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Abstract

In this present article, we introduce the notion of oriented 2-simplexes and the notion of oriented 3-simplexes and we
use them to create a new framework that we call a weighted geometric realization of 2-simplexes and 3-simplexes.
Next, we define the weighted geometric realization Gauss-Bonnet operator L. After that, we present and study the
non-parabolicity at the infinity of L. Finally, we develop general conditions to ensure semi-Fredholmness of L based
on its non-parabolicity at infinity.

Keywords: Weighted geometric realization of 2-simplexes and 3-simplexes, weighted geometric realization
Gauss-Bonnet operator, non-parabolicity at infinity, semi-Fredholmness
2020 MSC: 47A53, 05C63, 39A12

1 Introduction

The concept of non-parabolicity at infinity was investigated in [1, 3]. The weighted geometric realization associated
with the set of 2-simplexes and 3-simplexes is a notion of algebraic topology, see for instance [2, 6, 7, 8]. In this present
work, we construct a weighted geometric realization of the set of 2-simplexes and 3-simplexes and its Gauss-Bonnet
operator. Next, we study the non-parabolicity at infinity of the weighted geometric realization Gauss-Bonnet operator
and we use it to ensure semi-Fredholmness of the weighted geometric realization Gauss-Bonnet operator. This current
paper is structured as follows : In the second section, we introduce the notion of oriented 2-simplexes and the notion
of oriented 3-simplexes, we refer to [2, 6, 7, 8] for surveys on the matter. After that, we create a new framework
that’s we call the weighted geometric realization of 2-simplexes and 3-simplexes. In the third section, we create the
weighted simplexes cochains spaces and the weighted simplexes operators. Next, we construct the weighted geometric
realization Gauss-Bonnet operator. In the fourth section, we introduce and study the non-parabolicity at infinity
of the weighted geometric realization Gauss-Bonnet operator. In the last section, we develop general conditions to
ensure semi-Fredholmness of the weighted geometric realization Gauss-Bonnet operator based on its non-parabolicity
at infinity.
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2 Weighted geometric realization of 2-simplexes and 3-simplexes

The aim of this section is to create a new framework that’s we call the weighted geometric realization of 2 and
3-simplexes, see [2, 4, 5, 6, 7, 8, 11, 13].

Let V be the set of vertices at most countable, E be the set of oriented edges and (V,E) a graph. We take E
symmetric, i.e., if (x, y) ∈ E, then (y, x) ∈ E. We take E irreflexive, i.e., if x ∈ E, then (x, x) /∈ E. Let (E+, E−)
be a partition of E. If (x, y) ∈ E, then (x, y) ∈ E+ or (x, y) ∈ E−. We have (x, y) ∈ E+ if and only if (y, x) ∈ E−.
Orient the graph (V,E) means define the partition (E+, E−) of E. For e = (x, y), we set e− = x and e+ = y.
The path between x and y is a finite set of oriented edges e1, e2, e3, ..., ek such that k ∈ N∗, e−1 = x, e+k = y and
∀i ∈ {1, 2, 3, ..., k − 1} , e+i = e−i+1. The simple path is a path where each edge appears only once time. The cycle is
a path where the origin and the end are identical. The connected graph is a graph such that for all x, y ∈ V , there
exists a path between x and y. The locally finite graph is a graph such that each vertice belongs to a finite number
of edges. In our paper, we work with a graph that’s oriented, connected, irreflexive, symmetric and locally finite.
An oriented 2-simplex is a surface surrounded by a simple cycle of length equals 3 and it is an element of V 3. Let
S2 =

{
(x, y, z) ∈ V 3 | (x, y, z) is an oriented 2-simplex

}
be the set of oriented 2-simplexes. An oriented 3-simplex is

a volume surrounded by four oriented 2-simplexes and it is an element of V 4. Let S3 ={(x, y, z, t) ∈ V 4 | (x, y, z, t)
is an oriented 3-simplex} be the set of oriented 3-simplexes. The odd permutation means we change the positions
of two vertices an odd number of times. The even permutation means we change the positions of two vertices an
even number of times. Let (α, β) ∈ S2

2 or (α, β) ∈ S2
3 . We have α = β if we use the even permutation to pass

from α to β. We have α = −β if we use the odd permutation to pass from α to β. The geometric realization
of 2-simplexes and 3-simplexes, denoted by R, is the pair (S2, S3). We define a weight on S3 by w3 : S3 → R∗

+

such that ∀ (a, b, c, d) ∈ S3, w3 (− (a, b, c, d)) = w3 (a, b, c, d). We define a weight on S2 by w2 : S2 → R∗
+ such

that ∀ (a, b, c) ∈ S2, w2 (− (a, b, c)) = w2 (a, b, c). The weighted geometric realization of 2-simplexes and 3-simplexes,
denoted by Rw, is the quadruplet (S2, S3, w2, w3) that’s equals to (R,w2, w3). The sub-weighted geometric realization
RM

w of Rw = (S2, S3, w2, w3) is the quadruplet RM
w =

(
M,SM

3 , w2, w3

)
where M ⊂ S2 and

SM
3 = {(a, b, c, d) ∈ S3 | (b, c, d), (d, c, a), (a, b, d), (c, b, a) ∈ M} .

The 3-simplexes boundary, denoted by ∂SM
3 , is defined as

∂SM
3 = {(a, b, c, d) ∈ S3 | ((b, c, d) ∈ M and (d, c, a), (a, b, d), (c, b, a) /∈ M) or

((d, c, a) ∈ M and (b, c, d), (a, b, d), (c, b, a) /∈ M) or ((a, b, d) ∈ M and (b, c, d), (d, c, a),

(c, b, a) /∈ M) or ((c, b, a) ∈ M and (b, c, d), (d, c, a), (a, b, d) /∈ M)} .

