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Abstract

In this paper, a common fixed point theorem for a generalized hybrid contraction map in weak partial metric space
is proved. We also give illustrated examples in support of our result. Moreover, we provide a homotopy result as an
application of our result.
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1 Introduction

The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended
Banach contraction principle. In 1969, the generalization of the famous Banach contraction principle for multi-valued
mappings using Hausdorff metric is done by Nadler [10]. A rapid progress has been observed using weak and generalized
contraction mappings afterwards. Multi-valued contraction mapping has many applications in differential equations,
economics and control theory. Let (X, d) be a metric space and CB(X), the class of all nonempty closed and bounded
subsets of X. The Hausdorff metric [2] induced by d on CB(X) is

H(A, B) = max {sup d(a, B),sup d(b, A)}
a€A beB
for every A, B € CB(X), where d(a, B) = inf{d(a,b) : b € B} is the distance from a to B C X. Let f : X — X be a
single-valued mapping and U : X — C'B(X) be a multi-valued mapping,.

(i) A point w € X is said to be a fixed point of f (resp. U) if fw = w (resp. w € X). The set of all fixed points of
f (resp. U) is denoted by F(f)(resp. F'(U)).

(ii) A point w € X is said to be a coincidence point of f and U if fw € Uw. The set of all coincidence points of f
and U is denoted by C(f,U).

(iii) A point w € X is a common fixed point of f and U if w = fw € Uw. The set of all common fixed points of f
and U is denoted by F(f,U).
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In 1969, Nadler proved the following theorem-

Theorem 1.1. [I0] Let (X, d) be a complete metric space and U : X — C'B(X) be a multi-valued mapping satisfying
H(Uz,Uy) < kd(z,y), Ve,ye X
where k € [0,1) then there exists © € X such that z € Uxz.

The concept of (IT)- commutativity for a hybrid pair of single-valued and multivalued mappings is introduced by
Singh and Mishra [14]. Further In 2004, Kamran [8] introduced a weaker condition than (IT)- commutativity for a
hybrid pair of single-valued and multivalued maps which is the notion of T'— weak commutativity. The definitions of
(IT)- commutativity and T- weak commutativity are as follows:

Definition 1.2. [14] A mapping f : X — X and U : X — CB(X) is known as (IT)- commuting at w € X if
fUw C U fw.

Definition 1.3. [§] Let f: X — X and U : X — CB(X), the map f is known T— weakly commuting at w € X
if ffweUfw.

On the other hand, many authors introduced and generalized the distance notion in the metric fixed point theory
in several different ways. In 1992, Mathews [9] introduced the notion of partial metric space as a part of the study
of denotational semantics of data flow networks. He presented a modified version of Banach contraction principle.
Several authors have done work in this direction [T}, 8] 6] [7].

2 Preliminaries

Mathews gave the following definition of partial metric space:

Definition 2.1. [9] Let X be a non empty set. Then a mapping p : X x X — R* is said to be a partial metric on
X if for all z,y,2z € X,

(P1) z =y & pz,z) =plz.y) = p(y.y);
(P2) p(z,z) < p(z,y);
(P3) p(z,y) = py, 2);
(P4) p(z,y) < p(z,2) +p(z,2) —p(z, 2).

P3

)
)
)
P4)
The pair (X, p) is called a partial metric space.

Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as weak
partial metric space and defined as:

Definition 2.2. [5] Let X be a non empty set. A function q: X x X — R™T is called a weak partial metric on X if
for all z,y, z € X, the following conditions hold :

(WP1) q(z,2) = q(z,y) &z =y;
(WP2) gq(z,z) < q(z,y);
(WP3) q(z,y) = q(y, 2);
(WP4) g(z,y) < q(,2) + q(2,2)
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Example 2.3. (i) (RT,q), where ¢ : Rt x RT — RT defines as

q(z,y) = max{z,y} + el YV z y e RT.
(i) (RT*,q), where ¢ : Rt x Rt — R defines as
1 +
q(xay) = gmax{x,y} Vl‘vy eER™.

o If g(z,y) =0, then (WP1) and (WP2) = z = y. But the converse need not be true.
o (P1) =(WP1), but the converse need not be true.

o (P4) = (WP4), but the converse need not be true.

