
Int. J. Nonlinear Anal. Appl. 15 (2024) 4, 111–124
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2023.30737.4504

Stability analysis and adaptive tracking control for a class of
switched nonlinear systems based on a nonlinear disturbance
observer

M. Bagherzadeh, Z. Rahmani∗

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran

(Communicated by Ehsan Kozegar)

Abstract

This paper is concerned with developing an adaptive method on the basis of a nonlinear disturbance observer (NDO)
in order to control a switched nonlinear system in the presence of unknown functions and external disturbances, and
under arbitrary switching signals. The proposed approach employs an adaptive backstepping technique, NDO, a fuzzy
logic system (FLS), and the particle swarm optimization (PSO) algorithm. Based on a common Lyapunov function
(CLF), the adaptive backstepping technique is used to design a nonlinear state-feedback controller. Also, NDO and
FLS are stated to estimate the disturbances and the unknown nonlinear functions, respectively. In addition, to improve
the performance of the closed-loop system, the PSO algorithm is used to optimize the controller parameters. Finally,
simulation examples are taken into account to demonstrate the effectiveness of the proposed strategy.
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1 Introduction

Switched systems are an important kind of hybrid systems that consist of several subsystems and a signal that
establishes switching behavior among them. The motivation for studying such systems arises mainly from two aspects.
Firstly, switching behavior can be found in a wide range of physical and engineering systems, including electrical
circuits, power systems, network control and aircrafts [5, 11, 18, 23]. Secondly, some complex systems can be modelled
as switched systems with multiple subsystems, which is convenient for study and analysis.

So, the stability analysis of switched systems has more difficulties and has attracted the interest of many scientists
in recent years [15, 31]. Meanwhile, when dealing with the stability and stabilization of switched systems, multiple
Lyapunov functions [29, 33] and common Lyapunov function (CLF) [1, 2, 17] can often be considered as useful tools.

Adaptive control can help manage structural and environmental uncertainties and improve the system performance
[13, 16, 21]. So, along with the great development of the switched systems, various tracking control methods are studied
for engineering applications and dynamic processes [14, 32]; but only a few useful investigations on adaptive tracking
control problem of switched systems have been obtained [26, 27]. By considering switched system in non-strict feedback
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form, the adaptive tracking problem for a class of uncertain switched nonlinear systems is investigated in [26]. In [27],
the problem of adaptive tracking control is focused for a class of switched strict-feedback nonlinear systems with
unknown time-varying delays and asymmetric saturation actuators under arbitrary switching. Backstepping control
can also be designed for some types of switched nonlinear systems [19, 20, 34]. Furthermore, neural networks, fuzzy
systems and backstepping can be utilized to design adaptive closed-loop systems ensure that their tracking error and
signals are bounded [9, 28].

Over the last few years, various effective methods and techniques have been employed to attenuate or eliminate
disturbances in both switched and non-switched systems [3, 6, 7, 24, 30]. A general NDO is designed for a nonlinear
system with an unknown fast time-varying disturbance [24]. An NDO-based control approach is proposed in [7]
for spacecraft formation flying by enhancing the disturbance attenuation ability and performance robustness of the
asymptotic tracking control. In [6], a novel composite disturbance observer-based adaptive controller with adaptive
laws is proposed for a tracking problem of an uncertain switched linear system.

This paper proposed the nonlinear adaptive control approach based on CLF and NDO for nonlinear switched
systems in the presence of external disturbances and unknown nonlinear functions under arbitrary switching. By
proposing an efficient method based on the common Lyapunov function, the output tracking control using the state-
feedback controller is investigated. The control strategy is performed using adaptive backstepping where the Mamdani
fuzzy logic system is employed to estimate the unknown functions.

Thus, compared with the existing results, the main contribution of this article is as follows:

1. Introducing the adaptive NDO to estimate external disturbances in nonlinear switched systems with arbitrary
switching signals;

2. Estimating unknown functions of switched nonlinear systems using a fuzzy logic system;

3. Developing an adaptive nonlinear controller with a single adaptive law to avoid over parameterization and an
adaptive weighted PSO to optimize the controller parameters at the same time.

