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Abstract

In this paper, we propose public key cryptography using recursive block matrices involving generalized Fibonacci
numbers over a finite field Zp. For this, we define multinacci block matrices, a kind of upper triangular matrix involving
multinacci matrices at diagonal places and give some of its algebraic properties. Moreover, we set up a method for key
element agreement at end users, which makes cryptography more efficient. The proposed cryptography comes with a
large key space and its security relies on the Discrete Logarithm Problem (DLP).
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1 Introduction

Information is one of the most valuable assets since the dawn of civilizations. The secured transmission of infor-
mation is of prime importance. Cryptography is the science of study about the security, privacy, and confidentiality
of information transmitted over a secured channel. The problem concerned with the topic is to study public key
cryptography with the reduction in complexity for key generation without compromising security. As an example, for
the same level of security, the RSA cryptosystem uses a bigger key size than the key size of Elliptic curve cryptography.

In 1976, Diffie and Hellman [2] provided a solution to the long-standing problem of key exchange and pointed
the way to a digital signature. In 1978 Rivest, Shamir and Adleman [11] proposed a public key cryptosystem which
is famed as RSA cryptosystem. The security of RSA cryptosystem depends on the difficulty level of factoring large
integers.

Alvareza et al. [1] proposed a public key cryptosystem based on the generalization of the discrete logarithm problem
for block matrices over the field Zp with the reduced key length for a given level of security. Kuppuswamy et al. [7]
have given two different types of encryption algorithms, one of them is public key cryptography based on a linear
block cipher and the other one is private key cryptography based on a simple symmetric algorithm. Viswanath and
Kumar [16] proposed a public key cryptosystem using Hill’s cipher, in which the security of the system depends on
the involvement of two digital signatures. To reduce complexity and enhance the processing of key in cryptography
K. Prasad and H. Mahato [9] have proposed public key cryptography using generalized Fibonacci matrices in which
one has to send numbers instead of matrices for the key. Zeriouh et al. [17], proposed the concept of key exchange
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between Alice and Bob using specially designed matrices. In this key exchange scheme, each of the sender and receiver
first chooses a square matrix of suitable order and then both publish their corresponding set of matrices that commute
with their corresponding chosen matrices. Some recent work on the study of cryptography using number sequences,
associated matrices and classical cryptography can be seen in [3, 5, 6, 8, 10, 12, 13, 15].

This paper is organized as follows. In section 2, we have first defined the multinacci block matrices and obtained its
some properties then we have proposed public key cryptography using extended Hill’s cipher and give a key agreement
method for end users. In section 3, we have illustrated the scheme with a numerical example. And lastly in section 4,
we have analyzed the keyspace and mathematical strength of the scheme followed by the conclusion in section 5.

1.1 Multinacci sequences and matrices

Here, we revisit the generalized Fibonacci sequences, associated matrices and some of their properties [9] which we
use further in our work.

Definition 1.1. [9] For n ∈ N such that n ≥ 2, the generalized Fibonacci sequence {tk}k≥0 of order n is given by

tk+n = tk + tk+1 + tk+2 + ...+ tk+n−1, (1.1)

where t0 = t1 = ... = tn−2 = 0 and tn−1 = 1. The generalized Fibonacci sequence {tk}k≥0 is called the multinacci
sequence.

Throughout the paper, we use the notation tn,k to represent the kth term of the Multinacci sequence (generalized
Fibonacci sequence) of order n.

The kth generalized Fibonacci matrix Qk
n (also known as Multinacci matrix) of order n associated with the sequence

{tn,k} is given by

Qk
n =


tn,k+n−1 tn,k+n−2 + tn,k+n−3 + ...+ tn,k · · · tn,k+n−2

tn,k+n−2 tn,k+n−3 + tn,k+n−4 + ...+ tn,k−1 · · · tn,k+n−3

...
...

. . .
...

tn,k+1 tn,k + tn,k−1 + ...+ tn,k−n+2 · · · tn,k
tn,k tn,k−1 + tn,k−2 + ...+ tn,k−n+1 · · · tn,k−1

 , for k = 0,±1,±2, ... (1.2)

with

Qn =


1 1 1 ... 1 1
1 0 0 ... 0 0
...

