obtained in the case when p is a positive constant.

In the classical Sobolev spaces, G. Bonanno and P. Candito [7] have proved the existence of three solutions for the
problem (1.1), for more results see [2, 6, 30].

In the Sobolev variable exponent setting, Pan et al. [20] solved the problem (1.1), see also [12, 21, 23] for related
topics.

The study of nonlinear partial differential equations in this type of spaces is strongly motivated by numerous
phenomena of physics, namely the problems related to non Newtonian fluids of strongly inhomogeneous behavior
with a high ability of increasing their viscosity under a different stimulus, like shear rate, magnetic or electric field
[4, 9, 11, 32].

It is not a surprise that, when passing from a variable exponent to an anisotropic variable exponent, new difficulties
occur. To overpass these difficulties, we combine the classical techniques with the recent techniques that appeared
when treating anisotropic problems with variable exponents. Many such problems that are related to our study were
presented in [1, 10, 18]. Nonetheless, the hypotheses we use in this paper are totally different from those ones and so
are our results.

The necessity for anisotropic spaces with variable exponents arises due to the varied behaviors exhibited by some
materials in different directions. In [1], Ahmed, Hjiaj, and Touzani examined the Neumann p⃗(·)-elliptic problem, as
demonstrated in equation (1.1).They established the existence of multiple weak solutions under augmented conditions
in the anisotropic variable exponent Sobolev spaceW 1,p⃗(·)(Ω). Razani and Soltani explored the multiplicity of solutions
for a similar Neuman problem in [33] under the assumptions that pi(x) ≥ 2 for all x ∈ Ω and i ∈ [[1, N ]], as
well as an additional hypothesis regarding the second terms f and g. Additional related findings can be found in
[26, 27, 28, 33, 29].

It is worth noting that exploring the existence and multiplicity of solutions for the equation (1.1) in different
boundary conditions or in Orlicz and Musielak Sobolev spaces is a fascinating problem. For those interested, more
information about these spaces can be found in [14, 17, 19], as well as in the references cited therein.

The following theorem plays an important role in this paper.

Theorem 1.1. ([31]). Let E be a separable and reflexive real Banach space; Ψ : E −→ R a continuously Gâteaux
differentiable and sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits a continuous
inverse on E∗, Φ : E −→ R a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact.
Assume that

(a)

lim
∥u∥E−→+∞

(
Ψ(u) + αΦ(u)

)
= +∞ for all α > 0;

and there are r ∈ R and u0, u1 ∈ E such that

(b)
Ψ(u0) < r < Ψ(u1);

(c)

inf
u∈Ψ−1(]−∞,r])

Φ(u) >

(
Ψ(u1)− r

)
Φ(u0) +

(
r −Ψ(u0)

)
Φ(u1)

Ψ(u1)−Ψ(u0)
.
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Then there exist an open interval Λ ⊂]0,+∞[ and a positive real number ρ such that for each α ∈ Λ and every
continuously Gâteaux differentiable functional J : E −→ R with compact derivative, there exists σ > 0 such that for
each β ∈ [0, σ], the equation

Ψ′(u) + αΦ′(u) + βJ ′(u) = 0,

has at least three solutions in E whose norms are less than ρ.

This paper is organized as follows: In Section 2, we present some necessary preliminary knowledge on the anisotropic
Sobolev spaces with variable exponents. We introduce in the Section 3, some assumptions for which our problem has
a solutions. In the final section we state and prove the existence of three weak solutions for our Neumann elliptic
problem. Our main results, it is a result nouveau. So, even if for the constant exponent case.

