
Int. J. Nonlinear Anal. Appl. 14 (2023) 8, 197–215
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.23460.2543

Gradient projection algorithms for optimization problems on
convex sets and application to SVM

Bessi Radhia, Harouna Soumare∗

LAMSIN, ENIT, Université Tunis El Manar, Tunis, Tunisie

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we present some gradient projection algorithms for solving optimization problems with a convex-
constrained set. We derive the optimality condition when the convex set is a cone and under some mild assumptions,
we prove the convergence of these algorithms. Finally, we apply them to quadratic problems arising in training support
vector machines for the Wisconsin Diagnostic Breast Cancer (WDBC) classification problem.
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1 Introduction

In this paper, we deal with a minimization problem of the form

min
α∈Ω

J(α), (1.1)

where Ω is a given non empty closed convex set of Rd and J is a continuous differentiable function. A necessary
optimality condition for a solution ᾱ to (1.1) is −∇J(ᾱ) ∈ NΩ(ᾱ), where NΩ(ᾱ) is the normal cone to Ω at ᾱ. This
optimality condition, which becomes also sufficient if J is convex on Ω, is equivalent to the following Euler condition:

(∇J(ᾱ), α− ᾱ) ≥ 0,∀ α ∈ Ω, (1.2)

where (., .) designates the inner product in Rn [15, 16]. We denote by PΩ the projection operator on Ω, i.e. given
a ∈ Rn,

PΩ(a) = argmin
α∈Ω

∥α− a∥2,

where ∥.∥ is the Euclidean norm. Every optimal solution to the problem (1.1) satisfies also, for all r > 0,

ᾱ = PΩ(α− r∇J(ᾱ)). (1.3)
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We recall that every point ᾱ satisfying (1.2) and (1.3) is a stationary for problem (1.1). Many numerical methods
can be adopted to solve problems of the form (1.1) such as penalization method, Uzawa algorithm or interior point
method. The choice of each numerical method depends on the nature of Ω. The gradient-projection algorithm (GPA)
is a powerful method for solving problems of type (1.1). This algorithm consists of:

• Choosing α0 ∈ Ω.

• For k ≥ 0, computing αk+1 = PΩ(α
k − rk∇J(αk))

The sequence of step sizes (rk) may be chosen in different ways and most of convergence results of gradient
projection algorithm suppose that the gradient of J is L− Lipschitz. The study of this algorithm for rk = r is
constant was the subject of many works [5, 3, 15], where it was proven, for fixed rk = r ∈]0, 2

L [, algorithm (GPA)
converges to ᾱ, the unique solution to the problem (1.1) for every choice of initial vector α0. More generally, if the
sequence of step size (rk) is such that:

0 < lim inf
k→+∞

rk ≤ lim sup
k→+∞

rk <
2

L
,

and if in addition, J is such that {α ∈ Rn / J(α) ≤ J(α0)} is bounded, then, every cluster point of (αk) is a stationary
point of (1.1) and satisfies Euler condition [15, 16]. Convergence of (GPA) under different choices of the step size
sequence (rk) has been discussed in [18].

In the case of relatively simple structure of Ω, the authors in [13] studied (GPA) with line search strategy using
exact minimization and rk = argmin

r∈R
J(PΩ(α

k − r∇J(αk))). They proved that every cluster point of the sequence

(αk), generated by (GPA) is a stationary point of the problem (1.1). In the case of a general closed convex set, another
step size rule has been proposed in [2] called generalized Armijo step-size rule to be used with (GPA). This rule is
inspired by Armijo step-size proposed in [1] for unconstrained optimization problems. We propose in this work some
new algorithms and then we apply them to Support Vector Machine classification problems.

Support Vector Machines (SVMs), or Vast Margin Separators stem from the work of [21] are a set of supervised
learning methods which allow to solve classification or regression problems. An SVM is defined by a separating
hyperplane. In the case of a binary classification, for a set of examples, each marked as belonging to one of two classes
(1 and -1), the SVM constructs a hyperplane with optimal margin which classifies or separates the data better while
maximizing the distance between the two classes.

Consider n training set D = {(xi, yi) | xi ∈ Rd, yi ∈ {−1, 1}}ni=1, where xi is the ith example of dimension d and
yi is the corresponding class. When the data is linearly separable, the goal is to find a linear separator

f(xi) = wTxi + b, with f(xi) ≥ 0 if yi = 1 and f(xi) ≤ 0 if yi = −1, ∀i ∈ {1, ..., n},

where w is the weight vector and b is the bias. The problem is rewritten

yi(w
Txi + b) ≥ 0, ∀i ∈ {1, ..., n}.

The separating hyperplane is defined by

f(xi) = wTxi + b = 0.

If the data is linearly separable, we can find two parallel hyperplanes that separate the two classes, so that the
distance between them is as large as possible. The region bounded by the two hyperplanes is called the margin, and
the optimal (maximum margin) hyperplane is the hyperplane located midway between them. Hyperplanes are defined
by the equation

wTxi + b = yi (yi = ±1), ∀i ∈ {1, ..., n}.

The problem is written as an optimization problem with inequality constraints

min
w,b

1

2
||w||22

s.t. yi(w
Txi + b) ≥ 1, ∀i ∈ {1, ...n}.