The 2-simplex path from (x, y, z) to (x0, y0, z0) is a finite sequence of 2-simplexes (a1, b1, c1),..., (am, bm, cm) such
that

(x, y, z) = (a1, b1, c1) , (x0, y0, z0) = (am, bm, cm) ,

and
∀j ∈ {1, 2, ...,m− 1} , (aj+1, bj+1, cj+1) ∈ S2 (aj , bj , cj) ,

where

S2 (aj , bj , cj) = {(x, y, z) ∈ S2 | (x ∈ {aj , bj , cj} and y, z /∈ {aj , bj , cj}) or

(y ∈ {aj , bj , cj} and x, z /∈ {aj , bj , cj}) or (z ∈ {aj , bj , cj} and

x, y /∈ {aj , bj , cj})} .

The 2-simplex connected weighted geometric realization is a weighted geometric realization such that for all (x, y, z),
(x0, y0, z0) ∈ S2, we have a 2-simplex path from (x, y, z) to (x0, y0, z0). In the sequel of this work, we suppose that
Rw is a 2-simplex connected weighted geometric realization.

3 Weighted geometric realization Gauss-Bonnet operator

The aim of this section is to construct the weighted geometric realization Gauss-Bonnet operator, see [9, 10, 12, 14].

We start by introducing the following simplexes functional spaces associated to the weighted geometric realization
Rw :
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▶ The 2-simplex cochains set, denoted by C (S2), is defined as

C (S2) = {f : S2 → R | f(− (a, b, c)) = −f(a, b, c)} .

We set
C0 (S2) = {f ∈ C (S2) | f has a finite support} .

Let (f, g) ∈ C0 (S2)× C0 (S2). We define an inner product on C0 (S2) as

⟨f, g⟩S2
=

1

6

∑
(a,b,c)∈S2

w2 (a, b, c) f (a, b, c) g (a, b, c) .

Then

∥f∥S2
=
√
⟨f, f⟩S2

.

The Hilbert space associated to S2, denoted by H (S2), is given by

H (S2) =
{
f ∈ C0 (S2) | ∥f∥S2

< ∞
}
.

▶ The 3-simplex cochains set, denoted by C (S3), is defined as

C (S3) = {f : S3 → R | f(− (a, b, c, d)) = −f(a, b, c, d)} .

We set
C0 (S3) = {f ∈ C (S3) | f has a finite support} .

Let (f, g) ∈ C0 (S3)× C0 (S3). We define a scalar product on C0 (S3) as

⟨f, g⟩S3
=

1

24

∑
(a,b,c,d)∈S3

w3 (a, b, c, d) f(a, b, c, d)g(a, b, c, d).

Then

∥f∥S3
=
√
⟨f, f⟩S3

.

The Hilbert space associated to S3, denoted by H (S3), is given by

H (S3) =
{
f ∈ C0 (S3) | ∥f∥S3

< ∞
}
.

▶ We define the direct sum of H (S2) and H (S3) as

H (Rw) = H (S2)⊕H (S3) = {(f, g) | f ∈ H (S2) and g ∈ H (S3)} ,

where it’s associated norm is given by

∥(f, g)∥2Rw
= ∥f∥2S2

+ ∥g∥2S3
.

In the next, we define the weighted simplexes operators.

▶ Let S be the operator defined as
S : C0 (S2) → C0 (S3) ,

such that
S(f)(a, b, c, d) = f(b, c, d) + f(d, c, a) + f(a, b, d) + f(c, b, a),

for all f ∈ C0 (S2) and (a, b, c, d) ∈ S3.
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▶ Let δ be the adjoint operator of S defined as

δ : C0 (S3) → C0 (S2) ,

such that
⟨S (f) , g⟩S3

= ⟨f, δ (g)⟩S2
,

for all f ∈ C0 (S2) and g ∈ C0 (S3).

Theorem 3.1. Let Rw be a weighted geometric realization. Then, we have

δ(f)(b, c, d) =
1

w2(b, c, d)

∑
a;(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d),

for all f ∈ C0 (S3) and (b, c, d) ∈ S2.

Proof . Let (g, f) ∈ C0 (S2)× C0 (S3). We have

⟨S (g) , f⟩S3
=

1

24

∑
(a,b,c,d)∈S3

w3(a, b, c, d)S (g) (a, b, c, d)f(a, b, c, d)

=
1

24

∑
(a,b,c,d)∈S3

[g(b, c, d) + g(d, c, a) + g(a, b, d) + g(c, b, a)]w3(a, b, c, d)f(a, b, c, d)

=
1

24

∑
(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)g(b, c, d) +
1

24

∑
(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)g(d, c, a)

+
1

24

∑
(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)g(a, b, d) +
1

24

∑
(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)g(c, b, a).

Since we have four similar parts,

⟨S (g) , f⟩S3
=

1

6

∑
(a,b,c,d)∈S3

w3(a, b, c, d)g(b, c, d)f(a, b, c, d)

=
1

6

∑
(b,c,d)∈S2

∑
a;(a,b,c,d)∈S3

w3(a, b, c, d)g(b, c, d)f(a, b, c, d)

=
1

6

∑
(b,c,d)∈S2

[
g(b, c, d)

∑
a;(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)

]
.

Moreover, we have

⟨g, δ (f)⟩S2
=

1

6

∑
(b,c,d)∈S2

w2(b, c, d)g(b, c, d)δ (f) (b, c, d).

Since
⟨g, δ (f)⟩S2

= ⟨S (g) , f⟩S3
,

we get

1

6

∑
(b,c,d)∈S2

[
g(b, c, d)

∑
a;(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d)

]
=

1

6

∑
(b,c,d)∈S2

w2(b, c, d) g(b, c, d)δ (f) (b, c, d).