2 Preliminary

In this section we summarize notation, definitions and properties of our framework. For more details we refer to
[13, 16, 26, 27, 28, 29, 33]. Let Ω be a bounded domain in RN , we define:

C+(Ω) =
{
measurable function p(·) : Ω −→ R such that 1 < p− ≤ p+ < ∞

}
,

where
p− = ess inf

{
p(x) / x ∈ Ω

}
and p+ = ess sup

{
p(x) / x ∈ Ω

}
.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all measurable functions u : Ω −→ R
for which the convex modular

ρp(·)(u) :=

∫
Ω

|u|p(x) dx,

is finite, then
∥u∥Lp(·)(Ω) = ∥u∥p(·) = inf

{
λ > 0 : ρp(·)(u/λ) ≤ 1

}
,

defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space
(
Lp(·)(Ω), ∥ · ∥p(·)

)
is a separable Banach space.

Moreover, the space Lp(·)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where
1

p(x)
+

1

p′(x)
= 1. Finally, we have the Hölder type inequality:

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p−)′

)
∥u∥p(·)∥v∥p′(·), (2.1)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω). An important role in manipulating the generalized Lebesgue spaces is played
by the modular ρp(·) of the space Lp(·)(Ω). We have the following result.

Proposition 2.1. ([13]). If u ∈ Lp(·)(Ω), then the following properties hold true:

(i) ∥u∥p(·) < 1(= 1, > 1) ⇐⇒ ρp(·)(u) < 1(= 1, > 1),

(ii) ∥u∥p(·) > 1 =⇒ ∥u∥p
−

p(·) < ρp(·)(u) < ∥u∥p
+

p(·),

(iii) ∥u∥p(·) < 1 =⇒ ∥u∥p
+

p(·) < ρp(x)(u) < ∥u∥p
−

p(·).

We define the Sobolev space with variable exponent by:

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)

}
,

equipped with the following norm

∥u∥W 1,p(·)(Ω) = ∥u∥1,p(·) = ∥u∥p(·) + ∥∇u∥p(·).

The space
(
W 1,p(·)(Ω), ∥ · ∥1,p(·)

)
is a separable and reflexive Banach space. We refer to [13] for the elementary

properties of these spaces.
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Now, we present the anisotropic Sobolev space with variable exponent which is used for the study of our main
problem.

Let p0(x), p1(x), . . . , pN (x) be N + 1 variable exponents in C+(Ω). We denote

p⃗(x) =
{
p0(x), p1(x), . . . , pN (x)

}
, D0u = u and Diu =

∂u

∂xi
for i = 1, . . . , N.

We define
p = min

{
p−0 , p

−
1 , . . . , p

−
N

}
then p > 1, (2.2)

and
p = max

{
p+0 , p

+
1 , . . . , p

+
N

}
. (2.3)

The anisotropic variable exponent Sobolev space W 1,p⃗(·)(Ω) is defined as follows

W 1,p⃗(·)(Ω) =
{
u ∈ Lp0(·)(Ω) and Diu ∈ Lpi(·)(Ω), i = 1, 2, . . . , N

}
,

endowed with the norm

∥u∥W 1,p⃗(·)(Ω) = ∥u∥1,p⃗(·) = ∥u∥Lp0(·)(Ω) +

N∑
i=1

∥Diu∥Lpi(·)(Ω). (2.4)

(Cf. [5, 24, 25] for the constant exponent case). For the basic properties of W 1,p⃗(·)(Ω), see [8, 22].

Proposition 2.2. ([15]). The space
(
W 1,p⃗(·)(Ω), ∥ · ∥1,p⃗(·)

)
is a separable and reflexive Banach space, if p−i > 1 for

i = 1, . . . , N .

From now on, we always assume that
p > N. (2.5)

Remark 2.3. Since W 1,p⃗(·)(Ω) is continuously embedded in W 1,p(Ω), and W 1,p(Ω) is compactly embedded in C0(Ω)
(the space of continuous functions), thus W 1,p⃗(·)(Ω) is compactly embedded in C0(Ω).

Set

C0 = sup
u∈W 1,p⃗(·)(Ω)\{0}

∥u∥L∞(Ω)

∥u∥1,p⃗(·)
. (2.6)

Then C0 is a positive constant.

3 Basic assumptions

Throughout this paper, we assume the following assumptions.

(H1) λ(·) ∈ L∞(Ω), with λ− = ess inf λ(x) > 0.