(1.4)

In the non-linearly separable case, we use a nonlinear transformation

ϕ : Rd −→ Rp

x −→ ϕ(x)
,
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which transforms the data points into a larger space Rp for p > d, in which we have separability. The resolution of
the (1.4) (primal problem) can be done directly, However, it is very difficult to solve the primal problem when d is
much larger than n. One can however, pass to the dual formulation (1.5) of the problem, which is easy to solve. One
of the main tasks in training SVMs is to solve its following dual quadratic optimization problem :

min J(α) := 1
2 (Aα,α)− (e, α)

α ∈ Ω
, (1.5)

for Ω = {α ∈ Rn, (y, α) = 0 and 0 ≤ αi, i = 1, ..., n}. Where A = (aij) is a symmetric n-square matrix defined by
aij = yiyjK(xi, xj), i, j = 1, 2, ..., n, where K : Rd × Rd → R is the Kernel function, and the vector e ∈ Rn is given

by e =

 1
...
1

. The construction of the kernel can be done using an implicit function ϕ which transforms the input

space Rd into a Hilbert space H provided with a scalar product of higher dimension. Through this dot product, the
kernel is defined by K(x, x′) = (ϕ(x), ϕ(x′)), (x, x′) ∈ Rd × Rd.

The linear kernel corresponds to K(x, x′) = (x, x′) and the Gaussian kernel, using o radial basis function (RBF)
for which K(x, x′) = exp(−γ||x− x′||2), where γ > 0.

An advantage of using kernels is that they are typically tractable, even when ϕ is not. If ᾱ is a solution to the
quadratic minimizing problem (1.5), then the decision function, applied to a test vector xtest, is expressed by the
kernel K and it is of the form:

f(xtest) =

n∑
i=0

ᾱiyiK(xi, xtest) + b̄,

where b̄ = yj −
n∑

i=1

ᾱiK(xi, xj), for a j for which ᾱj > 0.

Many specific algorithms were proposed to solve this quadratic problem. The Sequential Minimal Optimization (SMO)
algorithm [14] is the most used one to solve numerically such problem. The main idea of (SMO) consists of restricting
data to have only two elements in each iteration, it does not require any optimization software in order to solve a
simple two-variable problem.

In [4] the authors combined projection algorithms with SMO to solve different forms of SVMs problem.

The rest of the paper is organized as follows: In Section 3, the set Ω is supposed to be a convex cone and two
algorithms are proposed to solve the problem (1.1). In Section 4, Ω is extended to be a convex set where we study
convergence of the generalized projection algorithm We establish convergence of different proposed algorithms under
different assumptions of the cost function J . In order to apply the proposed algorithms on SVM problem, we give
direct methods to calculate the projection on the corresponding feasible set. Proposed algorithms are implemented and
applied on breast cancer diagnosis problem. We start first by reconsidering the descent algorithms for unconstrained
minimizing problems.

2 A review of unconstrained descent algorithm

We consider here the case of an unconstrained problem where we have Ω = Rd. We begin this paper by revising
gradient and Newton descent algorithms with exact line search

We suppose that J is continuously differentiable and we recall that a direction d is said to be a descent to J at the
point α if it satisfies (∇J(α), d) < 0.

Lemma 2.1. If J is convex, then, for all α ∈ Rd and for every descent direction d of J on α satisfying (∇J(α), d) < 0,
we have

argmin
r∈R

J(α+ rd) = arg min
r∈R+

J(α+ rd).
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Proof . Let r̄ ∈ argmin
r∈R

J(α + rd). Then J(α + r̄d) ≤ J(α). Using convexity characterization It follows that

r̄(∇J(α, d)) ≤ 0 and then r̄ > 0, since we have (∇J(α), d) < 0. □

Let consider the general descent with exact line search algorithm.

Algorithm (DA)

• Choose α0

• For k ≥ 0,

- Choose a descent direction dk of J at αk

- Compute rk ∈ argmin
r∈R

J(αk + rdk).

- Compute αk+1 = αk + rkd
k,

- k := k + 1; go to step 2.

Results of the above lemma and the next proposition, which are valid for constrained or unconstrained optimization
problems, will be useful for most proposed algorithms in this paper .

Proposition 2.2. Let J be a convex function of class C1 admitting at least a minimum. We suppose that, for a same
subsequence n(k), (αk) and (dk) generated by algorithm (DG), converge respectively to ᾱ and d̄. Then, (∇J(ᾱ), d̄) = 0

Proof . Since J is convex and continually differentiable, then, ψ : r ∈ R; 7→ J(αk + rdk) is convex and of class 1 on
R and from lemma (2.1), rk ≥ 0. Moreover, ψ′(rk) = (∇J(αk + rkd

k), dk) = 0. If for a subsequence (rn(k)) converges
to 0, from the last optimality condition and continuity of ∇J , and passing to the limit for this subsequence, we get
easily (∇J(ᾱ), d̄) = 0. Otherwise, there exists r̄ > 0 such that rn(k) > r̄.

We have, by construction, the sequence J(αk) is decreasing and it is lower bounded, it is then convergent. For all
0 < r < r̄, using real value theorem, there exists 0 < r̃k < r such that

J(αk+1) = J(αk + rkd
k)

≤ J(αk + rdk)
= J(αk) + (∇J(αk + r̃kd

k), dk)
= J(αk) + ψ′(r̃k) ≤ J(αk) + ψ′(rk)
= J(αk)

.

It follows:
J(αk+1)− J(αk) ≤ J(αk + rdk)− J(αk) ≤ 0.

Passing to the limit when n(k) converges to +∞, we obtain

J(ᾱ+ rd̄)− J(ᾱ) = 0.

Since last equality is true for all r > 0, dividing by r and passing to the limit when r tends to 0+ we obtain
(∇J(ᾱ), d̄) = 0. □

In particular, for the standard gradient descent algorithm with exact line search (DA), the descent direction is
dk = −∇J(αk). If J is convex and if the sequence (αk) generated by this algorithm is bounded, then for all ᾱ a limit
of a subsequence of (αk), ᾱ satisfies necessary and sufficient optimality condition for convex minimization problem,
∇f(ᾱ) = 0, since we have ∥∇J(ᾱ)∥2 = 0. Therefore, from convexity assumption, ᾱ ∈ argminα∈Rd J(α). We retrieve
convergence result of gradient descent algorithm with line search line for convex problem.