The rest of this paper is organized as follows. In Section 2, problem formulation and some definitions are assumed.
The design of NDO and the implementation of fuzzy rules are expressed in Section 3; furthermore, the adaptive
weighted PSO algorithm is proposed for optimizing the nonlinear adaptive controller in this section. In section 4,
stability analysis of the proposed method based on CLF is stated. Some simulation examples are provided to illustrate
the effectiveness of the proposed approach in section 5. Eventually, conclusions are addressed in the last section (6).

Notation: In this article, the notations are considered standard. R2 illustrate the n-dimensional Euclidean space,
and ∥ • ∥ denotes the Euclidean vector norm. For positive integer 1 ≤ i ≤ n, it also denotes ψi,min = min{ψi,j , 1 ≤
j ≤ m} and ψi,max = max{ψi,j , 1 ≤ j ≤ m}. L2(0,∞) is the space of square integrable functions on (t0,∞) and t0 is
the initial time.

2 Problem formulation and preliminaries

Consider a class of switched nonlinear systems with disturbances as follows:

ẋi = ℏi,σ(t)xi+1 + fi,σ(t)(x̄i)

...

ẋn = ℏn,σ(t)uσ(t) + fn,σ(t)(x̄n) + dσ(t)

y = x1 (2.1)

where x̄i = [x1, ..., xi]
T ∈ Rn i = 1, 2, ..., n represents the system states and y ∈ R the system output, where n is

the number of the states; the function σ(t) = k : [0,+∞) → M = {1, 2, ...,m} is the switching signal, and m is the
number of the subsystems; also, dσ(t) ∈ Rm and uσ(t) ∈ Rm are the bounded external disturbances which belong to

L2(0,∞) and the control input of the kth subsystem, respectively; besides, ℏi,σ(t) and fi,σ(t)(x̄i) are positive constants
and unknown nonlinear functions, respectively.

The objective is to design a state-feedback controller with a NDO in a way that the system output tracks yd(t)
as a pre-specified time-varying signal; in addition, all the closed-loop signals of the switched nonlinear system remain
bounded. So, the following assumptions and lemmas are considered according to system (2.1).

Assumption l: The system’s disturbances dσ(t), the tracking target yd(t) and their derivatives up to their nth

order are continuous and bounded.
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3 Method strategy

As mentioned before, to design an appropriate controller, three steps are proposed in this paper:

step 1: reduce effect of external disturbances by using NDO;

step 2: estimate unknown functions of switched system (2.1) by employing FLS;

step 3: reduce the effect of over parameterization and optimize the approach’s parameters in the controller design
procedure by using adaptive PSO as well as the method with only one adaptive law, which is proposed in the next
section to improve this problem.

In the below figure, the structure of the proposed approach is illustrated.

Figure 1: Structure of the proposed approach

So, in the following, all steps are expressed in detail and they will be used in section 4.

3.1 Nonlinear disturbance observer

In this subsection, the nonlinear disturbance observer using the state information and the system’s input has been
proposed to estimate the external disturbances dσ(t). In the following, the reference model equation of the switched
system (2.1) with disturbances is expressed:

ẋn = ℏn,σ(t)uσ(t) + fn,σ(t)(x̄n) + dσ(t) (3.1)

According to the NDO structure [6, 7, 10] the net disturbance vector is estimated as follows (δ(t) = k, k = 1, ...,m):

η̇k = −ldk
ηk − ldk

[fn,k(x̄n) + ℏn,k(xn)uk + pk(xn)] (3.2)

d̂k = ηk + pk(xn) (3.3)

where ηk ∈ Rm is the internal state vector of the nonlinear disturbance observation. d̂k ∈ Rm is the estimated
disturbances, pk(xn) is called the auxiliary of disturbance observer, and ldk

∈ Rm is the gain of nonlinear disturbances.