(H2) α, β > 0 are real numbers.

We assume that f(x, u) and g(x, u) satisfy the following general conditions:

(H3) f, g : Ω× R 7−→ R are Carathéodory functions and satisfies

f(x, t) ≤ c1 + c2|t|h(x)−1, ∀(x, t) ∈ Ω× R,

g(x, t) ≤ c′1 + c′2|t|k(x)−1, ∀(x, t) ∈ Ω× R,

where h(x), k(x) ∈ C(Ω) and 1 < h(x) ≤ h+ = max
x∈Ω

h(x) < p, 1 < k(x) ≤ k+ = max
x∈Ω

k(x) < p and c1, c2, c
′
1, c

′
2

are positive constants.
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(H4) There exists a constant t0 > 0 such that

f(x, t) < 0 when |t| ∈ [0, t0],

f(x, t) > M > 0 when |t| ∈ [t0,+∞[,

where M is a positive constant.

We set

F (x, t) =

∫ t

0

f(x, s)ds and G(x, t) =

∫ t

0

g(x, s)ds. (3.1)

Before stating the result to be proved, we introduce the functionals Ψ, Φ : W 1,p⃗(·)(Ω) −→ R by

Ψ(u) =

N∑
i=1

∫
Ω

1

pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)

dx+

∫
Ω

λ(x)

p0(x)
|u|p0(x) dx, (3.2)

Φ(u) = −
∫
Ω

F (x, u) dx, (3.3)

and

J(u) = −
∫
Ω

G(x, u) dx. (3.4)

Let us start by giving the definition of weak solution for the problem (1.1).

Definition 3.1. A measurable function u ∈ W 1,p⃗(·)(Ω) is called a weak solution of the Neumann elliptic problem
(1.1) if

N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi

∂v

∂xi
dx+

∫
Ω

λ(x)|u|p0(x)−2uv dx− α

∫
Ω

f(x, u)v dx− β

∫
Ω

g(x, u)v dx, (3.5)

for all v ∈ W 1,p⃗(·)(Ω).

We recall the following results concerning the functionals Φ,Ψ and J .

Lemma 3.2. ([10]). The functionals Ψ,Φ and J are well-defined on W 1,p⃗(·)(Ω). In addition, Ψ,Φ and J are of class
C1(W 1,p⃗(·)(Ω),R) and

⟨Ψ′(u), v⟩ =
N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi

∂v

∂xi
dx+

∫
Ω

λ(x)|u|p0(x)−2uv dx,

⟨Φ′(u), v⟩ = −
∫
Ω

f(x, u)v dx,

and

⟨J ′(u), v⟩ = −
∫
Ω

g(x, u)v dx,

for all u, v ∈ W 1,p⃗(·)(Ω).

Lemma 3.3. ([15]). Let (H1)-(H4) holds. Then Ψ,Φ and J are sequentially weakly lower semi-continuous.

Lemma 3.4. Let 1
p′
i
+ 1

pi
= 1. Then Ψ′ : W 1,p⃗(·)(Ω) −→ W−1,p⃗(·)′(Ω) is coercive, a homeomorphism and uniformly

monotone, where p⃗(·)′ =
{
p′0, . . . p

′
N

}
, (cf. [5] for the constant exponent case).
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Proof . When ∥u∥1,p⃗(·) > 1, we have

Ψ(u) =

N∑
i=1

∫
Ω

1

pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)

dx+

∫
Ω

λ(x)

p0(x)

∣∣∣u∣∣∣p0(x)

dx

≥
N∑
i=1

1

p+i

(∥∥∥ ∂u

∂xi

∥∥∥p
pi(·)

)
+

λ−

p+0

(
∥u∥pp0(·)

)
(by Proposition 2.1)