Therefore, we obtain

δ(f)(b, c, d) =
1

w2(b, c, d)

∑
a;(a,b,c,d)∈S3

w3(a, b, c, d)f(a, b, c, d).

□

Now, we present the weighted geometric realization Gauss-Bonnet operator.

Definition 3.2. The weighted geometric realization Gauss-Bonnet operator, denoted by L, is defined as

L = S + δ : C0 (S2)⊕ C0 (S3) → C0 (S2)⊕ C0 (S3) ,

such that
L (f, g) = S (f) + δ (g) ,

for all (f, g) ∈ C0 (S2)⊕ C0 (S3).
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4 Non-parabolicity at infinity of the Gauss-Bonnet operator

This section is devoted to introduce and study the concept of non-parabolicity at infinity of the weighted geometric
realization Gauss-Bonnet operator. The concept of non-parabolicity at infinity was investigated in [1, 3].

In the next, we give a useful theorem in the study of non-parabolicity at infinity.

Theorem 4.1. Let Rw be a weighted geometric realization and (x, y, z) , (x0, y0, z0) ∈ S2. Then, ∃βx
x0

∈ R+ such
that

|g (x, y, z)| ≤ βx
x0

(
|g (x0, y0, z0)|+ ∥Sg∥S3

)
,

for all g ∈ C0 (S2).

Proof . Let (x, y, z), (x0, y0, z0) ∈ S2 and g ∈ C0 (S2). Since Rw is a 2-simplex connected weighted geomet-
ric realization, then we have a 2-simplex path from (x, y, z) to (x0, y0, z0), i.e., there exists a finite sequence of
2-simplexes (a1, b1, c1),..., (am, bm, cm) such that (x, y, z) = (a1, b1, c1) and (x0, y0, z0) = (am, bm, cm) and ∀j ∈
{1, 2, ...,m− 1} , (aj+1, bj+1, cj+1) ∈ S2 (aj , bj , cj), where

S2 (aj , bj , cj) = {(x, y, z) ∈ S2 | (x ∈ {aj , bj , cj} and y, z /∈ {aj , bj , cj})
or (y ∈ {aj , bj , cj} and x, z /∈ {aj , bj , cj})

or (z ∈ {aj , bj , cj} and x, y /∈ {aj , bj , cj})} .

Moreover, we have

|g (x, y, z)− g (x0, y0, z0)| ≤ |Sg (a1, b1, c1, d1)|+ |Sg (a2, b2, c2, d2)|
+ |Sg (a3, b3, c3, d3)|+ ...+ |Sf (am, bm, cm, dm)| ,

where

∀i ∈ {1, 2, ...,m− 1} , di ∈ {ai+1, bi+1, ci+1} \ {ai, bi, ci}

and
dm ∈ {am−1, bm−1, cm−1} \ {am, bm, cm} .

We set
πx
x0

= {(a1, b1, c1, d1) , (a2, b2, c2, d2) , (a3, b3, c3, d3) , ..., (am, bm, cm, dm)} .

So, we get

|g (x, y, z)− g (x0, y0, z0)| ≤
∑

(a,b,c,d)∈πx
x0

1

(w3 (a, b, c, d))
1
2

(w3 (a, b, c, d))
1
2 |Sg (a, b, c, d)| .

We use the Cauchy-Schwarz inequality, we find

|g (x, y, z)− g (x0, y0, z0)| ≤

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2
( ∑

(a,b,c,d)∈πx
x0

w3 (a, b, c, d) (Sg (a, b, c, d))
2

) 1
2

≤

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2
( ∑

(a,b,c,d)∈S3

w3 (a, b, c, d) (Sg (a, b, c, d))
2

) 1
2

≤

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2

∥Sf∥S3
.
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Then, we get

|g (x, y, z)| ≤ |g (x, y, z)− g (x0, y0, z0)|+ |g (x0, y0, z0)|

≤

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2

∥Sg∥S3
+ |g (x0, y0, z0)|

≤ max

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2

, 1

(∥Sg∥S3
+ |g (x0, y0, z0)|

)
.

We set

βx
x0

= max

( ∑
(a,b,c,d)∈πx

x0

1

w3 (a, b, c, d)

) 1
2

, 1

 .

Therefore, we obtain
|g (x, y, z)| ≤ βx

x0

(
|g (x0, y0, z0)|+ ∥Sg∥S3

)
.

□

We want now define the non-parabolic at infinity for L and study it.

Definition 4.2. The couple N = (SN
2 , SN

3 ) is a finite subset of Rw = (S2, S3) if S
N
2 is a finite subset of S2 and SN

3

is a finite subset of S3.

For all (f, φ) ∈ N = (SN
2 , SN

3 ), we have

∥(f, φ)∥2N = ∥f∥2SN
2
+ ∥φ∥2SN

3
.

Definition 4.3. The weighted geometric realization Gauss-Bonnet operator L is said non-parabolic at infinity if
there is a finite sub-weighted geometric realization RM

w =
(
M,SM

3

)
of Rw = (S2, S3) such that for all finite subset N

of Rw \RM
w , ∃β = βN ∈ R+ such that

β ∥(g, h)∥N ≤ ∥L (g, h)∥Rw\RM
w
,∀ (g, h) ∈ C0 (S2 \M)× C0

(
S3 \ SM

3

)
.

Definition 4.4. The combinatorial simplexes neighborhood of RM
w =

(
M,SM

3

)
, denoted by RM∗

w = (M∗, SM∗

3 ), is a
finite sub-weighted geometric realization of Rw satisfies the following :

1. M ⊂ M∗ finite.

2. SM
3 ∪ ∂SM

3 ⊂ SM∗

3 .