Considering the disturbance estimation error as below:

edk
= d̂k − dk (3.4)

Using (3.1) and (3.2) and substituting them in the derivative of (3.3) leads to:

˙̂
d = −ldk

ηk − ldk
[fn,k(x̄n) + ℏn,k(xn)uk + pk(xn)] + ṗk(xn)

= −ldk
(d̂k − pk(xn))− ldk

[ẋn − dk + pk(xn)] + ṗk(xn)

= −ldk
d̂k − ldk

[ẋn − dk] + ṗk(xn) (3.5)

By taking the derivative of (3.4) and substituting (3.5) into it, the tracking error dynamics are obtained:

ėdk
= −ldk

d̂k − ldk
[ẋn − dk] + ṗk(xn)− ḋk = −ldk

edk
− ldk

ẋn + ṗk(xn)− ḋk (3.6)
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Then, by assuming the observer gain ldk
= ∂pk(xn)/∂xn, dynamics of the disturbance estimation error are expressed

as follows
ėdk

= −ldk
edk

− ḋk (3.7)

Also, the differential equation of the nonlinear disturbance observer is computed as

˙̂
d = −ldk

d̂k + ldk
ẋn − ldk

(ℏn,kuk + fn,k(x̄n)) (3.8)

It is supposed that there exists a positive constant τ such that |ḋ(t)| ≤ τ for all t > 0; therefore, it can be
easily shown that the disturbance estimation error will tend to zero, and consequently, external disturbances can be
estimated by the nonlinear disturbance observer d̂k.

3.2 Unknown function estimation by fuzzy logic systems

In the controller design and stability analysis procedure, FLSs will be used to estimate the unknown functions.
Therefore, the following useful concept and lemma are first recalled.

The fuzzy logic systems comprise some “if-then” rules as follows:

Ri : If xi is F
i
1 and...and xn is F

i
n then y is B

i (3.9)

where x = [x1, x2, ..., xn]
T ∈ Rn and y ∈ R represent the input and output of the FLS, respectively. Also, F i

1, F
i
2, ..., F

i
n

and Bi are fuzzy sets in R. By using the strategy of singleton fuzzification, product inference, and center-average
defuzzification, the fuzzy logic system can be formulated as:

y(x) =

∑N
i=1 wi

∏n
J=1 µF

l
J(x

i
J)∑N

i=1

[∏n
J=1 µF

l
J(xj)

] (3.10)

where N represents the number of “if-then” rules, wi are the fuzzy membership functions at µBi(wi) = 1; Let

Ti(x) =

∏n
J=1 µF

l
J(x

i
J)∑N

i=1

[∏n
J=1 µF

L
J (xj)

] (3.11)

T (x) = [T1(x)...TN (x)]T and W = [w1, w2, ..., wN ]T (3.12)

The fuzzy logic system can be rewritten as follows:

y =WTT (x) (3.13)

Lemma 3.1. [22] Let f(x) be a continuous function defined on a compact set Ω. Then, for a given desired level of
accuracy ε > 0, there exists a fuzzy logic system (3.13) such that

sup
x∈Ω

|f(x)−WTT (x)| ≤ ε (3.14)

Remark 3.2. According to lemma 3.1, which played a key role in the performance of the controller, all the membership
functions should be chosen as Gaussian functions. In fact, within a bounded error ε, the linear combination of the basis
function vector T (x) represents the real continuous function f(x) ∈ R that means f(x) =WTT (x) + δ(ε), |δ(ε)| ≤ ε.
It is noted that 0 < TTT ≤ 1.

3.3 Adaptive weighted PSO algorithm

As a metaheuristic algorithm, PSO generates solutions to complicated mathematical problems based on the concept
of swarm intelligence [4]. In other words, with the help of PSO, simplified simulations are performed based on the social
behaviors of animals. This algorithm begins by randomly generating the so-called swarm as the initial population, and
each member of the swarm, known as a particle, moves through the search space. Then, a fitness function is evaluated
for all the particles, and its minimum is recorded as the optimal position. Finally, the particles optimize their position
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and velocity by communicating their position in each iteration to one another. In fact, the velocity is adjusted based
on the historical behavior of the particles. So, it is expressed as follows:

vi+1(t) = wℓvi(t) + υϑ2[xgbest − xi(t)] (3.15)

xi+1(t) = xi(t) + vi+1(t) (3.16)

where wℓ is the inertia weight factor, υ is a positive acceleration coefficient, ϑ1 and ϑ2 are random functions on [0, 1],
xi is position of the ith particle, xpbest is the best previous position of the ith particle, xgbest the best position achieved
in the entire population, and vi is velocity of the ith particle. The current position of each particle is calculated using
(3.15)–(3.16).