≥
min

{
1, λ−}

(N + 1)p−1p
∥u∥p1,p⃗(·),

which shows that Ψ is coercive. It is obvious that (Ψ′)−1 : W−1,p⃗(·)′(Ω) −→ W 1,p⃗(·)(Ω) exists and continuous, because
Ψ′ : W 1,p⃗(·)(Ω) −→ W−1,p⃗(·)′(Ω) is a homeomorphism. Recalling the following well-known inequality(

| a |θ−2 a− | b |θ−2 b
)
(a− b) ≥ 1

2θ
|a− b|θ, ∀a, b ∈ RN , ∀θ ≥ 2,

then we have for all u, v ∈ W 1,p⃗(·)(Ω)

⟨Ψ′(u)−Ψ′(v), u− v⟩ =

N∑
i=1

∫
Ω

[∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi
−
∣∣∣ ∂v
∂xi

∣∣∣pi(x)−2 ∂v

∂xi

]( ∂u

∂xi
− ∂u

∂xi

)
dx

+

∫
Ω

λ(x)
(
|u|p0(x)−2u− |v|p0(x)−2v

)
(u− v) dx

≥ 1

2p

[ N∑
i=1

∫
Ω

(∣∣∣ ∂u
∂xi

− ∂v

∂xi

∣∣∣pi(x))
dx+ λ−

∫
Ω

(
|u− v|p0(x)

)
dx

]

≥ 1

2p

[ N∑
i=1

(∥∥∥ ∂u

∂xi
− ∂v

∂xi

∥∥∥p
pi(·)

− 1
)
+ λ−

(
∥u− v∥pp0(·) − 1

)]
(by Proposition 2.1)

≥
min

{
1, λ−}

2(N + 1)p−1p
∥u− v∥p1,p⃗(·), ∀u, v ∈ W 1,p⃗(·)(Ω),

i.e. Ψ′ is uniformly monotone. We deduce that (Ψ′)−1 exists and it is continuous. □

4 Main Results

Now, we formulate our main result.

Theorem 4.1. Let (H1)-(H4) holds and p > N . Then there exist an open interval Λ ⊂]0,+∞[ and a constant ρ > 0
such that for any α ∈ Λ and every function g : Ω × R −→ R which satisfying (H3), there exists σ > 0 such that for
each β ∈ [0, σ] problem (1.1) has at least three solutions in W 1,p⃗(·)(Ω) whose norms are less than ρ.

Proof . In order to prove this result, we apply Theorem 1.1. Below we denote by di a generic positive constant. Since
1 < h(x) ≤ h+ = max

x∈Ω
h(x) < p, we obtain W 1,p⃗(·)(Ω) ↪→ W 1,p(Ω) ↪→ Lp(Ω) ↪→ Lh+

(Ω), so we can find two positive

constants d1, d2 such that
∥u∥Lh+ (Ω) ≤ d1∥u∥1,p⃗(·), (4.1)

∥u∥Lh− (Ω) ≤ d2∥u∥1,p⃗(·), (4.2)

and by using (H3), we have

Ψ(u) + αΦ(u) =

N∑
i=1

∫
Ω

1

pi(x)

∣∣∣ ∂u
∂xi

∣∣∣pi(x)

dx+

∫
Ω

λ(x)

p0(x)
|u|p0(x) dx− α

∫
Ω

F (x, u) dx

≥
min

{
1, λ−}

(N + 1)p−1p
∥u∥p1,p⃗(·) − αc1

∫
Ω

|u| dx− αc2

∫
Ω

1

h(x)
|u|h(x) dx

≥
min

{
1, λ−}

(N + 1)p−1p
∥u∥p1,p⃗(·) − αc1∥u∥Lh(Ω) − αd3

(
∥u∥h

+

Lh(Ω) + ∥u∥h
−

Lh(Ω)

)
≥

min
{
1, λ−}

(N + 1)p−1p
∥u∥p1,p⃗(·) − d4∥u∥1,p⃗(·) − d5∥u∥h

+

1,p⃗(·),
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for ∥u∥1,p⃗(·) > 1 and any α > 0. Since h+ < p, then lim
∥u∥1,p⃗(·)−→+∞

(Ψ(u) + αΦ(u)) = +∞ and (a) is verified.