...
...

...
...

...
0 0 0 ... 0 0
0 0 0 ... 1 0

 .

For n = 2, 3 in Eqn. (1.1), we get the Fibonacci and Tribonacci sequences and the associated matrices are known as
Fibonacci and Tribonacci matrices, respectively. The following lemma lists some properties of the Multinacci matrices
Qk

n, which we use to establish some results.

Lemma 1.2. [9] Let n ∈ N such that n ≥ 2 and k, l ∈ Z. Then for Multinacci matrices Qk
n, we have

1. Q0
n = In, where In is the identity matrix of order n.

2. (Q1
n)

k = Qk
n and (Q−1

n )k = Q−k
n .

3. Qk
nQ

l
n = Qk+l

n and Qk
nQ

−k
n = In.

4. det(Qk
n) = (−1)(n−1)k.

Inverse of Multinacci matrices:. From (4) of Lemma 1.2, it is worth to note that the determinant of Qk
n never vanishes

for any n and k, hence Qk
n is always non-singular. And the inverse of the multinacci matrix Qk

n is given by Q−k
n which

can be achieved by replacing k by −k in (1.2).

Commutative nature:. From (3) of Lemma 1.2, it is clear that Multinacci matrices are commutative with respect to
usual matrix multiplication.
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2 Multinacci block matrices

In this section, we first define multinacci block matrices, investigate some algebraic properties of them and use
these matrices in cryptography.

Definition 2.1 (Multinacci block matrix). Let Qm1
n , Qm2

n be any two multinacci matrices of order n and C be
any square matrix of same order, then the multinacci block matrix A (in short MBM) is defined as

A =

[
Qm1

n C
0 Qm2

n

]
2n×2n

.

The following theorem deals with the powers of A involving multinacci matrices, which follows a certain pattern.

Theorem 2.2. For j ∈ N ∪ {0}, we have

Aj =

[
Qjm1

n C(j)

0 Qjm2
n

]
, where C(j) =

{
0 : j = 0,∑j−1

r=0(Q
m1
n )j−1−rC(Qm2

n )r : j ≥ 1.

Proof . We prove it by inductive hypothesis on j. For j = 1, we have A1 =

[
Qm1

n C(1)

0 Qm2
n

]
= A and C(1) = C,

satisfied. Now assuming the statement is true for j, we prove it for j + 1. Here, we have

Aj+1 = AjA1 =

[
Qjm1

n C(j)

0 Qjm2
n

] [
Qm1

n C
0 Qm2

n

]
=

[
Qjm1

n Qm1
n Qjm1

n C + C(j)Qm2
n

0 Qjm2
n Qm2

n

]
.

Since,

Qjm1
n C + C(j)Qm2

n = Qjm1
n C +

[
j−1∑
r=0

(Qm1
n )j−1−rC(Qm2

n )r

]
Qm2

n

= Qjm1
n C +

[
(Qm1

n )j−1C(Qm2
n ) + (Qm1

n )j−2C(Qm2
n )2 + ...+ C(Qm2

n )j
]

=

j∑
r=0

(Qm1
n )j−rC(Qm2

n )r = C(j+1),

we have

Aj+1 =

[
Q

(j+1)m1
n C(j+1)

0 Q
(j+1)m2
n

]
, where C(j+1) =

j∑
r=0

(Qm1
n )j−rC(Qm2

n )r.

□

In order to use a matrix as a key element in cryptography, it should be necessarily invertible. In our case, we use
an encryption method analogs to extended Hill cipher under the prime residue and a part of Multinacci block matrix
as key element. To show that MBM is nonsingular, it is sufficient to prove that the determinant of MBM is non zero,
which has been proven in the following theorem.

Theorem 2.3. Let Qm1
n , Qm2

n be any two multinacci matrices of order n then the determinant of Multinacci block
matrix is det(A) = (−1)(n−1)(m1+m2).