Adaptive weighted PSO is introduced to improve the searching potential of PSO. The acceleration coefficient υ in
(3.15) is expressed as follows:

υ = υ0 +
t

Kt
(3.17)

where Kt denotes the number of iterations and t is the current generation, whereas υ0 lies on [0.5, 1] in every iteration.
Equation (3.18) is used to modify the inertia weight wℓ which is a positive constant and it lies on [0, 1].

wℓ = wℓ0 + ϑ3(1− wℓ0) (3.18)

where ϑ3 is a random function on [0,1] and 0.5 ≤ wℓ0 ≤ 1. The controller parameters are chosen through conventional
trial-and-error using the normal adaptive fuzzy backstepping method based on the nonlinear disturbance observer. The
selected parameters cannot be guaranteed to be optimized. Adaptive weighted PSO can be used to tune the switched
nonlinear controller and thus optimize the parameters. In other words, PSO can help optimize the parameters by tuning
the adaptive fuzzy backstepping based on NDO. After adjusting the controller parameters (the swarm 9-dimensional
particles, i.e. r, ξ1,1, ξ1,2, ξ2,1, ξ2,2, c1, c2, B) which are initialized as positive values, its performance is improved and
the speed of the system response is dynamically promoted. Table 1 presents the search space of PSO.

Table 1: Adaptive fuzzy backstepping-based NDO: range of particles
Parameter Position vector Velocity vector
r 0 to 100 -1 to +1
ξ1,1 0 to 60 -1 to +1
ξ1,2 0 to 60 -1 to +1
ξ2,1 0 to 60 -1 to +1
ξ2,2 0 to 60 -1 to +1
c1 0 to 70 -1 to +1
c2 0 to 70 -1 to +1
B 0 to 1 -1 to +1

The fitness function is defined as the integral of time-weighted absolute value of error (ITAE) as follows:

ITAE =

∫ T

0

Te(t) (3.19)

4 Adaptive backstepping control method

In this section, the adaptive fuzzy backstepping scheme based on NDO is proposed, in which the parameters of the
control law are optimized with the adaptive weighted PSO. To achieve this purpose, first, one adaptive law is presented
for a controller design approach. Then, by considering an appropriate common Lyapunov function V , common virtual
function αi will be designed; and finally, according to common virtual control law and NDO, the control law uk will
be designed.

Considering the closed-loop system (2.1), the adaptive control law uk is chosen as follows:

uk =
1

ℏn,k

(
θ̂

2ξ2i,min

zn + λnzn + zn + d̂k

)
(4.1)

where θ̂ represents an estimate of θ =
∑n

i=1 ∥Wi,max∥2 and zn is internal controller parameter; ξn,k and λn are also
positive constants which ξn,min = min{ξn,k, k ∈M}. Denote λn = ℏn,max+ cn where cn is a positive design parameter
and ℏn,max = max{ℏn,k : k ∈M}.
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By defining the adaptive law
˙̂
θ as the solution to the following differential equation (for 1 ≤ i ≤ n) [34]:

˙̂
θ =

n∑
i=1

r

2ξ2i,min

z2i −Bθ̂ (4.2)

and using the nonlinear disturbance observer to update the estimation of external disturbance as d̂k (for 1 ≤ k ≤ m):

˙̂
dk = −ldk

d̂k + ldk
ẋn − ldk

(fn,k(x̄n) + ℏn,k(xn)uk) (4.3)

Then, the common virtual control function αi is defined to be the following form (for 1 ≤ i ≤ n− 1) [34]:

αi(Xi) = − 1

ℏi,min

(
θ̂

2ξ2i,min

+ λi +
1

2

)
zi (4.4)

where ℏi,min = min{ℏi,k : k ∈ M} and λi = ℏi,max + ci is a positive design parameter. The state Xi is defined

[xTi , θ̂, ȳ
(i)
d ] where ȳ

(i)
d = [y, ẏd, ..., y

i
d] and y

i
d being the ith derivate of yd. Also, denote z1 = x1−yd and zi+1 = xi+1−α

for 1 ≤ i ≤ n− 1.