Also note that if J is twice continuously differentiable, in newton method, we choose the descent direction dk =
−∇2J(αk)∇J(αk), where we denote by ∇2J(α) the Hessian of J at α. In the case of the constant step size rk = 1,
under some assumptions of J , we have local convergence of Newton method to a minimum of J on Rd.

If J is convex and if a cluster point ᾱ of the sequence (αk), generated by Newton method with exact line search
rk, is such that ∇2J(ᾱ) is a definite symmetric matrix, we have then ᾱ is a minimum of J on Rd.

Indeed, Newton method with exact line search rk is algorithm (DA) with dk = −∇2J(αk)∇J(αk). Since J
is convex and twice continuously differentiable, and for a subseqeunce (αk) converging to ᾱ, then (dk) converges to
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−∇2J(ᾱ)∇J(ᾱ) and from proposition (2.2), we have (∇J(ᾱ),∇2J(ᾱ)∇J(ᾱ)) = 0 and therefore ∇J(ᾱ) = 0. Convexity
of J implies that ᾱ is a minimum of J .

Global convergence of Newton method with exact line search is guaranteed if for example J is strongly convex on
Rd because:

- J is coercive and strictly convex, it has a unique minimum ᾱ

- The sequence (J(αk)) is decreasing by construction and lower bounded by J(ᾱ), as it will be clarified later, (αk) is
then bounded.

- Since, J is strongly convex, then ∇2J(α) is definite positive for all α ∈ Rd

- (αk) converges to ᾱ the unique minimum of J , due to the fact that (αk) is bounded, and every convergent subsequence
of (αk) converges to the unique minimum of J which is ᾱ.

3 Optimization problem on a convex cone

We suppose in this section that Ω ⊂ Rn is a non empty closed convex cone.

3.1 Optimality condition and projection algorithms

If the feasible set is a closed and convex cone, Euler Inequality optimality condition for problem (1.1) is equivalent
to the following optimality condition :

Proposition 3.1. We suppose that J is a differentiable function.

i) If ᾱ ∈ Ω is a solution to the problem (1.1), then

(∇J(ᾱ), ᾱ) = 0 and PΩ(−∇J(ᾱ)) = 0. (3.1)

ii) If in addition J is convex, then ᾱ ∈ Ω is a solution to the problem (1.1) if and only if conditions in (3.1) are
satisfied.

Proof .

i) Let ᾱ be an optimal solution to the problem (1.1). Then ᾱ satisfies the Euler condition:

(∇J(ᾱ), α− ᾱ) ≥ 0, ∀ α ∈ Ω.

Since Ω is a cone, α = rᾱ ∈ Ω, for all α ∈ Ω and for all r > 0. We have then,

(r − 1)(∇J(ᾱ), ᾱ) ≥ 0, ∀ r ≥ 0.

Choosing first r > 1 and then 0 ≤ r < 1, we deduce easily that (∇J(ᾱ), ᾱ) = 0.

The second property is satisfied since we have

(0− (−∇J(ᾱ)), 0− α) = −(∇J(ᾱ), α− ᾱ) ≤ 0, ∀ α ∈ Ω.

From projection operator characterization we deduce that 0 = PΩ(−∇J(ᾱ)).

ii) If J is further convex on the convex set Ω, and if ᾱ satisfies (3.1), then

(∇J(ᾱ), α− ᾱ) = −(0−∇J(ᾱ), 0− α) ≥ 0, ∀ α ∈ Ω.

Therefore, ᾱ is a solution to the problem (1.1).

□

The next lemma proves that PΩ(−∇J(α)) is a descent direction of J at α, for every point α ∈ Ω.
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Lemma 3.2. For all α ∈ Rn, we have:

i)
(PΩ(α)− α, PΩ(α)) = 0 (3.2)

ii)
(PΩ(−∇J(α)),∇J(α)) = −∥PΩ(−∇J(α))∥2 ≤ 0. (3.3)

Proof . Let α ∈ Rn.

i) The projection PΩ(α) of α ∈ Rd on Ω satisfies

(PΩ(α)− α, PΩ(α)− β) ≤ 0, ∀ β ∈ Ω.

In particular by choosing β = rPΩ(α) ∈ Ω, for first r > 1, then for 0 < r < 1, the result follows.

ii) In particular, we have
(PΩ(−∇J(α)) +∇J(α), PΩ(−∇J(α))− 0) = 0.

Therefore,
(PΩ(−∇J(α)),∇J(α))) = −∥PΩ(−∇J(α))∥2 ≤ 0.

□

Remark 3.3. From property (3.2) we can deduce that projection on the closed convex cone PΩ satisfies :

(PΩ(α)− α, β) ≥ 0, ∀ β ∈ Ω,

And hence
PΩ(rα) = rPΩ(α), , ∀α ∈ Rd, and ∀ r ≥ 0.

We now present an optimal descent projection algorithm where the descent direction is the projection of the
opposite of the gradient on the feasible set Ω. Since PΩ(−∇(α)) is a descent direction of J on α, we have first the
idea to consider the following algorithm:

Algorithm (0)

• Choose α0 ∈ Ω.

• For k ≥ 0,

- Compute gk = ∇J(αk), dk = PΩ(−gk) and rk ∈ argmin
r∈R

J(αk + rdk).

- Compute αk+1 = αk + rkd
k,

k := k + 1; go to step 2.

Remark 3.4. From lemma (2.1), it follows that rk ≥ 0 and consequently, αk+1 = αk + rkPΩ(−∇J(αk)) ∈ Ω when f
is convex differentiable function.

Proposition 3.5. We suppose that J is C1 and convex on Ω. Then, any cluster point ᾱ of the sequence (αk)
generated by the last algorithm satisfies PΩ(−∇J(ᾱ)) = 0.