Proof . To prove the statement, we use the fact that determinant of a block matrix

[
X Y
0 Z

]
is given by

det

([
X Y
0 Z

])
= det(X) det(Z).

So, using (4) of Lemma 1.2, we have

det

([
Qm1

n C
0 Qm2

n

])
= det(Qm1

n ) det(Qm2
n ) = (−1)(n−1)m1(−1)(n−1)m2 = (−1)(n−1)(m1+m2).

□

Thus, MBM is non singular and therefore inverse of MBM exist. The following theorem gives the inverse of MBM.
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Theorem 2.4. The inverse of Multinacci block matrix Qk
n is given by[

Qm1
n C
0 Qm2

n

]−1

=

[
Q−m1

n −Q−m1
n CQ−m2

n

0 Q−m2
n

]
.

Proof . It can be easily proved by using the fact that if B is inverse of A then AB = BA = I. □

Now, for both the parties (sender and receiver) to be agree on the same key element (matrix), we have to prove
[C(i)](j) = [C(j)](i), for which we need the following lemma.

Lemma 2.5. For i, j ∈ N, we have[
Qm3

n C(j)

0 Qm4
n

]i
=

[
Qim3

n [C(j)](i)

0 Qim4
n

]
, where [C(j)](i) =

i−1∑
s=0

(Qm3
n )i−1−sC(j)(Qm4

n )s,

and

[
Qm1

n C(i)

0 Qm2
n

]j
=

[
Qjm1

n [C(i)]j

0 Qjm2
n

]
, where [C(i)](j) =

j−1∑
r=0

(Qm1
n )j−1−rC(i)(Qm2

n )r.

Proof . The proof follows from Theorem 2.2. □

Theorem 2.6. For all i, j ∈ N, we have
[C(i)](j) = [C(j)](i).

Proof . By using the property of commutativity of the multinacci matrices, we have

[C(i)](j) =

j−1∑
r=0

(Qm1
n )j−1−rC(i)(Qm2

n )r

=

j−1∑
r=0

(Qm1
n )j−1−r

[
i−1∑
s=0

(Qm3
n )i−1−sC(Qm4

n )s

]
(Qm2

n )r

=

j−1∑
r=0

i−1∑
s=0

(Qm1
n )j−1−r(Qm3

n )i−1−sC(Qm4
n )s(Qm2

n )r

=

j−1∑
r=0

i−1∑
s=0

(Qm3
n )i−1−s(Qm1

n )j−1−rC(Qm2
n )r(Qm4

n )s

=

i−1∑
s=0

(Qm3
n )i−1−s

[
j−1∑
r=0

(Qm1
n )j−1−rC(Qm2

n )r

]
(Qm4

n )s

=

i−1∑
s=0

(Qm3
n )i−1−sC(j)(Qm4

n )s

= [C(j)](i).

□

2.1 Key generation algorithm

In cryptography, elements of key component plays a crucial role for efficient encryption and better security. We
are using Fibonacci block matrices for key composition and encryption and vice-versa. It has been discussed below in
the steps followed by encryption algorithm.

Let us consider S =

{[
Qm1

n (Zp) K
0 Qm2

n (Zp)

]
: K ∈Mn(Zp)

}
, where we used the notation Qk

n(Zp) for Multinacci

matrices over Zp and Mn(Zp) for matrices over Zp.
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2.2 Construction of public key

Let us assume that the communication is being made between two parties, Alice and Bob. So, for public key setup,
Alice do the following steps.

1. Alice chooses a prime number p, l ∈ N and matrix A =

[
G K
0 H

]
∈ S with G = Qm1

n (Zp) and H = Qm2
n (Zp).

2. Calculate key element K(l) as

K(l) =

l−1∑
r=0

(G)l−1−rK(H)r (mod p).

Now, Alice makes (p,K,K(l)) as public key and keep (l, G,H) as her secret key.