3. (x, y, z, t) ∈ SM∗

3 =⇒ (y, z, t) , (z, x, t) , (x, y, t) , (z, y, x) ∈ M∗.

Definition 4.5. The smallest combinatorial simplexes neighborhood of RM
w , denoted by R

M∗
s

w , is a finite sub-weighted
geometric realization of Rw contains RM

w and its 3-simplexes boundary.

� The mean value of g ∈ C0(S2), denoted by g̃, is defined as

g̃(a, b, c, d) =
g(b, c, d) + g(d, c, a) + g(a, b, d) + g(c, b, a)

4

=
1

4
S (g) (a, b, c, d),

for all (a, b, c, d) ∈ S3.

Theorem 4.6. Let Rw be a weighted geometric realization and L be non-parabolic at infinity. Then ∀N ⊂ Rw and
N is finite, ∃β′ = β′

N ∈ R+ such that

β′ ∥(g, h)∥N ≤ ∥L (g, h)∥Rw
+ ∥(g, φ)∥RM∗

w
,∀ (g, h) ∈ C0 (S2)⊕ C0 (S3) .
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Proof . We have N is a finite subset of Rw, then we can reduce it to a 2-simplex or a 3-simplex. Let (x, y, z) ∈ S2,
(x0, y0, z0) ∈ M∗ and RM∗

w be a finite sub-weighted geometric realization of Rw. We show that

β′ |g (x, y, z)| ≤ ∥Sg∥S3
+ ∥g∥M∗ ,∀g ∈ C0 (S2) .

We use Theorem 4.1, ∃β1 ∈ R+ such that

g2 (x, y, z) ≤ β1

(
∥g∥2M∗ + ∥Sg∥2S3

)
and

g2 (x, y, z) ≤ βx
x0

(
g2 (x0, y0, z0) + ∥Sg∥2S3

)
.

Moreover, we have

w2(x0, y0, z0)g
2 (x, y, z) ≤ βx

x0

(
w2(x0, y0, z0)g

2 (x0, y0, z0) + w2(x0, y0, z0) ∥Sg∥2S3

)
≤ βx

x0

(
∥g∥2M∗ + w2(x0, y0, z0) ∥Sg∥2S3

)
.

We take
β′x
x0

= max
(
βx
x0
, w2(x0, y0, z0)β

x
x0

)
.

We obtain
w2(x0, y0, z0)g

2 (x, y, z) ≤ β′x
x0

(
∥g∥2M∗ + ∥Sg∥2S3

)
.

Then, we find

g2 (x, y, z) ≤
β′x
x0

w2(x0, y0, z0)

(
∥g∥2M∗ + ∥Sg∥2S3

)
.

We take

β1 =
β′x
x0

w2(x0, y0, z0)
.

Therefore, we obtain

f2 (x, y, z) ≤ β1

(
∥g∥2M∗ + ∥Sg∥2S3

)
.

We show that
β′′ |h (a, b, c, d)| ≤ ∥h∥SM∗

3
+ ∥δh∥S2

,∀φ ∈ C0 (S3) ,∀ (a, b, c, d) ∈ S3.

Let (a, b, c, d) ∈ SM
3 ⊂ SM∗

3 finite. We have

h2 (a, b, c, d) ≤ ∥h∥2SM∗
3

≤ ∥h∥2SM∗
3

+ ∥δφ∥2S2
.

If (a, b, c, d) ∈ S3 \ SM
3 , the indicator function of M c, denoted by χ, is defined as

χ (x, y, z) =

{
0 if (x, y, z) ∈ M
1 otherwise .

So, we find

Sχ (a, b, c, d) =

 0 if (a, b, c, d) ∈ SM
3

±1 if (a, b, c, d) ∈ ∂SM
3

0 otherwise

and

χ̃ (a, b, c, d) =

 0 if (a, b, c, d) ∈ SM
3

1
4 if (a, b, c, d) ∈ ∂SM

3

1 otherwise.
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If h ∈ C0 (S3), then χ̃h is with a finite support in S3 \ SM
3 . Then, we apply the definition of the non-parabolicity

at infinity of L to the function (0, χ̃h), we get

∥χ̃h∥2N ≤ β ∥δ (χ̃h)∥2S2
,

where β = 1
β(N) . We have (a, b, c, d) ∈ S3 \ SM

3 , then

h2 (a, b, c, d) ≤ β ∥δ (χ̃h)∥2S2
.

Moreover, we have

δ (χ̃h) (b, c, d) =
1

w2 (b, c, d)

∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d) (χ̃h) (a, b, c, d)

=
1

w2 (b, c, d)

∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d) χ̃ (a, b, c, d)h (a, b, c, d)

=
1

4× w2 (b, c, d)

∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d) .

Furthermore, we have

∥δ (χ̃h)∥2S2
=

1

6

∑
(b,c,d)∈S2

w2 (b, c, d) (δ (χ̃h) (b, c, d))
2

≤ 16
∑

(b,c,d)∈S2

w2 (b, c, d) (δ (χ̃h) (b, c, d))
2

= 16
∑

(b,c,d)∈S2

w2 (b, c, d)

[
1

4× w2 (b, c, d)

∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2

=
∑

(b,c,d)∈S2

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2

≤
∑

(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2

+
∑

(b,c,d)∈S2\M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2
.

We use supp(dχ) = ∂SM
3 ⊂ SM∗

3 , we obtain

∑
(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)φ (a, b, c, d)

]2

=
∑

(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3 and (a,b,c,d)∈supp(dχ)

w3 (a, b, c, d)φ (a, b, c, d)

]2

= max
(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)φ (a, b, c, d)

]2

≤ max
(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)

][ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)h
2 (a, b, c, d)

]

≤ max
(b,c,d)∈M

1

w2 (b, c, d)
×#SM∗

3 max
(a,b,c,d)∈SM∗

3

w3 (a, b, c, d)
∑

(a,b,c,d)∈SM∗
3

w3 (a, b, c, d)h
2 (a, b, c, d) .