Theorem 4.1. consider the switched nonlinear system (2.1) with the adaptive laws (4.2) and the proposed controllers

(4.1). For 1 ≤ i ≤ n and k ∈ M = {1, ...,m} there exist WT
i,kTi,k(x) such that supx∈Ω |f̂i,k(x) −WT

i,kTi,k(x)| ≤ εi,k

where the approximation error εi,k is bounded, and the initial value of θ̂ satisfies θ̂(0) ≥ 0; then, the tracking error
and closed-loop signals are bounded.

Proof . To analyze stability, the common Lyapunov function is candidate as

V =
1

2

n∑
i=1

z2i +
1

2r
θ̃2 +

1

2
e2dk

(4.5)

where edk
= d̂k − dk and θ̃ = θ− θ̂ represents as the difference between θ and its estimate θ̂ So, the time derivative of

V is expressed as follows

V̇ = z1(ℏ1,kα1 + ℏ1,kz2 + f1,k − ẏd) +

n−1∑
i=2

zi(ℏi,kαi + ℏi,kzi+1 + fi,k − α̇i−1)

+ zn(ℏn,kuk + fn,k + dk − α̇n−1)−
1

r
θ̃
˙̂
θ − eTdk

(ldk
edk

+ ḋk)

= z1(ℏ1,kα1 + ℏ1,kz2 + f̂1,k) +

n−1∑
i=2

zi(ℏi,kαi + ℏi,kzi+1 + f̂i,k) + zn(ℏn,kuk + dk + f̂n,k)−
1

r
θ̃
˙̂
θ − edk

(ldk
edk

+ ḋk)

(4.6)

where f̂1,k = f1,k − ẏd, f̂i,k = fi,k − α̇i−1 (2 ≤ i ≤ n) and the derivative of the common virtual control function

is α̇i−1 =
∑i−1

l=1
δαi−1

δxl
ẋl +

δαi−1

δθ̂

˙̂
θ +

∑i−1
l=0

δαi−1

δy
(l)
d

y
(l+1)
d . By using Lemma 3.1, the following equation is obtained for

1 ≤ i ≤ n
f̂i,k =WT

i,kTi,k + δi,k(xi) and |δi,k(xi)|εi,k (4.7)

Thus, (4.6) is rewritten as below

V̇ =

n−1∑
i=1

zi(ℏi,kαi + ℏi,kzi+1 +WT
i,kTi,k + δi,k(xi)) + zn(ℏn,kuk + dk +WT

n,kTn,k + δn,k(xi))−
1

r
θ̃
˙̂
θ − edk

(ldk
edk

+ ḋk)

≤
n∑

i=1

zi(W
T
i,kTi,k + εi,k) +

n−1∑
i=1

zi(ℏi,kαi + ℏi,kzi+1) + zn(ℏn,kuk + dk)−
1

r
θ̃
˙̂
θ − ldk

e2dk
+ edk

ḋk (4.8)
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By using the control law (4.1), adaptive law (4.2) and the common virtual control function (4.4), we have

V̇ ≤
n∑

i=1

zi(W
T
i,kTi,k + εi,k) +

n−1∑
i=1

ℏi,kzizi+1 −
n−1∑
i=1

z2i

(
θ̂

2ξ2i,min

+ λi +
1

2

)
+
B

r
θ̃θ̂ − zn

(
θ̂

2ξ2i,min

zn + λnzn + zn + edk

)

− 1

r
θ̃

n∑
i=1

r

2ξ2i,min

z2i − (ldk
e2dk

+ edk
ḋk)