In the following, we will verify the conditions (b) and (c) in Theorem 1.1. By F ′
t (x, t) = f(x, t) and assumption

(H4), it follows that F (x, t) is increasing for t ∈ [t0,+∞[ and decreasing for t ∈ [0, t0]. Obviously

F (x, 0) = 0 and lim
t−→+∞

F (x, t) = +∞.

Then there exists a real number δ > t0 such that

F (x, t) ≥ 0 = F (x, 0) ≥ F (x, τ), ∀x ∈ Ω, ∀t > δ, and τ ∈ [0, t0]. (4.3)

Let c, m be two real numbers such that 0 < c < min{1, C0} with C0 given in remark 2.3 and m > δ satisfies

mp∥λ∥L1(Ω) > 1, (4.4)

and
mp∥λ∥L1(Ω) > 1. (4.5)

By (4.3) we obtain ∫
Ω

sup
0≤t≤c

F (x, t) dx ≤ 0 <
1

mp

( c

C0

)p
∫
Ω

F (x,m) dx.

Consider u0, u1 ∈ W 1,p⃗(·)(Ω), with u0(x) = 0 and u1(x) = m for any x ∈ Ω. We define r =
min

{
1,λ−

}
(N+1)p−1p

(
c
C0

)p

.

Clearly, r ∈]0, 1[. A simple computation implies

Ψ(u0) = Φ(u0) = 0.

Let m > 1. Then, if we consider formula (4.4) we get

Ψ(u1) =

∫
Ω

1

p0(x)
λ(x)mp0(x) dx

≥ 1

p
mp

∫
Ω

λ(x) dx

=
1

p
mp∥λ∥L1(Ω)

>
1

p

>
min

{
1, λ−}

(N + 1)p−1p

( c

C0

)p

= r. (4.6)

Similarly for m < 1, by help of (4.5), we get the desired result. Thus, we deduce that

Ψ(u0) < r < Ψ(u1),

and (b) in Theorem 1.1 is verified. Finally, we will verify that condition (c) of Theorem 1.1 is fulfilled. Moreover, we
have

Φ(u1) = −
∫
Ω

F (x,m) dx

= −F (x,m)|Ω|, (4.7)

and (
Ψ(u1)− r

)
Φ(u0) +

(
r −Ψ(u0)

)
Φ(u1)

Ψ(u1)−Ψ(u0)
= r

Φ(u1)

Ψ(u1)

= −r
F (x,m)|Ω|∫

Ω

α(x)

p0(x)
mp0(x) dx

< 0. (4.8)
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Next, we consider the case u ∈ W 1,p⃗(·)(Ω) such that ∥u∥1,p⃗(·) ≤ 1 with Ψ(u) ≤ r < 1. Since

min
{
1, α−}

(N + 1)p−1p

∥∥∥u∥∥∥p
1,p⃗(·)

≤ 1

p

( N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pi(x)

dx+

∫
Ω

|u|p0(x) dx
)
≤ Ψ(u) ≤ r

< 1.

Thus, using remark 2.3, we have

∥u∥L∞(Ω) ≤ C0

(
pr
) 1

p

= c.

The above inequality shows that

− inf
u∈Ψ−1(]−∞,r])

ϕ(u) = sup
u∈Ψ−1(]−∞,r])

−ϕ(u)

≤
∫
Ω

sup
0≤t≤c

F (x, t) dx

≤ 0.

It follows that

− inf
u∈Ψ−1(]−∞,r])

ϕ(u) < r

∫
Ω

F (x, b) dx∫
Ω

1

p0(x)
λ(x)mp0(x) dx

.

That is

inf
u∈Ψ−1(]−∞,r])

ϕ(u) >

(
Ψ(u1)− r

)
ϕ(u0) +

(
r −Ψ(u0)

)
ϕ(u1)

Ψ(u1)−Ψ(u0)
.

which means that condition (c) in Theorem 1.1 is verified. So, all the assumptions of Theorem 1.1 are satisfied and
the conclusion follows. □
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