Proof . Let ᾱ a cluster point of (αk). Then ᾱ is a limit of a subsequence of (αk). If for this subsequence, dk =
PΩ(−∇J(αk)) = 0, then the sequence (αk) becomes stationary and equals to ᾱ satisfying obviously PΩ(−∇J(ᾱ)) =
0. Otherwise, dk is a descent direction of J at αk. Using continuity of the two operators ∇J and PΩ, we have,
(PΩ(−∇J(αk)) converges to (PΩ(−∇J(ᾱ).

Since rk = argmin
r∈R

J(αk+rdk), and thanks to proposition (2.2) and lemma (3.2), we have (PΩ(−∇J(ᾱ)),∇J(ᾱ)) =

−∥PΩ(−∇J(ᾱ)∥2 = 0. Therefore, PΩ(−∇J(ᾱ)) = 0 as was to be proved.

□
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Remark 3.6. We have proved that ᾱ the cluster point of (αk) satisfies only one of the two optimality conditions:
PΩ(−∇J(ᾱ)) = 0 and not necessary (ᾱ,∇(J(α)) = 0. As we have seen in proposition (3.1), this in general is not
sufficient for ᾱ to be a minimum of J as shown in the following example.

Example 3.7. Consider the following minimization problem

min
α∈Ω

J(α)

where J : R2 → R;α 7→ 1
2 (α

2
1 + α2

2)− α1 + α2 and the convex cone

Ω = {α = (α1, α2) ∈ R2, α1 ≥ 0 and α2 ≥ 0}.

It is clear that that (1, 0) is the unique minimum of J on Ω. For α0 = (1.5, 0)T , we have g0 = ∇J(α0) = ( 12 , 1)
T

and d0 = PΩ(−g0) = (0, 0). Then the sequence generated by the last algorithm gives a stationary sequence αk = α0

which is not the minimum of J .

To ensure the second part of optimality condition, and in order to improve the last algorithm, since Ω is a cone, at
iteration k, knowing αk, we slightly modify the last algorithm by minimizing the cost function J from 0 in the direction
αk to obtain βk. Then we compute the optimal step size rk corresponding to the direction dk = PΩ(−∇J(βk)). We
obtain the following steepest descent algorithm :

Algorithm (1)

• Choose α0 ∈ Ω, such that J(α0) < J(0)

• For k ≥ 0,

- Compute tk = arg min
t∈R+

J(tαk), βk = tkα
k.

- Compute gk = ∇J(βk), dk = PΩ(−gk)) and rk = argmin
r∈R

J(βk + rdk).

- Compute αk+1 = βk + rkd
k,

k := k + 1; go to step 2.

Proposition 3.8. We suppose that J is C1, µ- convex and that the operator g = ∇J is L-Lipschitz continuous.
Then, the sequence (αk) generated by the algorithm (1), converges to ᾱ, the unique solution to problem (1.1).

Proof . Since J is strongly convex, it is then coercive and strictly convex, it admits then a unique minimum ᾱ on Ω.
We have,

J(αk+1) ≤ J(βk) ≤ J(αk) ≤ J(βk−1), ∀ k ∈ N∗.

The decreasing real sequences (J(αk)) and (J(βk)) are lower bounded by J(ᾱ), they are then convergent. Last
inequalities prove that

lim
k→+∞

J(αk) = lim
k→+∞

J(βk).

On the other hand, from µ-convexity assumption and using Cauchy-Schawrtz inequality, we deduce, ∀α ∈ Ω

J(α) ≥ J(0) + (∇J(0), α) + µ

2
∥α∥2 ≥ J(0)− ∥∇J(0)∥.∥α∥+ µ

2
∥α∥2.

J is then coercive. Since J is coercive and the decreasing sequence satisfies J(βk) ≤ J(ᾱ), the sequence (βk) is
bounded. For a sub-sequence if necessary, it is then convergent to β̄.

Clearly, β̄ ∈ Ω. The function J is convex and rk = argmin
r∈R

J(βk + rdk), using lemma (2.1), it follows that rk ≥ 0.

αk+1 = βk + rkd
k and lim

k→+∞
J(αk+1) = lim

k→+∞
J(βk), we check easily like in proposition (2.2) that β̄ is such that:

PΩ(−∇J(β̄)) = 0. First part of optimality condition is well satisfied.
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On the other hand, for all k, using µ- convexity of J we get

J(αk)− J(βk) ≥ (1− tk)(∇J(βk), αk) +
µ(1− tk)

2

2
∥αk∥2.

By construction, we have : tk = argmin
t≥0

ϕ(t), for ϕ(t) = J(tαk). Applying optimality condition, ϕ′(tk)(t− tk) ≥ 0

for t = 1 ≥ 0, we deduce that (∇J(βk), αk)(1− tk) ≥ 0. Moreover, we have proved that lim
k→+∞

J(αk)− J(βk) = 0, it

follows that
lim

k→+∞
(1− tk)

2∥αk∥2 = 0.

Obviously, either (1− tk)2 converges to 0, or (αk) converges to null vector.

If the last one is satisfied, continuity of ∇J yields PΩ(−∇J(0)) = 0. In this case 0 is the solution to problem
(1.1), since it satisfies the two necessary optimality conditions PΩ(−∇J(0)) = 0 and (∇J(0), 0) = 0. Otherwise, (tk)

converges to 1 and (αk) = (β
k

tk
) converges to β̄. Since we have (∇J(βk), αk) = 0, passing to the limit to deduce that

(∇J(β̄), β̄) = 0 and the necessary optimality condition (3.1) is satisfied. Uniqueness of optimal solution of problem
(PG) implies that β̄ = ᾱ. Convergence of the sequence (αk) to the unique solution to the minimizing problem (1.1) is
then proved. □

We initialize the algorithm by choosing α0 such that J(α0) < J(0) in order to grantee that αk ̸= 0, since we have
J(αk) < J(0), for all iteration k. This is due to the fact that tk can not be defined if αk = 0. We can choose α0

arbitrary in Ω. In such case, we just take tk = 1 and βk = αk = 0 if αk = 0.