Each weak partial metric ¢ on X generates a Ty topology 7, on X. Topology 7, has as a base the family of open
g-balls {B,(x,€) : x € X, e > 0}, where By(z,¢) = {y € X : q(z,y) < ¢(x,x) + ¢} for all x € X and € > 0.
If ¢ is weak partial metric on X, then the function ¢° : X x X — R¥ given by

1
¢*(2,y) = q(z,y) - 5lalz, x) + 4y, y)]
defines a metric on X.
Definition 2.4. [5] Let (X, ¢) be a weak partial metric space. Then

(i) P is said to be a bounded subset in (X, q) if there exists z € X and L > 0 such that for all p € P, we have
p € By(xo, L) that is
q(z0,p) < q(p,p) + L.

(ii) A sequence {z,} in (X, q) converges to a point z € X, w.r.t. 7, iff ¢(x,x) = nlgr;o q(z, ). Moreover, a sequence

{z,} converges in (X, ¢°) to a point x € X iff

o dimg(wn, ) = lim g(zn, ) = g2, 7)

(iii) A sequence {x,} in X is said to be a Cauchy sequence if lim ¢(x,, 2y, ) exists and is finite.

n,m— 0o

(iv) (X, q) is called complete if every Cauchy sequence {z,} in X converges to € X with respect to topology .

Lemma 2.5. [5] Let (X, q) be a weak partial metric space. Then

(a) A sequence {z,} in X is Cauchy sequence in (X, q) if and only if it is a Cauchy sequence in the metric space
(X, ¢%).

(b) (X,q) is complete iff the metric space (X, ¢°) is complete.

For L,M € CB%X) and z € X define ¢(z,L) = inf{q(x,l) : | € L},0,(L, M) = sup{q(l,M) : I € L} and
dq(M, L) = sup{q(m, L) : m € M}. Clearly, ¢(x, L) = 0 implies that ¢°(z, L) = 0 where ¢°(z, L) = inf{¢°(x,l) : l € L}.

Remark 2.6. [1] Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then
le Lsq(l,L) = q(l,1)
where L denotes the closure of L with respect to weak partial metric g. Observe that L is closed in (X,q) it L= L.
Now, we study the following properties of the mapping 4, : CB?(X) x CB(X) — [0, 00).

Proposition 2.7. [5] Let (X, ¢) be a weak partial metric space. For all L, M, N € CB4(X), we have the following :
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(a) 64(L, L) = sup{q(l,1) : 1 € L};
(b) 8,(L, L) < 5,(L. M);

(c) 64(L,M)=0= L C M;

(€) 0g(L, M) < §4(L,N) + d4(N, M)

Proposition 2.8. [5] Let (X, q) be a weak partial metric space. For all L, M, N € CB(X), we have
(whl) HF (L, L) < HF (L, M);
(wh2) H;‘(L,M) = H;'(M, L),
(wh3) (wh3) H(L,M) < Hf(L,N)+ H} (N, M).
Definition 2.9. [5] Let (X, q) be a weak partial metric space. For L, M € CB%(X), define
HF (L, M) = S {0,(L, M) + 6,(M, 1)}
The mapping H, : CB9(X) x CB(X) — [0, 400) is called H; - type Hausdorff metric induced by g.

Definition 2.10. [5] Let (X, q) be a weak partial metric space. A multi-valued map U : X — CBY(X) is called H, -
contraction if

(1) There exists a € (0,1) such that
Hf (U@)\{z},U)\{y}) < q(w,y) for everyz,y € X
(2) For every z in X, y in U(x) and € > 0, there exists z in U(y) such that
q(y,2) < H (U(y),U(x)) + ¢

1
Remark 2.11. Since, max{a,b} > i(a +b), for all a,b > 0, which follows that H, contraction always implies H;-
contraction but the converse need not be true.