≤
n∑

i=1

zi(W
T
i,kTi,k + εi,k) +

n−1∑
i=1

ℏi,kzizi+1 −
n∑

i=1

z2i

(
θ

2ξ2j,min

+ λi +
1

2

)
− znedk

+
B

r
θ̃θ̂ − ldk

e2dk
− edk

ḋk (4.9)

One can also easily show that (note that 2mn < m2 + n2)

n−1∑
i=1

ℏi,kzizi+1 ≤ ℏi,max

n∑
i=1

z2i (4.10)

θ̃θ̂ = θ̃(θ − θ̃) ≤ 1

2
θ2 − 1

2
θ̃2 − znedk

− edk
ḋk ≤ 1

2
z2n +

1

2
τ2k + e2dk

(4.11)

where the constant τk is upper bound of ḋk. After some simplifying, (4.9) is changed as follows

V̇ ≤
n∑

i=1

z2i

{
∥Wi,k∥2 −

θ

2ξ2i,min

}
+

n∑
i=1

{
−ciz2i +

ξ2i,k + ε2i,k
2

}
+
B

2r
θ2 − B

2r
θ̃2 + (1− ldk

)e2dk
+
τ2k
2

(4.12)

By choosing an appropriate ξi,k and knowing θ =
∑n

i=1 ∥Wi,max∥2, we have

V̇ ≤
n∑

i=1

{
−ciz2i +

ξ2i,k + ε2i,k
2

}
+
B

2r
θ2 − B

2r
θ̃2 + (1− ldk

)e2dk
+
τ2k
2

(4.13)

Finally, inequality (4.13) can be rewritten as below

V̇ ≤ −

{
n∑

i=1

ciz
2
i +

B

2r
θ̃2 + (ldk

− 1)e2dk

}
+
B

2r
θ2 +

τ2k
2

+

n∑
i=1

{
ξ2i,max + ε2i,max

2

}
(4.14)

Let a0 = min{2ci, B, 2(ldk
− 1), 1 ≤ i ≤ n}, b0 = B

2r θ
2 +

τ2
k

2 +
∑n

i=1

ξ2i,max+ε2i,max

2 . Then,

V̇n ≤ −a0Vn + b0 (4.15)

Vn ≤
(
Vn(0)−

b0
a0

)
e−a0t +

b0
a0

t ≥ 0 (4.16)

Thus, by holding inequality (4.17), all the signals of the closed-loop system are bounded.

lim
t→∞

|z1| ≤
√

2b0
a0

(4.17)

The proof is completed. □

5 Numerical examples

In this section, the proposed method is applied to some examples to demonstrate the feasibility and effectiveness
of the proposed approach as well as to show that how the proposed approach is worked.
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Example 5.1. Consider two-dimensional switched nonlinear system as follows:

ẋ1 = ℏ1,σ(t)x2 + f1,σ(t)(x̄i)

ẋ2 = ℏ2,σ(t)uσ(t)(t) + f2,σ(t)(x̄n) + dσ(t)

y = x1, yd = sin(t)

d1 = d2 = 0.5 sin(0.8t), and σ(t) = k ∈ {1, 2} (5.1)

where ℏ1,k = [1, 1], ℏ2,k = [2, 1], f1,k = [x1, cosx1], f2,k = [x21x2, x1x2]. The initial conditions are defined as x1(0) =

0.06, x2(0) = 0.06, θ̂(0) = 2 and d̂1(0) = d̂2(0) = 0. The NDO gains are also defined as Id = [0.1 0.25] for the
disturbance in the first and second subsystems. For the adaptive controller, suboptimal parameters are first considered
as follows:

r = 1, c1 = 2, c2 = 2, B = 0.02, ξ1,k = [0.025, 3.25] and ξ2,k = [0.55, 1.8]. Then, adapted weighted PSO is employed
to optimize the parameters as per Table 2

Table 2: Optimized parameters of the controller
Parameter Velocity vector
r 3.34
ξ1,1 0.15
ξ1,2 3.24
ξ2,1 1.55
ξ2,2 1.71
c1 1.88
c2 2.25
B 0.011