If we take back example (3.7) and we apply algorithm (1) for the same initialisation α0 = (1.5, 0)T , we obtain
β0 = (1, 0) which is the optimal solution of problem. Solution is obtained here with just one iteration.

We can accelerate convergence of sequences (αk) and (βk) in algorithm (1) by combining algorithm (1) and classical
gradient projection algorithm (GPA) to obtain the following algorithm (2).

Algorithm (2)

• Choose α0 ∈ Ω, such that J(α0) < J(0)

• For k ≥ 0,

- Compute tk = arg min
t∈R+

J(tαk), βk = tkα
k.

- Compute gk = ∇J(βk), dk = PΩ(−gk)) and rk = arg min
r∈R+

J(βk + rdk).

- Compute αk+1 =

{
βk + rkd

k if J(βk + rkd
k) < J(PΩ(β

k + rkd
k))

PΩ(β
k + rkd

k) otherwise

k := k + 1; go to step 2.

Under the same assumptions of algorithm (1) we have exactly the same steps to prove convergence of algorithm
(2) to the unique solution of problem (1.1). In order to prove that PΩ(−∇J(ᾱ)) = 0, we use in algorithm (2) this
inequality J(αk+1) ≤ J(βk + rkd

k) which was an equality in proposition (3.8).

3.2 General applications

Projection on the closed convex constrained set should be easy to implement in order to be able to apply algorithms
(1) or (2). Let consider the minimizing problem of the form:

min
Ceα=b

J0(α) (3.4)

with Ce ∈ Rm ×Rn is a rectangular matrix of size (m,n) and b ∈ Rm. With the change of variable α→ α− αf , for a
feasible point αf , the problem takes the form:

min
Ceα=0

J(α), (3.5)
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where J(α) = J0(α− αf ).

The projection on the feasible convex set Ω = ker(Ce) is not difficult to compute and we have: PΩ(a) = a+ CT
e λ,

for all vector λ solution to the system CT
e Ceλ = −Cea. In particular, if Ce ∈ Rn is a line vector, then

PΩ(a) = a− Ce.a

∥Ce∥2
CT

e .

For inequality constraints of the form CIα ≥ 0, projection becomes less obvious. As examples of problem (3.4) we
can find problems related to active set or to interior point methods [6]. In particular, for quadratic problem:

min J(α) = 1
2 (Aα,α)− (e, α)

Ceα = b
DIα ≥ c

(3.6)

at each iteration k, we have to solve the constrained problem

min J(β) = 1
2 (Aβ, β)− (e, β)

Ceβ = b
(di, β) = ci, for i ∈ Ak

, (3.7)

where Ak = {i / (DIβ)i = (di, β) = ci} is the index set of active inequality constraints. In the case where the matrix
DI = −I and the inequality constraint is α ≥ 0, interior point methods consists to solve

min 1
2 (Aβ, β)− (e, β)− µ

p∑
j=1

log(βi)

Ceβ = b

, (3.8)

We can also apply algorithms (1) and (2) to solve quadratic sub problems in Sequential Quadratic Programming
(SQP) method.

3.3 Application to hard-margin SVM problem

Here, we are interested to the quadratic programming problem arising in training hard-margin Support Vectors
Machines (4.4) :

min J(α)
α ∈ Ω

(3.9)

where J(α) = 1
2 (Aα,α)− (e, α) and

Ω =
{
α ∈ Rn

+ / (y, α) = 0, αi ≥ 0, ∀ i = 1, ..., n
}
.

It is clear that Ω is non empty closed convex cone. We propose first a direct algorithm to calculate the projection
on the feasible set Ω.

3.3.1 Projection algorithm on Ω

Computing PΩ(a), the projection of a on the closed convex set Ω, for a given vector a ∈ Rn, is based on optimality
conditions of the operator PΩ.

Let ā = PΩ(a) = argmin
α∈Ω

∥x− a∥2. From Karush- Kunh and Tuker condition, there exist λ ∈ R, µ ∈ Rn
+ such that:

ā− a+ λy − µ = 0 i = 1, ..., n
µiāi = 0, i = 1, ..., n
µi ≥ 0, i = 1, ..., n

(y, ā) = 0

(3.10)

In order to calculate ā = PΩ(a), we have to establish first some of its properties. We denote the set indices of
inactive inequality constraints and its length by :

I+ = {i ∈ [1, ..., n] /āi > 0.} and np = |I+|.
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Lemma 3.9. If ā = PΩ(a) and λ its Lagrange multiplier associated to the equality constraint, then we have :

i)
ai > λyi iff āi > 0, ∀ 1 ≤ i ≤ n

ii)
ai ≤ aj iff āi ≤ āj ,∀i, j / yiyj = 1

iii)

λ =
1

np

∑
i∈I+

aiyi.

Proof .

i) For i ∈ [1, ..., n] such that āi > 0, due to condition (3.10) , we get µi = 0 and āi = ai − λyi > 0 which yields
ai > λyi. Inversely, if ai > λyi, then āi = ai − λyi + µi > µi. If µi > 0, necessarily āi > 0 which is impossible
since āiµi = 0. It follows that µi = 0 and āi = ai − λyi > 0. The first property is proved.

ii) The condition yiyj = 1 means that yi = yj = 1 or yi = yj = −1. In both cases, let ai ≤ aj . If āi > 0, then
ai > λyi = λyj . Therefore, aj > λyj and āj > 0. Then

āi = ai − λyi = ai − λyj ≤ aj − λyj = āj .

If āi = 0, clearly āj ≥ 0 = āi.

iii) Since we have, ∀i, āi = ai − λyi + µi, it is enough to multiply by āi and next to sum to get easily the expression
of λ.