A variant of Nadler’s fixed point theorem is given by Beg and Pathak [5] which is stated as:

Theorem 2.12. [5] Every HJ- type multi-valued contraction map U : X — CB?(X) on a complete weak partial
metric space has a fixed point.

Definition 2.13. [I3] Let (X, q) be a weak partial metric space. A mapping f : X — X be a single valued mapping
and U : X — CB%(X) be a multi-valued mapping. U is said to be a H, ;‘ - hybrid contraction if

(1) There exists a € (0,1) such that
HE(U(@)\{2}, Uw)\{y}) < ag(fz, fy) for every z,y € X.
(2) For every z in X, y in U(x) and € > 0, there exists z in U(y) such that
q(y,2) < Hi (U(y),U(z)) + e

Recently, Saxena and Gairola [I3] prove a fixed point theorem for hybrid contraction map in weak partial metric
space.

Theorem 2.14. Let (X, q) be a weak partial metric space, f : X — X be a single-valued mapping and U : X —
CBIY(X) be a H;— type hybrid contraction mapping. Suppose fX is a complete subspace of X and Uz C fX. Then
f and U have a coincidence point. Furthermore, if f is T— weakly commuting at coincidence points of f and U, then
f and U have a common fixed point.
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3 Main Result

We define H, ;‘ -type generalized hybrid contraction mapping as follows:

Definition 38.1. Let (X, q) be a weak partial metric space. A mapping f : X — X be a single valued mapping and
U: X — CB%X) be a multi-valued mapping. U is said to be a H] - generalized hybrid contraction if

(1) There exists a >0, >0, 7> 0 such that

HF(U@@)\{z}, Uly)\{y}) < aM(z,y) + B.maz{q(fz,Ux),q(fy, Uy)} +vla(fz, Uy) + q(fy,Uz)]

where
M (z,y) = maz{q(fz, fy),q(fz,Uz),q(fy,Uy), %[Q(fw, Uy) + q(fy, Ux)]}

and 2a+ B+ 3y <k < 1.

(2) For every z in X, y in U(x) and € > 0, there exists z in U(y) such that
a(y,2) < HS (U(y),U(x)) + e

Example 3.2. Let (X,q) be a weak partial metric space w.r.t. weak partial metric ¢ : X x X — [0,00) where
1
X =1[0,1] and ¢ is defined by ¢ = 1 max{z,y}, for all z,y € X, define the maps U : X — CB%(X) such that

Uz) = {O, 4] Vo € X,

and f: X — X such that

3 1
f if x€ [2,1]

Clearly we can see that ¢ is weak partial metric on X and (X, ¢) is a weak partial metric space w.r.t. ¢. Now, for
all z,y € X, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

1 1
Case(i) x € [O, 2} RIRS {0, 2] we have

O\ o) = 17 (3.5 (5.3 = 5 < e s 42

and (1) satisfied.

1 1
Case(ii) z € [O, 2] Y € (2, 1] , we have

O\ 0N = 17 (3.5 03] = 5 < a8+ T

and (1) satisfied.
1 1
Case(iii) = € (2, 1] Y € [0, 2} , we have

O\ (a) 00\ = 17 (0.5] (5.3 = 5 < fa 8+

and (1) satisfied.
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1 1
Case(iv) z € <2, 1] Y € (2, 1] , we have

1

U0\ = 17 (0.5 0.5y = 5 < e 542

| =

and (1) satisfied.