We set

β2 = max
(b,c,d)∈M

1

w2 (b, c, d)
×#SM∗

3 max
(a,b,c,d)∈SM∗

3

w3 (a, b, c, d) .
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Then ∑
(b,c,d)∈M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2
= β2 ∥φ∥2SM∗

3
.

In addition, we have

∑
(b,c,d)∈S2\M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2

=
∑

(b,c,d)∈∂M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3 and (a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)h (a, b, c, d)

]2

= max
(b,c,d)∈∂M

1

w2 (b, c, d)
×

[ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)h (a, b, c, d)

]2

≤ max
(b,c,d)∈∂M

1

w2 (b, c, d)

[ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)

]

[ ∑
(a,b,c,d)∈supp(Sχ)

w3 (a, b, c, d)h
2 (a, b, c, d)

]
≤ max

(b,c,d)∈∂M

1

w2 (b, c, d)
#SM∗

3 max
(a,b,c,d)∈SM∗

3

w3 (a, b, c, d)∑
(a,b,c,d)∈SM∗

3

w3 (a, b, c, d)h
2 (a, b, c, d) .

We set

β′
2 = max

(b,c,d)∈∂M

1

w2 (b, c, d)
×#SM∗

3 max
(a,b,c,d)∈SM∗

3

w3 (a, b, c, d) .

Hence

∑
(b,c,d)∈S2\M

1

w2 (b, c, d)

[ ∑
a;(a,b,c,d)∈S3

w3 (a, b, c, d)S (χ) (a, b, c, d)h (a, b, c, d)

]2
= β′

2 ∥h∥
2
SM∗
3

.

We take
β̂2 = max (β2, β

′
2) .

We find
∥δ (χ̃h)∥2S2

≤ β̂2 ∥h∥2SM∗
3

≤ max
(
1, β̂2

)(
∥δh∥2S2

+ ∥h∥2SM∗
3

)
.

Therefore, we get

h2 (a, b, c, d) ≤ β ∥δ (χ̃h)∥2S2

and
∥δ (χ̃h)∥2S2

≤ max
(
1, β̂2

)(
∥δh∥2S2

+ ∥h∥2SM∗
3

)
.

We put

β∗ =
max

(
1, β̂2

)
β

.

Thus, we find

h2 (a, b, c, d) ≤ β∗
(
∥δh∥2S2

+ ∥h∥2SM∗
3

)
.

□
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Theorem 4.7. Let Rw be a weighted geometric realization and L be non-parabolic at infinity. Then, we can construct
a Hilbert space P satisfies the following :

1. C0 (S2)⊕ C0 (S3) is dense in P .

2. The injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P .

3. L : P → H (Rw) is a bounded operator.

Proof . Let RM∗

w be a combinatorial simplexes neighborhood of Rw. We take P the closure of C0 (S2)⊕C0 (S3) under
the norm

NM∗ (g, h) =
(
∥(g, h)∥2RM∗

w
+ ∥L (g, h)∥2Rw

) 1
2

.

Aim 1 We have NM∗ is a norm on P . Then, we look only at the nullity. we have

NM∗ (g, h) = 0 ⇐⇒ ∥(g, h)∥RM∗
w

= 0, ∥L (g, h)∥Rw
= 0 ⇐⇒ ∥g∥M∗ = 0,

∥h∥SM∗
3

= 0, ∥Sg∥S3
= 0 and ∥δh∥S2

= 0.

We have #M∗ < ∞, we use Theorem 4.6, we find

g2 (x, y, z) ≤ β1

(
∥g∥2M∗ + ∥Sg∥2S3

)
,∀ (x, y, z) ∈ S2.

Moreover, we have ∥g∥M∗ = 0 and ∥Sg∥S3
= 0. So, we get f = 0 on S2. We show that if ∥h∥SM∗

3
= 0 and

∥δh∥S2
= 0, then h = 0. Let h ̸= 0. We have h is a finite support function in S3 \ SM∗

3 . We apply Theorem 3
with N equals to the support of h, then ∃β ∈ R+ such that

β ∥h∥SN
3

≤ ∥h∥SM∗
3

+ ∥δh∥S2
.

We have ∥h∥SM∗
3

+ ∥δh∥S2
= 0, then we obtain h = 0 on SN

3 , which is impossible.

Aim 2 We prove that the space P is independent of the choice of RM∗

w . We take R
M∗

1
w another combinatorial simplexes

neighborhood of Rw such that M ⊂ M∗
0 ⊂ M∗

1 . We have

NM∗
0
(g, h) ≤ NM∗

1
(g, h) .

To prove that ∃β ∈ R∗
+ such that

NM∗
1
(g, h) ≤ βNM∗

0
(g, h) ,

we need to prove that ∃β ∈ R∗
+ such that

∥(g, h)∥2M∗
1 \M∗

0
≤ βN2

M∗
0
(g, h) .

We have

N2
M∗

1
(g, h) = ∥(g, h)∥2

R
M∗

1
w

+ ∥L (g, h)∥2Rw

= ∥(g, h)∥2M∗
1 \M∗

0
+ ∥(g, h)∥2

R
M∗

0
w

+ ∥L (g, h)∥2Rw

= ∥(g, h)∥2M∗
1 \M∗

0
+N2

M∗
0
(g, h) .