□

According to the previous lemma, we can deduce that it is sufficient to compute λ to determine ā = PΩ(a) The
algorithm (3) is a direct method to compute ā : Without loss of generality we can suppose that

max{ai; yi = 1} ≥ max{ai; yi = −1}.

Otherwise we change y by its opposite.

Algorithm (3)

• Fix ai1 = max{ai; yi = 1} and aj1 = max{aj ; yj = −1}.

• Determine
I+ = {i / ai > −ai1 and yi = 1}, n+ = |I+|
I− = {j / aj1 > aj and yj = −1}, n− = |I−|

• Compute

ns = n+ + n− and λ =

∑
i∈I+

aiyi +
∑
i∈I−

aiyi

ns
.

if min
i∈I+,i≤n+

ai ≤ λ, take k1 = n+, aik = min
i∈I+

ai

while k1 > 0 and aik1
≤ λ, take

λ =
nsλ−aik1

ns−1 , k1 = k1 − 1 and ns = ns− 1

else:

k2 = n−, ajk2
= min

j∈I−
aj

while k2 > 0 and ajk2
≤ λ, take

λ =
nsλ+ajk

ns−1 , ns = ns− 1, k2 = k2 − 1.
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• Compute ā :∣∣∣∣∣∣∣∣
for i = 1, ..., k1,

āik = aik − λ.
for j = 1, ..., k2,

ājk = ajk + λ.

Knowing how to compute projection on the constrained set Ω, we can use algorithms (1) or (2) to solve the
quadratic problem (4.4).

3.3.2 Experiment results

Practically, to train the SVM problem we test algorithm (1) and (2) for linear kernel, then we chose radial basis
function (RBF) for proposed method in our experiments where the kernel:

K(x, x′) = exp(−γ∥x− x′∥2).

The dataset used here was taken from the website of Wisconsin Prognostic Breast Cancer (WPBC) which was used
in several publications in the medical literature. SVM algorithms have been applied many times on (WPBC) datasets
[20, 19, 7, 12, 22, 8]. Data consists of 569 observations with 357 negative (benign) and 212 positive (malignant)
observations. Each observation has 30 attributes. The data is split into a training set (80%) and testing set (20%)
and it is invariant for different kernel.

Python programming language is used to code and apply different algorithms in this paper. Our objective is
to compare different algorithms with K.K.T method which is in particular used and implemented in the function
’solvers.qp’ of the open source software package CVXOPT of python environment for solving convex optimization
problems.

For linear kernel, we tested the two algorithms comparing their results with one of numerical solution obtained with
python. Using the python function ’solvers.qp’ for minimizing quadratic problems, objective function value obtained
is not decreasing and it reaches −1249457.382 after number of iterations N.I = 20, −1249440.5701 for N.I = 100
and −1249411.396 after 500 iterations. But obtained solutions do not satisfy the fist part of optimality condition
cited in (3.1) for different tested iterations. For example, if we denote by β the obtained numerical solution, we get
(β,∇J(β)) = −47 for N.I = 100 and 72.09 for N.I = 2.104. For both cases, cost value function ≃ −1249.103.

This can be explained by the fact that the hard SVM problem does not have an optimal solution and the data are
not linearly separable or by the fact that the matrix A of our data is ill-conditioned and it satisfies λmin(A) << 1 <<
λmax(A), where λmin(A) and λmax(A) are respectively the smallest and largest eigenvalues of A. More precisely, for
this example, calculated with python, cond(A) = 3.84.20× 1020.

However, we obtain good accuracies for training and testing sets. For example, for number iterations equal to 20
or 500, we obtain same results with training accuracy equals to 1 and testing accuracy is 0.9298.

Applying algorithms (1) and (2), experiment results give a decreasing sequence (J(αk)) whose speed of variation
depends on the initialisation of the corresponding algorithm.

Table (1) and figure (1) illustrate these results. In table (1) we present ’qp.solver’ optimal value using the K.K.T
method, numerical optimal value by algorithm (1) or (2), number of iterations and maximum accuracy for training
(train acc) and testing set (test acc) registered for different iterations. In figures (1) and (2) we plot accuracy variation
and loss function with respect to the number of iterations for respectively algorithm (1) and (2). In the case of a
number of iterations larger then 100, we present accuracy and cost value function after each 10 iterations.

Initial value Numerical optimal value Iterations ’s’ number train accuracy test accuracy

’qp.solver’
-2.499128 -1249457.382865 100 1 0.93
−2.10−6 -1249457.382865 100 1 0.93

Alg (1)
-2.499128 -1246189.161718 100 0.94 0.96
−2.10−6 -4.118085 1000 0.94 0.95

Alg (2)
-2.499128 -1246662.90 100 0.93 0.96
−2.10−6 -4.538499 2000 0.92 0.965

Table 1: Results of linear kernel
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Figure 1: Algorithm (1): cost function and accuracy for linear kernel

Figure 2: Algorithm (2): Cost function and accuracy for linear kernel

With RBF kernel, and for the same split of data set we apply algorithms (1) and (2) to measure the accuracy
of the classification for different values of the parameter γ ∈ {0.1, 0.01, 0.0001}. For γ ̸= 0.0001, we obtained 100%
classification accuracy for training set. Accuracy for testing set depends on γ as follows table (2) and figures (3) to
(6). Iteration number depends on matrix condition number of the matrix A.