Condition (1) is satisfied in all the possible cases. Further, we shall show that for every « € X,y € U(z) and € > 0,
there exists z € U(y) such that q(y,2) < H (U(y),U(z)) + €. Indeed,

1 3 3
(i) For z € [0, 2} ,yeU(x)= [O, 4} ,€ > 0, there exists z € U(y) = {0, 4] such that

1% = q(y,2) < 136+6=HJ(U(y),U($))+6

> w

3
4} such that

1
(ii) For z € (2,1} ywyeU(x)= {O, ] ,€ > 0, there exists z € U(y) = [O,

3 3
- 2 te=HF
S = 4.2) < 1+ o= Hi(U(),U@) +¢
: L . 1 1
Hence, contractive conditions (1) and (2) are satisfied. Also, for all x € {2, 1] , f(x) € U(x). Therefore x € [2, 1]

are the coincidence points of f and U.

Now, we prove the following theorem for H ;r - generalized hybrid contraction mapping.

Theorem 3.3. Let (X, q) be a weak partial metric space. f : X — X be a single-valued mapping and U : X —
CBIY(X) be a H;r - type generalized hybrid contraction mapping. Suppose fX is a complete subspace of X and
Uz C fX. Then f and U have a coincidence point. Furthermore, if f is T— weakly commuting at coincidence points
of f and U then f and U have a common fixed point.

Proof . Let xg be an arbitrary point of X and fxg also let A = k 4+ 2¢ < 1. We construct sequences {zj} in
X. Since Uz C fX, there exists 1 € X such that fzq € Uxg. If M(x1,29) = 0, then z( is a coincidence point.
Hence, assume M (x1,z9) > 0. Now, there exists fxos € Uxy such that ¢(fxy, fza) < H;(Uxo,le) + e.M(xzg,21)
Similarly, assume M (x1,22) > 0. Again by (2) and the fact Uz C fX, there exists fxg € Uxy such that ¢(fzs, fos) <
Hf(Uxy,Uxg) 4+ €. M (21, x2), assume M (g, 23) > 0.

Proceeding in this way, we can construct a sequence fx,1 € Ux,, assume q(f2,, f,41) > 0 satisfying
q(fon, frni1) < H;(Umn—ly Urp) +eM(vp_1,,)
By using (1), we get
q(fxnv fl'n+1) < H;(anfla an) + EM(xnfh xn)
= Hf (Uzna\{zn1}, Uzn\{2n}) + €M (2n 1, 20)
< aM(zn-1,2n) + Bmax{q(frn-1,Uzn-1),¢(f2n, Uzy)}
+q(frn—1,Uzn) + q(frn, Uzn_1)] + eM (21, 25)
= (a+¢). max{q(frn_1, fzn), ¢(frn-1,Urn_1),q(fTn, Uzy), %[Q(fxnfla Uzn) +q(frn, Uzn—1)]}
+ ﬁ maX{Q(fmnflz an71)7 q(fxnv an)} + ’Y[q(f‘r’n717 an) + Q(fxna anfl)]
S (a + 6)- max{q(fxn,l, f$n>, q(fxnflv fxn)’ Q(fxna fanrl)v %[Q(fxnfh fwnJrl) =+ Q(fxna fxn)]}
+ 6 max{q(fxn,l, fxn)v Q(fxnv f$n+1)} + ’V[Q(fxnfla fanrl) + q(fxnv fl'n)]
= (o - max{g(Fan 1, f20)sa(F 2, Fonen)s g0 n s F0) +a(Fon, frusn) +alFons fza)])

+ B max{q(frn_1, frn), ¢(fTn, frni1)} +V[q(fTn-1, frn) + q(fTn, frni1) + a(fTn, fr,)]
(3.1)
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Now, if ¢(fan, fent1) > q(frn—1, fTn), then by (2.1) we have

Q(fxrm fzn-&-l) o+ 6)- maX{‘](fiL’na fﬂ:n+1)7 gCI(fxna fxn-‘rl)} + ﬂq(fxna fxn+1) + ’YSQ(f:CTM fxn-‘rl)
2a0+ B+ 3y + 26).q(f17n, fxn+1)

/\Q(f$n,f$n+1)