For the first and second subsystems, the objective is to design the adaptive controller in a way that d̂k could
estimate the system disturbance dk which helps the system’s output y to track yd as the desired trajectory under an
arbitrary switching system. Adaptive law θ̂, control laws u1 and u2, and NDO are given respectively as

θ̂ =
r

2ξ21,1
z21 +

r

2ξ22,1
z22 −Bθ̂

˙̂
d1 = −ld1(x)d̂+ ld1(x)(ẋ2 − ld1(x)(f2,1(x) + ℏ2,1(x)u)
˙̂
d2 = −ld2

(x)d̂+ ld2
(x)(ẋ2 − ld2

(x)(f2,2(x) + ℏ2,2(x)u)

u1 = − 1

ℏ2,1

(
θ̂

2ξ22,1
z2 + λ2z2 + z2 + d̂1

)
, u2 = − 1

ℏ2,2

(
θ̂

2ξ22,2
z2 + λ2z2 + z2 + d̂2

)
where z1 = x1 − yd, z2 = x2 − α1 and λ2 = c2 + ℏ2,1. The virtual control function α1 is defined as α1 =

− 1
ℏ1,2

(
θ̂

2ξ21,1
z1 + λ1z1 +

z1
2

)
, where λ1 = c1 + ℏ1,2. Figs 2 shows the simulation results of the designed controller.

Fig. 2 depicts the system output and reference signal yd under the arbitrary switching signal. Figs. 3 and 4 show the
tracking error y − yd and the trajectory of the nonlinear adaptive law, respectively.

Figure 2: System output without PSO for example 5.1
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Figure 3: Tracking error of system with and without PSO for example 5.1

Figure 4: Adaptive law with and without PSO for example 5.1

As it is shown from the figures 2–4, the tracking error of the proposed method with adaptive weighted PSO has
better performance than tracking error without it, but it has a slight difference in adaptive law. Fig. 5 illustrates the
disturbance estimation error. As it is observed in this figure, the tracking error of the proposed controller without
optimized parameters increases over time, which leads to better convergence of another controller to zero.

Figure 5: Tracking error of disturbance observer with and without PSO for example 5.1

Finally, the below figure depicts the switching signal.

According to Figs. 2 to 5, the performance of the system under disturbance observation is guaranteed; therefore,
it can be derived that adaptive weighted PSO could decrease the disturbance estimation error as well as the output
tracking error compared to the corresponding levels obtained without it; nevertheless, all the signals of the closed-loop
system remained bounded using both methods.

Example 5.2. Consider a continuous stirred tank reactor with two modes feed stream in [25], the mathematical
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Figure 6: Switching signal for example 5.1

model can be written as {
ĊA = qσ

V (CAfa − CA)− a0e
− E

RT CA

Ṫ = qσ
V (Tfa − T )− a1e

− E
RT CA − UA

VρCρ
(Tc − T )

(5.2)

The physical meaning of the above system’s parameters can be found in [25] which is depicted in fig. 7.

Using the method in [12], the system can be expressed as the following switched system consisting of two subsystems:{
ẋ1(t) = h1,σx2(t) + f1,σ(x1(t))
ẋ2(t) = h2,σu(t) + f2,σ(x1(t)) + dσ(t)

(5.3)

where system parameters are h1 = [1 1], h2 = [1 1], f1 = [0.5x1 2x1], f2 = [0 0], and external disturbances are presumed
to be d1 = d2 = 0.2 cos(0.5t).

Figure 7: Schematic diagram of the process [25] for example 5.2

By considering initial conditions as x1(0) = 0.2, x2(0) = 0.2, θ̂(0) = 0, d̂1(0) = d̂2(0) = 0, periodic mismatched
delays τs +∆τs = (10 + 4 sin(3πt)) and τc +∆τc = (7 + 3 cos(πt)) milliseconds, and also the NDO gains are defined
as Id = [1.5 1.1], then the designing parameters are considered as follows:

r = 0.3, c1 = 1, c2 = 8, B = 0.01 and ξ1,k = [0.2, 0.4].