γ Initial value Numerical optimal value iterations ’s’ number train accuracy test accuracy

’qp.solver’
0.1 -26354.728 15 1 0.956
0.01 -870282.990 20 1 0.947

0.0001 -476414440.850 26 1 0.91

Alg (1)
0.1 -0.5297 -23894.962 12 1 0.956
0.01 -17.628 -517786.968 40 0.997 0.964

0.0001 -117.1588 -6735414.960 40 0.971 0.947

Alg (2)
0.1 -0.5297 -26352.0235 12 1 0.973
0.01 -17.628 -860188.953 20 0.996 0.964

0.0001 -117.1588 -11245752.089 40 0.985 0.96

Table 2: Results for γ ∈ {0.1, 0.01, 0.0001}

γ 0.1 0.01 0.005 0.0001

Cond(A) 1933719617 1137659878224 7320547409175 2.9086649077474411017

Table 3: Condition number of A

The two algorithms gave a good classification for both testing and training set where the accuracy is better for
γ = 0.01. Notice also that algorithm (2) is faster than algorithm (1).
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Figure 3: Algorithm (1): Cost function and accuracy for γ = 0.0001

Figure 4: Algorithm (1): Cost function and accuracy for γ = 0.1

Figure 5: Alg (2):Cost function and accuracy for γ = 0.0001

Figure 6: Alg (2): Cost function and accuracy for γ = 0.01

4 Optimization problem on a convex set

We suppose here that Ω is only a closed convex set, not necessary a cone.
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4.1 Generalized projection algorithm

In what we call generalized gradient projection method, the descent direction is dk = δk − αk, for δk = PΩ(α
k −

∇J(αk)). Let’s first check that for all α ∈ Ω, d = PΩ(α−∇J(α))− α is a descent direction.

Lemma 4.1. For all α ∈ Rn, we have

(PΩ(α−∇J(α))− α,∇J(α)) ≤ −∥PΩ(α−∇J(α))− α∥2. (4.1)

Proof . Let α ∈ Ω and let d = PΩ(α −∇J(α))− α. From projection operator ’s’ characterization, and since α ∈ Ω,
we get

(PΩ(α−∇J(α))− (α−∇J(α)), PΩ(α−∇J(α))− α) = (d+∇J(α), d) ≤ 0.

Then, if d ̸= 0,
(∇J(α), d) ≤ −(d, d) = −∥d∥2 < 0.

□

We propose the following gradient projection algorithm of type minimization rule :

Algorithm (4)

• Choose α0 ∈ Ω.

• for k ≥ 0,

� Compute δk = PΩ(α
k −∇J(αk)) and dk = δk − αk,

� search for rk solution of min
r∈[0,1]

J(αk + rdk),

� Compute αk+1 = αk + rkd
k

We study convergence of this algorithm for a function J with Lipschitz gradient. If for an iteration k we have
dk = 0, then the sequence (αk) becomes stationary and converges to ᾱ a stationary point of problem (PG). Otherwise:

Proposition 4.2. We suppose that J is C1, lower bounded on Ω and with gradient g = ∇J is L-Lipschitz. we
suppose that dk ̸= 0 for all k. Then,

i) if L < 1, rk = 1 for all k ∈ N.

ii) If 1 ≤ L, then rk ≥ 1
L

iii) Every cluster point ᾱ of the sequence (αk) is a stationary point of problem (PG).

Proof . By construction, 0 ≤ rk ≤ 1. If rk < 1, since rk = arg min
r∈[0,1]

J(αk + rdk), then

(∇J(αk + rkg
k), (r − rk)d

k) ≥ 0, ∀ r ∈ [0, 1].

In particular, for r = 1, we get
(∇J(αk + rkd

k), dk) ≥ 0. (4.2)

On the other hand, from property (4.1) we have :

∥dk∥2 ≤ −(∇J(αk), dk) ≤ (∇J(αk + rkd
k)− (∇J(αk), dk) ≤ rkL∥dk∥2. (4.3)

Since dk ̸= 0, simplifying by ∥dk∥ ≠ 0, we deduce that 1 ≤ rkL.

i) If L < 1, then necessary rk = 1. Otherwise, 1 ≤ rkL < rk. Contradiction, since we have 0 ≤ rk ≤ 1. .

ii) In the case where 1 ≤ L, if 0 < rk < 1, we have already 1
L ≤ rk. If rk = 1, obviously rk = 1 ≥ 1

L .
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iii) If L < 1, we retrieve the classical gradient algorithm with fixed step size rk = 1 < 2
L and convergence is then

satisfied. If 1 ≥ L, then we prove that (dk) converges to 0.

Since L ≥ 1, choosing r = 1
2L ≤ 1, and from real value theorem and inequality (4.2), there exists 0 ≤ rk ≤ r = 2

L ,
such that :

J(αk+1) ≤ J(αk + rdk) = J(αk) + r(∇J(αk + r̃kd
k), dk)

= J(αk) + r(∇J(αk), dk) + r(∇J(βk + rdk)−∇J(αk), dk)
≤ J(αk)− r∥dk∥2 + r2L∥dk∥2
≤ J(αk)− 1

4L∥d
k∥2.

.

The function J is lower bounded, then, the sequence (J(αk)) which is decreasing by construction and lower
bounded is convergent. It follows that

0 ≤ 1
4L∥d

k∥2 ≤ J(αk)− J(αk+1) → 0
k → +∞ .

Finally, if ᾱ a limit of a subsequence of (αk), then ᾱ ∈ Ω since, Ω is a closed set. Passing to the limit and using
continuity of ∇J and of the operator PΩ we obtain ᾱ = PΩ(ᾱ − ∇J(ᾱ)) and ᾱ is then a stationary point of
problem (PG).

□

Remark 4.3. If further J is convex on Ω, then, every cluster point of (αk) is a minimum of J . If moreover J is
strongly convex, then the sequence (αk) converges to the unique minimum ᾱ of J .

4.2 Soft SVM problem

For soft margin SVM problem, the cost function J(α) = 1
2 (Aα,α) − (e, α) is exactly the same for hard SVM

problem. The constrained set Ω is slightly modified:

Ω = {α ∈ Rn, (e, α) = d, 0 ≤ αi ≤ C,∀i = 1, ..., n},

where C > 0 is fixed non negative real. The corresponding dual quadratic problem is:

min J(α)
α ∈ Ω

(4.4)

We propose first the projection algorithm over the convex of feasible solutions set Ω.