<(
<(

Since 2a+ 4 3y +2¢e < 1, above inequality implies that ¢(f2,, fxn1) = 0. Then fz, = fa,11 but fo, # fr,11.
So, a contradiction occurs. Hence
q(fon, frni1) < q(frn—1, fr,). (3-1)

Thus,

q(fxn, frni1) < (a+e€). max{q(frn—_1, f2n), gq(fxn_h fen)} + Ba(frn-1, frn)
+ 73Q(fxn—17 fxn)
< 20+ B+ 37 +26).q(frn_1, fr)
= )‘q(fxnflv fxn)

Adopting similar process, we obtain

Q(fﬂUn-s-h fxn+2) < )\Q(fl"m fxn-‘rl)'

Now, by induction on n, we get
q(fon, frng1) < N'q(fxo, fr1).

For any m € N, we have

@ (fn, frnim) < q(fTns fTnim)
< q(fn, frns1) + a(fontr, foni2) + a(fTnto, fTnis) + oo+ a(fTnpm—1, fTnim)
< Nq(fzo, fr1) + X q(fzo, for) + N2 q(fo, f21) + oo + AT g (fo, f21)
= (A" AL A2 e N g (fag, fa)
An
1-A

IN

q(fxo, fr1) — 0  as n— oo.

This implies that {fxr} where k = 1,2,3,... is a Cauchy sequence in (X, ¢®). Since fX is complete, there exists
w € X such that the sequence fx, converges to fw as n — oo w.r.t. the metric ¢°, that is, lim ¢*(fx,, fw) = 0.
n—oo

Moreover, we have
Q(fwa fw) = nlingo Q(fxvu fw) = nhﬂngo Q(firn, fxn) =0.

We now show that fw € Uw. Now, by triangle inequality,
(fw, fer) + a(fzr, Uw)

(fw, fzg) + H;(ka,l, Uw)

(fw, fax) + Hy (Uzg—1\{z-1}, Uw\{w})

(fw, foy) + aM (21, w) + B. max{q(frr_1, Urk_1),q(fw, Uw)}
+Ma(fre—1,Uw) + q(fw, Uzy—1)]

= q(fw, far) + a.max{q(frr_1, fw),¢(frr—1,Uzr_1), q(fw, Uw), %[Q(fﬂ%thw) +q(fw,Uzp_1)]}
+ B.max{q(fri_1, frr), ¢(fw, Uw)} +v[q(frr—1, Uw) + q(fw, foy)].

q(fw,Uw) <
<

q
q
q
q

IN

Letting k — oo we get
q(fw,Uw) < (a+ B +7)q(fw,Uw).
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As a+ B+ v < 1, therefore g(fw,Uw) = 0. Since Uw is closed, fw € Uw. Therefore, f and U have a coincidence
point w € X. Let t = fw € Uw. It follows from the definition of H, (;L - type Hausdroff metric that

Q(tv ft) < q(tv Ut) = Q(fw, Ut)
< H;(Uw, Ut)
= Hf (Uw\{w}, Ut\{t})
< aM(w,t) + 8. max{q(fw, Uw),q(ft,Ut)} +v[q(fw,Ut) + q(ft,Uw)]

= a.max{q(fw, ft), q(fw,Uw),q(ft,Ut), %[q(fw Ut) + q(ft,Uw)]}
+ 8. max{q(fw, Uw), q(ft,Ut)} +vlg(fw,Ut) + q(ft, Uw)]

= (a+7)-q(fw, ft)

= (a+7)-q(t, f1).

This implies that ¢(¢, ft) = 0. It follows from ¢(ft,Ut) = q(fw,Ut) < Hj(Uw,Ut) = 0. Since Ut is closed,
t = ft € Ut. Thus f and U have a common fixed point. [J

Example 3.4. Let (X, q) be a weak partial metric space w.r.t. weak partial metric ¢ : X x X — [0,00) where
X ={0,1,2} and q is defined by

11

4 1 1
Q(O7O) - Q(la 1) - 07Q(272) - §aq(071) - gaQ(072) - ﬂ7Q(1a2) - 5 v z,y € X.