The performance of the stirred tank reactor is simulated by the proposed method and the results are compared
with ref. [8]. Figures 8–12 depict the comparison of both methods.

As it is shown from the above figures, the proposed method with delay has better performance in both states, as
well as the proposed approach is robust against external disturbances. Figure 12 shows that the tracking error of the
disturbance decreases over time.

Example 5.3. In this example, switched nonlinear system in [34] is taken into account. In order to compare both
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Figure 8: State response of system (x1) simulated by proposed method and Ref. [8] with mismatched delay and disturbance for example
5.2

Figure 9: State response of system (x2) simulated by proposed method and Ref. [8] with mismatched delay and disturbance for example
5.2

Figure 10: Adaptive control law simulated by proposed method and Ref. [8] with mismatched delay and disturbance for example 5.2

Figure 11: Adaptive law with zero initial value for example 5.2

methods (proposed and Ref. [34]), the design parameters of both methods are considered as [34]. Thus

ẋ1 = ℏ1,σ(t)x2 + f1,σ(t)(x̄i)

ẋ2 = ℏ2,σ(t)uσ(t)(t) + f2,σ(t)(x̄n) + dσ(t)

y = x1, yd = sin(t),

d1 = 0.2 sin(0.8t), d2 = 0.5 sin(0.3t), and σ(t) = k ∈ {1, 2}
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Figure 12: Tracking error of disturbance observer for example 5.2

where ℏ1,k = [2, 1], ℏ2,k = [2, 1], f1,k = [x1, sinx1], f2,k = [x1x2, x1x
2
2]. The initial conditions are defined as x1(0) =

0.05, x2(0) = 0.05, θ̂1(0) = θ̂2(0) = 0.5. The common parameters are ξ1,k = [0.25, 3], ξ2,k = [1.5, 1.8], c1 = 2, c2 =

2, r = 12 and B = 0.025. Also, parameters of NDO are d̂1(0) = d̂2(0) = 0 and Id = [0.1 0.25]. In the next, the
results will be shown directly to avoid repeating the solving process. In Fig. 13, the adaptive laws of proposed method
and Ref. [34] are depicted. In addition, both tracking errors are shown in Fig. 14. For comparison, some important
criteria (including integrals of square error: ISE =

∫∞
0

[e(t)]2dt, absolute value of error: IAE =
∫∞
0

|e(t)|dt, the
time weighted absolute value of the Error: ITAE =

∫∞
0
t|e(t)|dt and the time weighted square value of the error:

ITSE =
∫∞
0
te2(t)dt) are computed to show better performance of the proposed approach. All the results are gathered

in the following table.

Figure 13: Adaptive laws of proposed method and Ref. [34] for example 5.3

Figure 14: Tracking errors of proposed method and Ref. [34] for example 5.3

As it is demonstrated from Table 3, the proposed approach has better performance than Ref. [34]. Furthermore,
the proposed method can reduce the negative effects of the disturbance on the system very well.
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Table 3: Some important criteria for Example 3
Criteria Method Tracking Error (e)

ISE
Proposed 2.79
Ref. [34] 8.24

IAE
Proposed 324.34
Ref. [34] 371.65

ITSE
Proposed 13291
Ref. [34] 14131

ITAE
Proposed 56.71
Ref. [34] 64.69

6 Conclusion

In the present study, the adaptive controller comprising the nonlinear disturbance observer for dealing with the
output tracking problem of the switched nonlinear system with unknown functions under arbitrary switching signals
has been developed. To improve the performance of the proposed controller, the adaptive fuzzy backstepping technique
is applied to this switched system, which uses adaptive weighted PSO to optimize the controller parameters. Moreover,
the controller does not include the fuzzy basis function, so the computational burden of the controller is greatly reduced.
Therefore, the structure of the proposed approach helped to improve the tracking speed and disturbance rejection of
switched systems with unknown functions. In addition, the stability analysis of the designed controller indicated that
under arbitrary switching signals, all the closed-loop signals remain bounded as well as ensured output tracking error
close to zero, and consequently, system output proportionally tracked the reference signal with the minimum error.
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