Since #M∗
1 \M∗

0 < ∞, using Theorem 4.6 we obtain

∥g∥2M∗
1 \M∗

0
≤ β

(
∥g∥2M∗

0
+ ∥Sg∥2S3

)
and

∥h∥2
S

M∗
1

3 \S
M∗

0
3

≤ β

(
∥h∥2

S
M∗

0
3

+ ∥δh∥2S2

)
,

where β = β (M∗
1 \M∗

0 ,M
∗
0 ).
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Then, we get
∥(g, h)∥2

R
M∗

1
w \R

M∗
0

w

≤ βN2
M∗

0
(g, h) .

Therefore, we have proved that the construction of a norm on P is independent of the choice of the combinatorial
simplexes neighborhood associated to the sub-weighted geometric realization RM

w . We put

∥(g, h)∥P =
(
∥(g, h)∥2RM∗

w
+ ∥L (g, h)∥2Rw

) 1
2

,∀ (g, h) ∈ C0 (S2)⊕ C0 (S3) .

Aim 3 We use Theorem 4.6, the injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P .

Aim 4 Since

∥L (g, h)∥2Rw
≤ ∥(g, h)∥2RM∗

w
+ ∥L (g, h)∥2Rw

= ∥(g, h)∥2P .

We obtain that L : P → H (Rw) is a bounded operator.

□

5 Semi-Fredholmness of the Gauss-Bonnet operator

The purpose of this section is to develop necessary and sufficient conditions for semi-Fredholmness of the weighted
geometric realization Gauss-Bonnet operator by using its non-parabolicity at infinity.

Definition 5.1. An operator is semi-Fredholm if its range is closed and its kernel is finite dimensional .

Theorem 5.2. Let Rw be a weighted geometric realization and P be a Hilbert space satisfies the following :

1. C0 (S2)⊕ C0 (S3) is dense in P .

2. The injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P .

3. The operator L : P → H (Rw) is bounded.

Then, the following two conditions are equivalent :

i) The operator L : P → H (Rw) is semi-Fredholm.

ii) There exists a finite sub-weighted geometric realization RM
w of Rw and β = βM ∈ R∗

+ such that

β ∥(g, h)∥P ≤ ∥L (g, h)∥Rw
,∀g ∈ C0 (S2 \M) ,∀h ∈ C0

(
S3 \ SM

3

)
.

Proof . We show the direct implication, we suppose that the conclusion is false. So, we find an increasing sequence
of finite sub-weighted geometric realization

{
RMn

w

}
n
such that Rw =

⋃
n
RMn

w a sequence {ϕn}n with finite support in

S2 \Mn satisfies for all n ∈ N∗ the following :
ϕn = (gn, hn) ∈ C0 (S2 \Mn)× C0

(
S3 \ SMn

3

)
∥ϕn∥P = 1

∥Lϕn∥Rw
≤ 1

n .

We suppose that the operator L : P → H (Rw) is semi-Fredholm. We use [15], there exists a bounded operator
∆ : H (Rw) → P satisfies

∆ ◦ L = IdP − T ,
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where T is the orthogonal projection onto the KerL, T is an operator with finite rank. Therefore, we find

∥ϕn∥P ≤ ∥(∆ ◦ L)ϕn∥P + ∥Tϕn∥P
≤ ∥∆∥ ∥Lϕn∥Rw

+ ∥Tϕn∥P

≤
(
∥∆∥
n

+ ∥Tϕn∥P

)
.

If lim
n→∞

∥Tϕn∥P = 0, then lim
n→∞

∥ϕn∥P = 0, which contradicts the assumption ∥ϕn∥P = 1. The aim now is to show

that {Tϕn}n converges to 0 in P . We take ϕ1
n = Tϕn ∈ KerL, ϕ2

n ∈ (KerL)
⊥

and

ϕn = ϕ1
n + ϕ2

n,

such as {
(∆ ◦ L)ϕn = ϕ2

n

∥∆ ◦ Lϕn∥P ≤ ∥∆∥ ∥Lϕn∥Rw
→

n→∞
0.

For the norm of P , we have lim
n→∞

ϕ2
n = 0. The sequence

{
ϕ1
n

}
n
is bounded of kerL which is of finite dimension.

Then, we can extract a subsequence converging to ϕ in P , denoted by
{
ϕ1
h(n)

}
n
. Since ϕn = ϕ1

n+ϕ2
n and lim

n→∞
ϕ2
n = 0,

the sequence
{
ϕh(n)

}
n
converges in P to ϕ and we get that ∥ϕ∥P = 1. We prove that

ϕ = lim
n→∞

ϕh(n) = lim
n→∞

ϕ1
h(n) = 0.

We assume that ϕ ̸= 0. Since P is injected continuously in C0 (S2) ⊕ C0 (S3), ∃ (x, y, z) ∈ S2 such that{
ϕh(n) (x, y, z)

}
n
converges to ϕ (x, y, z) ̸= 0. We have

{
ϕh(n)

}
n
converges ponctually to 0 by construction. Then, we

find that ϕ (x, y, z) = 0 which is absurd. We remain to show ii) =⇒ i).

First step To prove that L : P → H (Rw) has a finite kernel and a closed range, we need to build a bounded operator
U : H (Rw) → P such that U ◦ L− IdP is a compact operator. We have

P
(
Rw \RM

w

)
=
{
ϕ = (f, g) ∈ P | ϕ = 0 on RM

w

}
.

Let L1 = L|Rw\RM
w

: P
(
Rw \RM

w

)
→ H (Rw) be the restriction of the operator L on Rw \ RM

w . Using the
assumption we have

β ∥(g, h)∥P ≤ ∥L (g, h)∥Rw
,∀ (g, h) ∈ C0 (S2 \M)× C0

(
S3 \ SM

3

)
.

Thus, we get that the restriction operator L1 is injective with closed range. So, there exists a left inverse ∆1

satisfies
∆1 ◦ L1 = Id.