Define the maps U : X — C'B%(X) such that

_J{o0}, ifx ={0,1}
U(x)_{{o,u, if o =2

and f: X — X such that

fx)=2 forall zeX.

4
Since ¢(2,2) = = # 0, ¢ is not a metric on X. Here Uz C fX. Also, note that Uz is closed and bounded for all

2z € X under the given weak partial metric space (X, q). Now, for all z,y € X, we shall show that the contractive
condition (1) is satisfied. For this, consider the following cases:

(i) =0,y = 0. We have
HS(U0)\{0}, U0)\{0}) = H; (¢.4) =0
and (1) is satisfied.
(ii) = =0,y = 2. We have

1

HS(UO\{0},U@\{2}) = Hy ({0},{0,1}) = = < —(a+B+7)

=
DO | =
=

and (1) is satisfied.
(ili) = =2,y =0. We have

HS(U@\{2}U0)\{0}) = Hf ({0,1},{0}) = = < —(a+ B +7)

=
N | —
>~ =

and (1) is satisfied.

(iv) x =0,y = 1. We have
HS(U0)\{0}, UM\{1}) = Hy (¢,{0}) =0
and (1) is satisfied.
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(v) =1,y =0. We have
HS(U@\{1} U(0)\{0}) = H ({0}, ¢) =0
and (1) is satisfied.

(vi) z =2,y = 2. We have
HA(U@2)\{2},U@2)\{2}) = #({0,1},{0,1}) =0
and (1) is satisfied.

(vii) x = 2,y = 1. We have

HE U@\, U\ = Hy (0.1}, {0)) = ¢ < 20 F L0
and (1) is satisfied.
(viii) x =1,y = 2. We have
1 120+ 118+ 11y

Hy (UM\{1},U(2)\{2}) = H; ({0},{0,1}) = & < o1

and (1) is satisfied.

(ix) z = 1,y = 1. We have
HSUO\{1} UM\{1}) = H ({0}, {0}) =0

and (1) is satisfied.

Further, we shall show that for every z in X, y in U(z) and € > 0, there exists z in U(y) such that ¢(y, z) <
Hf(U(y),U(x)) + e. Indeed,

(1) if £ =0,y € U(0) = {0}, € > 0,, there exists z € U(y) = {0} such that
0=yq(y,2) <HS(U(y),U(x)) +e
(2a) if z =2, y € U(2) ={0,1}, say y = 0,¢ > 0,, there exists z € U(y) = {0}, such that
0=q(y,2) < H, (U(y),U(@)) +e.
(2b) ifx =2, y e U(2) ={0,1}, say y = 1,€e > 0,, there exists z € U(y) = {0}, such that
1 1
3= y:2) < g +e=H(U),U@) +e
(3) Ifx =1,y € U(1) = {0}, € > 0, there exists z € U(0) = {0} such that
0=q(y,2) <HS(U(y),U(x)) +e.
Here x = 0 is the coincidence point of f and U. Also f is T-weakly commuting at coincidence point.
(i) For z =0, ff(0) =0 and U f(0) = {0}. Thus ff(0) € Uf(0).

(ii) Forz =1,ff(1) =1 and U f(1) = {0}. Thus ff(1) ¢ Uf(1).
(iii) For x =2, ff(2) =2 and Uf(2) = {0,1}. Thus ff(2) ¢ Uf(2)

Hence, all the conditions of theorem are satisfied. Here x = 0 = f(0) € U(0) so = = 0 is a common fixed point of
fand U.
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Example 3.5. Let (X,q) be a weak partial metric space w.r.t. weak partial metric ¢ : X x X — [0,00) where

X =10,1] and ¢ is defined by ¢ = max{z,y}, define the maps U : X — C'B?(X) such that
3
U(z) = [0,8} Ve e X

and f: X — X such that

3z 1
Z ’Lf x e |:O,2:|

1if z€ <;1]

fx) =

Clearly, we can see that ¢ is weak partial metric but not a metric on X. Here Uz C fX. Also, note that Uz is
closed and bounded for all © € X under the given weak partial metric space (X, q). Now, for all z,y € X, we shall

show that the contractive condition (1) is satisfied. For this, consider the following cases:

Case(i) x € {O,;} RIRS {0,;] we have
Hy (Ua\{z}, Uy\y}) = H) (6,¢) =0

and (1) satisfied.