2.3 Key generation and encryption

Let P represent the plaintext partitioned as P = (P1P2...Pn) and C is the corresponding ciphertext C = (C1C2...Cn).
Now, using Alice’s public key (p,K,K(l)), Bob generates his encryption key and then encrypts his plaintext as follows:

1. Bob chooses a secret key, say j ∈ N and B =

[
M K
0 N

]
∈ S with M = Qm3

n (Zp) and N = Qm4
n (Zp).

2. Calculate, K(j) =
∑j−1

s=0(M)j−1−sK(N)s (mod p).

3. Calculate encryption key as

[K(l)](j) =

j−1∑
s=0

(M)j−1−sK(l)(N)s (mod p).

Thus, his encryption key (say Ek) is [K
(l)](j).

4. Now, Bob construct a row vector E of size n over field Zp whose ith column is the sum of elements of ith column
of EK .

5. Encryption method: Ci ≡ (PiEK + E) (mod p), where C = (C1C2...Cn).

6. Finally, Bob sends (K(j), C) to Alice.

2.4 Decryption

On the other side, after receiving (K(j), C) from Bob, Alice perform following operations to recover the plaintext:

1. Alice first calculate key matrix Ek as,

Ek = [K(j)](l) =

l−1∑
r=0

(G)l−1−r ∗K(j) ∗ (H)r (mod p).

2. Thus, decryption key (say DK) = (Ek)
−1.

3. Decryption of ciphertext: Pi ≡ (Ci − E)DK (mod p) where E is a row vector over Zp whose ith column is the
sum of elements of ith column of [K(j)](l) over Zp.

The above methodology is illustrated by an example in the following section.

3 Numerical example

Example 3.1. Consider p = 47 and S =

{[
Qm1

3 (Zp) K
0 Qm2

3 (Zp)

]
: K ∈M3(Zp)

}
. Encrypt the plaintext HEY using

proposed method.

Proof . Assume, Bob wish to send a plaintext HEY to Alice. So for encryption, Bob need public key of Alice.
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Construction of Alice’s Public Key:.

1. Alice chooses a random number, say l = 5 and A =

[
G K
0 H

]
∈ S, where

G = Q9
3 =

 8 31 34
34 21 44
44 37 24

 , H = Q13
3

13 21 34
34 26 34
34 0 9

 and K =

2 3 1
1 1 1
1 0 0

 .

2. Construction of public key,

K(5) =

4∑
r=0

(G)4−rK(H)r (mod 47) ≡

42 25 5
5 37 20
20 32 17

 .

Thus, Alice’s public key is

47,

2 3 1
1 1 1
1 0 0

 ,

42 25 5
5 37 20
20 32 17

 and her secret key is

5,

 8 31 34
34 21 44
44 37 24

 ,

13 21 34
34 26 34
34 0 9

 .

Key Generation and Encryption (Bob side). Now, Bob construct his encryption key using Alice’s public key47,

2 3 1
1 1 1
1 0 0

 ,

42 25 5
5 37 20
20 32 17

, and encrypt his plaintext as follows:

1. Row vector of plaintext: P ← [07, 04, 24] (Here, [H,E, Y ] = [07, 04, 24]).

2. Bob chooses his secret number, say m = 3 and matrix B ∈ S with

M = Q7
3 =

44 37 24
24 20 13
13 11 7

 and N = Q15
3 =

34 0 34
34 0 13
13 21 34

 .

3. Calculate

K(3) =

2∑
s=0

(M)2−s ∗K ∗ (N)s (mod 47) =

24 4 19
19 5 32
32 34 20

 .

4. Calculation of encryption key,

[K(5)](3) =

2∑
s=0

(M)2−sK(5)(N)s (mod 47) =

34 19 5
5 29 14
14 38 15

 .

Thus, encryption key EK = [K(5)](3) .

5. Bob’s row vector E over Z47 is E =
[
6 39 34

]
.

6. Encryption: C ≡ (PEK + E) (mod 47).

C ≡

[
7 4 24

]
∗

34 19 5
5 29 14
14 38 15

+
[
6 39 34

] (mod 47)

≡
[
36 25 15

]
→ [> Z P ].

Here, plaintext [HEY ] encrypted as [> Z P ].