Let M∗
0 be the smallest combinatorial simplexes neighborhood of M and M∗

1 be a combinatorial simplexes
neighborhood of M∗

0 . We denote
L2 : H (M∗

1 ) → H (Rw) .

We have L2 is continuous with closed range, asH (M∗
1 ) is a vector space of finite dimension. We take a continuous

operator ∆2 satisfies
∆2 ◦ L2 = Id− U2,

where U2 is the orthogonal projection onto kerL2. We define the indicator function χ on M∗c

0 as

χ (x, y, z) =

{
0 if (x, y, z) ∈ M∗

0

1 otherwise.

So, we get

Sχ (a, b, c, d) =


0 if (a, b, c, d) ∈ S

M∗
0

3

±1 if (a, b, c, d) ∈ ∂S
M∗

0
3

0 otherwise

, χ̃ (a, b, c, d) =


0 if (a, b, c, d) ∈ S

M∗
0

3
1
4 if (a, b, c, d) ∈ ∂S

M∗
0

3

1 otherwise
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and

(1− χ) (x, y, z) =

{
1 if (x, y, z) ∈ M∗

0

0 otherwise
, (1− χ̃) (a, b, c, d) =


1 if (a, b, c, d) ∈ S

M∗
0

3
1
4 if (a, b, c, d) ∈ ∂S

M∗
0

3

0 otherwise.

We consider the operator χ∗ depending on the domain as:

If χ∗ : C0 (S2) → C0 (S2), then
χ∗g = χg,∀g ∈ C0 (S2) .

If χ∗ : C0 (S3) → C0 (S3), then
χ∗h = χ̃h,∀h ∈ C0 (S3) .

If χ∗ : C0 (S2)⊕ C0 (S3) → C0 (S2)⊕ C0 (S3), then

χ∗ (g, h) = (χg, χ̃h) ,∀ (g, h) ∈ C0 (S2)⊕ C0 (S3) .

We put
Uϕ = ∆2 (1− χ)ϕ+∆1χϕ,

where ϕ = (g, h).

Second step We prove that the operator U ◦ L− Id is compact. We set

[E,F ] = EF − FE,

for any two operators E and F . We have

U ◦ L = ∆2 (1− χ)L+∆1χL

= ∆2L (1− χ) + ∆2 [1− χ,L] + ∆1Lχ+∆1 [χ,L]

= ∆2L2 (1− χ) + ∆2 [1− χ,L] + ∆1L1χ+∆1 [χ,L]

= (Id− T2) (1− χ) + ∆2 [1− χ,L] + Id (χ) + ∆1 [χ,L]

= Id− T2 (1− χ) + ∆2 [1− χ,L] + ∆1 [χ,L] .

We calculate ∆2 [1− χ,L] and ∆1 [χ,L], we find

[1− χ,L] = [1− χ, S] + [1− χ, δ] .

We have[
(1− χ)

∗
, S
]
g (a, b, c, d) = (1− χ̃) (a, b, c, d)S (g) (a, b, c, d)− S ((1− χ) g) (a, b, c, d)

=
1

4
S (1− χ) (a, b, c, d)S (g) (a, b, c, d)− (1− χ) (b, c, d)g(b, c, d)

− (1− χ) (d, c, a)g(d, c, a)− (1− χ) (a, b, d)g(a, b, d)− (1− χ) (c, b, a)g(c, b, a).

We have[
(1− χ)

∗
, δ
]
h (x, y, z) = (1− χ) (x, y, z) δ (h) (x, y, z) + δ ((1− χ̃)h) (x, y, z)

= (1− χ) (x, y, z) δ (h) (x, y, z)+

1

w2 (x, y, z)

∑
t;(t,x,y,z)∈S3

w3 (x, y, z, t) (1− χ̃) (x, y, z, t)h (x, y, z, t)

= (1− χ) (x, y, z) δ (h) (x, y, z)+

1

4× w2 (x, y, z)

∑
t;(t,x,y,z)∈S3

w3 (x, y, z, t)S (1− χ) (x, y, z, t)× h (x, y, z, t) .

The support of S (1− χ) is included in ∂S
M∗

0
3 ⊂ M∗

1 which is finite. So, ∆2 has a finite range then it is a compact
operator. We use the same method, we prove that ∆1 has a finite range so it is a compact operator. Therefore,
we get that U ◦ L = Id+ T where T is a compact operator.
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□

Theorem 5.3. Let Rw be a weighted geometric realization and P be a Hilbert space satisfies the following :

1. C0 (S2)⊕ C0 (S3) is dense in P .

2. The injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P .

3. The operator L : P → H (Rw) is a bounded.

So, if there exists a finite sub-weighted geometric realization RM
w of Rw and β = βM ∈ R∗

+ such that

β ∥(g, h)∥P ≤ ∥L (g, h)∥Rw
,∀ (g, h) ∈ C0 (S2 \M)× C0

(
S3 \ SM

3

)
,

Then, the operator L : P → H (Rw) is semi-Fredholm.

Proof . First result : We show that if ϕn = (gn, hn) ∈ C0 (S2) × C0 (S3) is P -bounded and (Lϕn)n is convergent
in H (Rw), then (ϕ)n has a P -convergent subsequence. We take a combinatorial simplexes neighborhood RM∗

w of the
sub-weighted geometric realization Rw. The sequence (ϕn |M∗)n is bounded in a vector space with finite dimension.
Therefore, the sequence (ϕn |M∗)n has a convergent subsequence. We define the indicator function χ on M∗c

as

χ (x, y, z) =

{
0 if (x, y, z) ∈ M∗

1 otherwise.