1 1
Case(ii) x € [0, 2} RTRS (2, 1] , we have

H} (U}, U D) = 57 6. 0.3 ]) =0

and (1) satisfied.

1 1
Case(iii) = € (2, 1] Y € [O, 2} , we have

3

P U2\ (o}, U\)) = 7 (0.5] ) =0

and (1) satisfied.

1 1
Case(iv) z € <2, 1] Y € (2, 1] , we have

<a+fB+2y

DN =

U\ {2}, Uy\{}) = H ( [o, ﬂ , [0, ﬂ) _

and (1) satisfied.

Further, we shall show that for every z € X,y € U(x) and € > 0, there exists z € U(y) such that ¢(y,z) <

Hf(U(y),U(x)) + e. Indeed,
. 1 3 . 3
(i) For z € |0, S| VE U(z) = |0, 3l€> 0, there exists z € U(y) = |0, 3 such that

g:q(y,Z)<§+€:H;(U(y)’U(x))+€

1 3 3
(ii) For z € (2, 1} yeU(x) = [O, 8] ,€ >0, there exists z € U(y) = [O, 8} such that

S =4(.2) < & o= Hf (U),U) + e
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Hence, Condition (1) and (2) are satisfied. Here X = 0,1 are the coincidence points of f and U. Furthermore, f
is T'—weakly commuting at = = 0.

(i) For @ = 0, f£(0) = 0 and U £(0) = [o, Z} Thus, ££(0) € U£(0).

(ii) Forz=1,ff(1)=1and Uf(1) = [0, :} Thus, ff(1) ¢ Uf(1).

Hence, all the conditions of theorem are satisfied. Here x = 0 = f(0) € U(0), so x = 0 is a common fixed point of
fand U.

Corollary 3.6. In theorem 2.1, if M(z,y) = q(fz, fy), taking 5 = v = 0 we get theorem 1.5 as special case of our
result.

In Theorem 2.1, taking f = I(Identity map) we get the following corollary.

Corollary 3.7. Let (X, q) be a complete weak partial metric space and U be a multivalued map from X to CB?(X)
such that for all z,y € X,

Hf (Uz\{z},Uy\{y}) <amax{q(fz, fy),q(fz,Uz),q(fy, Uy), %[q(fx, Uy) + q(fy, Ux)]}
+ Bmax{q(fz,Ux),q(fy,Uy)} +~la(fx,Uy) + q(fy, Uz)]

where oo + f+ v < k < 1. Then U has a fixed point.
Again by taking 8 = 0,7 = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 3.8. Let (X, q) be a weak partial metric space. Let f: X — X and U : X — CB%(X) be a single valued
and multivalued maps respectively such that U(z) C fX and fX is a complete subspace of X. If for all z,y € X,

1. there exists o € (0,1) such that
Hy (U(@)\{z}, Um)\{y}) < aM(x,y)

where
M (z,y) = max {Q(f:v, fy),a(fz,Ux),q(fy,Uy), %[Q(fx, Uy) + q(fy, UI)]} :

2. for every z in X, y in U(z) and € > 0, there exists z in U(y) such that
a(y,z) < Hf (U(y),U(x)) + e

Then f and U have a coincidence point. Furthermore if f is T-weakly commutative then f and U have a common
fixed point.

4 Application

In this section, we give an application of our main result on homotopy for weak partial metric spaces. Let (X, q) be
a weak partial metric space, R be endowed with Hausdorff topology and let [0,1] be equipped with subspace topology.
First, we observe that

(i) Weak partial metric ¢ on X generates a Ty topology 7, on X.