7. Bob sends
(
C,K(3)

)
=

[> Z P ],

24 4 19
19 5 32
32 34 20

 to Alice.
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Decryption (Alice side). After receiving
(
C,K(3)

)
=

> ZP,

24 4 19
19 5 32
32 34 20

 from Bob,

Alice performs the following steps to recover the plaintext.

1. Alice calculates key matrix as

EK = [K(3)](5) (mod 47) =

4∑
r=0

(G)4−r ∗K3 ∗ (H)r (mod 47) =

34 19 5
5 29 14
14 38 15

 .

2. Decryption key DK over Z47 is (EK)−1 =

43 30 36
36 7 41
41 42 13

.
3. Decryption method: P ≡ (C − E)DK (mod 47).

Here, C = [>,Z, P ]→ [36 25 15] and row vector E =
[
6 39 34

]
. Thus, Alice recovers the plaintext as

P ≡

([
36 25 15

]
−
[
6 39 34

])
∗

43 30 36
36 7 41
41 42 13

 (mod 47)

≡
[
7 4 24

]
→ [H E Y ].

Thus, the message HEY successfully reached to Alice. □

4 Key space and mathematical strength

Security strength of our proposed scheme depends on the computational power require to achieve the private key
(j,M,N) of sender and private key (l, G,H) of receiver. Our, encryption key is formulated as

[K(l)](j) =

j−1∑
s=0

(M)j−1−s ∗K(l) ∗ (N)s

and after encryption Bob transmits (K(j), C) to Alice through a unsecure channel. So, we assume that intruder may
know (K(j), C) by unfair means but after knowing (K(j), C), intruder needs matrices M, N to calculate encryption
key [K(l)](j). Since there is no any deterministic polynomial time algorithm (Discrete logarithm problem [4, 14]) to
calculate M,N from [K(l)](j), so it is almost impossible to recover encryption key from given information on large
primes.

Keyspace based on assumed parameters follows from matrix theory. In matrix theory GLn(Zp) represents the set
of invertible matrices of order n× n over finite field Zp, where p is an odd prime. The order of General Linear group
(GLn) over finite field Zp is given by

|GLn(Zp)| = (pn − pn−1)(pn − pn−2) · · · (pn − p1)(pn − 1). (4.1)

To examine strength of our key space, we are presenting a table of possible key spaces over Zp based on General Linear
group. For simplicity, considering matrices of order 3 Ö 3 and 4 Ö 4.

Prime(p) Possible Key spaces on GL3(Zp) Possible Key spaces on GL4(Zp)

3 1.1232×104 2.4261×107
5 1.4880×106 1.1606×1011
7 3.3784×1014 2.7811×1013
11 3.1920×109 6.2166×1025
13 9.7264×109 6.1029×1018
17 1.0948×1011 4.5630×1019
19 3.0481×1011 2.7246×1020
23 1.7194×1012 5.8543×1021
29 1.1499×1016 3.6139×1028
...

...
...
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From the above table, we should note that the growth rate of key space is very high when p → ∞. Thus, we
conclude that if size of key matrix is increasing along with prime, then it forms a very large key space which can be
easily done with Fibonacci matrices.

5 Conclusion

We have proposed multinacci block matrices, a kind of upper triangular matrix involving multinacci matrices at
diagonal places. Moreover, we have obtained some algebraic properties of these block matrices and proposed a public
key cryptography using it. Our proposed cryptography is based on the key element from block matrices over a finite
field Zp. Here, we have used the multiplicative commutativity of the multinacci matrices for agreement of end users
on the same key.

Here, the set S =

{[
Qm1

n (Zp) K
0 Qm2

n (Zp)

]
: K ∈Mn(Zp)

}
is a global element i.e. known to everyone, a sender

can choose any matrix from the set S to construct the key matrix. So, in the above-proposed scheme, neither sender
nor receiver needs to publish their corresponding set of matrices that commute with a chosen matrix of sender and
receiver, respectively. Our proposed scheme has a large key space and its security relies on discrete logarithm problem.
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