4.2.1 Projection on Ω

For a given a ∈ Rn, if we denote ā = PΩ(a), and

I0 = {i such that āi = 0}, Ic = {i such that āi = C} and q = |Ic|,

Iin = {i such that 0 < āi < C} and p = |Iin|.

Writing Karush- Kunh-Tuker optimality condition for this convex problem, we can prove the following lemma.

Lemma 4.4. There exists a unique λ ∈ R such that

1.

λ =

∑
i∈Iin

ai − d+ qC

p
and

 ai ≤ λ iff āi = 0
λ < ai < C + λ iff 0 < āi < C
C + λ ≤ ai iff āi = C

(4.5)

2. If ai ≤ aj , then āi ≤ āj .
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Proof . Since the cost function is differentiable, and the minimized problem is with linear equality and inequality
constraints, Karush- Kunh-Tuker condition is satisfied and it can be written as:

n∑
i=1

āi = d

āi − ai + λ− ui + vi = 0 i = 1, ..., n,
uiāi = 0, vi(C − āi) = 0 i = 1, ..., n,
ui ≥ 0, vi ≥ 0 i = 1, ..., n.

1. If i ∈ Iin, then 0 < āi < C and therefore ui = vi = 0 and āi = ai − λ.

By summing these equalities for i ∈ Iin and using the fact that

n∑
i=1

āi = d, we deduce that λ =

∑
i∈Iin

ai − d+ qC

p .

In this case λ < ai < C + λ.
If i ∈ I0, then δi = 0 and ai − λ = ui ≥ 0.
If i ∈ Ic, then γi = 0 and −C + ai − λ = vi ≥ 0 and (4.5) follows.

2. Let ai ≤ aj , if i ∈ I0, then āi = 0 ≤ āj . If i /∈ I0, then λ ≤ ai ≤ aj . āi − āj = ai − aj if i, j ∈ Iin and therefore
āi ≤ āj . But if j ∈ Ic, āj = C and āi ≤ āj .

□

It is sufficient to compute λ in order to determine ā. The next algorithm allows to determine λ. For this end, to
simplify, we begin by ordering components of a as follows ai1 ≤ ai2 ≤ ... ≤ ain−1

≤ ain .

Algorithm(5)

1. Compute λ0 =

n∑
i=1

ai − d

N
; k := 1, p0 = 1, q0 = N . N0 = N

2. For k ≥ 0,

• if λk < aij < λk + C, ∀ pk ≤ j ≤ qk, stop,

• else, compute

βk =
Nλk − aipk
Nk − 1

, η1 =
Nλk − (C − aiqk )

N − 1
.

if aiqk < βk + C, take λk+1 = βk and Nk+1 = Nk − 1,

else : if aipk > η1, take λk+1 = ηk and Nk+1 = Nk − 1.

Otherwise, take λk+1 =
Nkλk − aipk + C − aiqk

Nk − 2
and Nk+1 = Nk − 2

Remark 4.5. It is obvious that this direct method stops at most in ks ≤ n iterations. In the case where ks < n,
then, at the iteration ks, the multiplier λ = λks

with Iin = {ij/pks
≤ j ≤ qks

} and the projection ā of a on Ω is given
by

āij =

 0 if j < pks
,

aij − λ if pks ≤ j ≤ qks ,
C if j > qks

.

Otherwise for k = n− 1, apk−1
≤ λk−1 or apk−1

≥ C + λk−1, necessary in this case Iin = ∅ and d
C = q ∈ {1, ..., n}.

Clearly

āij =

{
0 if j < n− p,
C if j ≥ q

.

4.2.2 Experimental results

We consider the same data set of breast cancer problem where the data is split into a training set (80%) and testing
set (20%). With linear kernel we have the same ill -conditioned matrix A. On the contrary of the case of hard SVM,
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numerical solution obtained using the function ’solvers.qp’ of python is the same after a few number of iterations (12
for C = 1, 13 for C = 10 and 18 for C = 18).

We tested algorithm (4) for different values of C ∈ {1, 10, 200}.. The initial vector α0 is taken equal to null vector.
For C = 100, we present accuracy and cost value function after each 5 iterations.

Classification results are provided in table (4) and in figures below.

C Numerical optimal value iterations ’s’ number train accuracy test accuracy

’qp.solver’
1 -57.219 12 0.417 0.447
10 -311.543 13 0.5 0.526
100 -2062.733 18 0.575 0.587

Alg (4)
1 -57.219 20 0.909 0.929
10 -311.543 100 0.91 0.93
100 -2052.307 500 0.909 0.92

Table 4: Results of linear kernel for C ∈ {1, 10, 100}

Figure 7: Algorithm (4): Cost function and accuracy for C = 1

Figure 8: Alg (4): Cost function and accuracy for C = 10

We can remark from experimental results that for considered values of C, algorithm (4) reaches the optimal solution
in less then 18 iterations for C = 1. However, it is very slow for C = 10 and C = 100. But classification is not perfect
for testing and training sets for the number of iterations assuring convergence of the algorithm. A technique of early
stopping may be necessary here to choose the α which can perform the test classification.

Conclusion

In this work, three descent projection optimization algorithms are proposed to solve a constrained minimization
problem on a convex set. These algorithms were applied for classification of breast cancer using SVM method. Both
linear and RBF kernel yield very promising results, in term of performance algorithm (2) for hard SVM is better and
converge faster than algorithm (1). We tested algorithm (4) only for linear kernel. Despite that classification is better
for algorithm (1) and (2), convergence is fater for algorithm (4).
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Figure 9: Algorithm (4): Cost function and accuracy for C = 100
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