So, we have

Sχ (a, b, c, d) =

 0 if (a, b, c, d) ∈ SM∗

3

±1 if (a, b, c, d) ∈ ∂SM∗

3

0 otherwise
, χ̃ (a, b, c, d) =

 0 if (a, b, c, d) ∈ SM∗

3
1
4 if (a, b, c, d) ∈ ∂SM∗

3

1 otherwise.

Thus, we get a function χϕn with finite support in Rw \RM
w . We apply the inequality β ∥(g, h)∥P ≤ ∥L (g, h)∥Rw

to χϕn, exactly to (χgn, 0) and (0, χ̃ϕn), we find

∥χgn∥P ≤ β ∥S (χgn)∥S3
.

Since the sequence (S (gn))n is convergent and supp(Sχ) ⊂ SM∗

3 is finite, gn(x, y, z) |M∗ has a convergent sub-
sequence. Therefore, we obtain that χgn has a P -convergent subsequence, i.e., (gn |S2\M∗)n hass a P -convergent
subsequence. Moreover, we have

∥χ̃hn∥P ≤ β ∥δ (χ̃hn)∥S2
.

Using the assumptions, we have (δ (hn))n is a convergent sequence and supp(Sχ) ⊂ SM∗

3 is finite, thus (hn |SM∗
3

)n
has a convergent subsequence. So, we deduce that the sequence (χ̃hn)n has a p-convergent subsequence. As a result,
the sequence (hn |S3\SM∗

3
)n has a P -convergent subsequence.

Now, we prove that the weighted geometric realization Gauss-Bonnet operator L is semi-Fredholm.

1. We prove that kerL is finite dimensional, which is equivalent to prove that {ϕ ∈ kerL | ∥ϕ∥P = 1} is compact.
We take (ϕn)n ⊂ kerL such that

∥ϕn∥P = 1 and Lϕn = 0.

We use the first result, we get that the sequence (ϕn)n admits a convergent subsequence. So, the result occurs.

2. We prove that ImL is closed.
We take the sequence (φn)n of ImL such that

lim
n→∞

φn = φ ∈ H (Rw) .

We have (φn)n ⊂ ImL, then ∃(ϕn)n ⊂ kerL⊥ and ϕn ̸= 0 ∀n, such that φn = Lϕn. The sequence (ϕn)n must
be bounded. If not, we construct fn = ϕn

∥ϕn∥P
such that (fn)n ⊂ kerL⊥

∥fn∥P = 1
Lfn → 0.
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We use the first result, we get that the sequence(fn)n has a convergent subsequence with limit denoted by ϕ
such that  f ∈ kerL⊥

∥fn∥P = 1
Lf = 0.

Therefore, we obtain
f ∈ kerL ∩ kerL⊥ = {0} .

Thus, we find f = 0, which is absurd. So, the sequence (ϕn)n is bounded and since

lim
n→∞

Lϕn = φ.

We use the first result, the sequence (ϕn)n has a convergent subsequence, we denote this limit by ϕ. We have
the operator L is bounded. Then

lim
n→∞

Lϕn = Lϕ.

Using the uniqueness of the limit, we get φ = Lϕ.

□

Corollary 5.4. Let Rw be a weighted geometric realization and P be a Hilbert space. The weighted geometric
realization Gauss-Bonnet operator L is non-parabolic at infinity if and only if there exists a finite sub-weighted
geometric realization RM

w of Rw such that if we complete C0 (S2)× C0 (S3) by the following norm

∥(g, h)∥P =
(
∥(g, h)∥2RM∗

w
+ ∥L (g, h)∥2Rw

) 1
2

,

to get a Hilbert space P satisfies the following :

1. The set C0 (S2)⊕ C0 (S3) is dense in P .

2. The injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P .

3. The operator L : P → H (Rw) is semi-Fredholm.

Proof . Let L be non-parabolic at infinity. We use Theorem 4.7, we find that P is well defined. We remain to
prove that the operator L : P → H (Rw) is semi-Fredholm. The definition of the non-parabolicity at infinity gives the
existence of a finite sub-weighted geometric realization RM

w such that ∀N ∈ Rw \RM
w ,∃β = βN ∈ R∗

+,

β ∥(g, h)∥N ≤ ∥L (g, h)∥Rw
,∀ (g, h) ∈ C0 (S2 \M)⊕ C0

(
S3 \ SM

3

)
.

Let N = RM∗

w and (g, h) ∈ C0 (S2 \M)⊕ C0

(
S3 \ SM

3

)
. Then, we obtain

β ∥(g, h)∥RM∗
w

≤ ∥B (g, h)∥Rw
,

β2 ∥(g, h)∥2RM∗
w

+ ∥L (g, h)∥2Rw
≤ 2 ∥L (g, h)∥2Rw

and
β′ ∥(g, h)∥P ≤ ∥L (g, h)∥Rw

.

We apply Theorem 5.2, we have the operator L : P → H (Rw) is semi-Fredholm.

Inversely, if the operator L : P → H (Rw) is semi-Fredholm. By Theorem 5.2, there exists a finite sub-weighted
geometric realization RM

w such that ∃β = βM ∈ R∗
+,

β ∥(g, h)∥P ≤ ∥L (g, h)∥Rw
,∀ (g, h) ∈ C0 (S2 \M)⊕ C0

(
S3 \ SM

3

)
.

The injection of C0 (S2)⊕ C0 (S3) to C0 (S2)⊕ C0 (S3) extends by continuity to P , implies ∀N ∈ Rw \RM
w ,

β ∥(g, h)∥N ≤ β ∥(g, h)∥P
≤ ∥L (g, h)∥Rw

,∀ (g, h) ∈ C0 (S2 \M)⊕ C0

(
S3 \ SM

3

)
.

Then, we get that the operator L is non-parabolic at infinity. □
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