(ii) A topological space X is connected if and only if its only clopen sets are X and ¢.

Theorem 4.1. Let (X, q) be a weak partial metric space, f : X — X such that F(z,t) C fX and fX be
a complete subspace of X, A be an open subset of X and C' be a closed subset of X, with A C C. Let
F:C x[0,1] = CBY(X) be an operator satisfying:
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(a) x ¢ F(x,t) for every x € C\A and each t € [0, 1],
(b1) there exists a, [, v > 0 such that for each ¢t € [0,1] and each z,y € C we have

Hy (F(z,t)\{z}, F(y,t)\{y}) < aM(z,y)+B. max{q(fz, F(z,1)), a(fy, F(y, ) }+vla(fz, F(y, 1) +a(fy, F(z,1))].
where M (z,y) = max{q(fz, fy),q(fz, F(z,1)),q(fy, F(y,1)), %[q(f%F(y,t)) +q(fy, F(z, )]}
(b2) for every z € C,y € F(z,t) and € > 0,3 z € F(y,t) such that
q(y,2) < Hf (F(y.t), F(z,t)) + €

(c) there exists a continuous function 7 : [0, 1] — R such that

H, (F(z, )\{z}, F(2,5)\{z}) < aln(t) —n(s)]
for all ¢, s € [0,1] and each z € C,
(d) if z € F(x,t) then F(x,t) = {z}, then F(.,0) has a fixed point if and only if F(.,1) has a fixed point.
Proof . Let F(.,0) has a fixed point. Consider the set
Q :={t € 0,1]|z € F(z,t) for some x € A}.
As (a) holds and F'(.,0) has a fixed point, we have 0 € @, so @ is a non-empty set. Now we show that @ is both

closed and open in [0, 1]. Thus, by the connectedness of [0, 1] we are accomplished since @ = [0, 1].

First, let us prove that @ is open in [0,1]. For this, let t;x € Q and zy € F(xg,%0). As A is open in (X, q),
there exists » > 0 such that B,(fzo,r) € A. Consider € = r + ¢(fxo, fzo) — (a + B8+ ¥)(r + ¢(fzo, fzo)) > 0.
Since 7 is continuous on tg, there exists k(e) > 0 such that |n(t) — n(tg)| < € for all t € (to — k(e€),to + k(¢)) for

x € By(fzo,r) = {fr € Xl|q(fzo, fx) < q(fxo, fro) + 7}, thus
q(F(x,1), fzo) < Hi (F(x,t), F(x0,t))
< HF(F(x,t), F(x,t0)) + Hf (F(x,t0), F (0, t))
= H (F(z,t)\{z}, F(z,to)\{z}) + H (F(z,t0)\{z}, F(x0,t0)\{z0})
< aln(t) —n(to)| + aM (z, z0) + B. max{q(fz, F(z,1)), q¢(fro, F(z0,t0))}
Ya(fz, F(zo,t0)) + q(fzo, F(z,1))]
< aln(t) —nto)| + ag(fz, fro) + B.q(fz, F(z,t)) + v[g(fz, fro) + ¢(fro, F(z,1))]
< ae+alq(fz, fro) + 1)+ Bla(fz, fzo) + 1) +v(a(fz, fzo) +7)
<ae+ (a+ B+7)(q(fz, fro) +7)
< ae+ (a+ B+7v)(q(fro, fro) +7)
< af{r+q(fro, fzo) — (a + B+7)(r +q(fzo, f20))} + (a+ B +v)(a(fzo, fro) + 1)
<71+ q(fzo, fro) — (a+ B +7)(r +q(fxo, fro)) + (+ B+ ) (q(fwo, fzo) +7)
=71+ q(fxo, fxo)-

Note that (bl) implies (1). It follows that for every t € (to — k(e),to + k(€)), F'(.,t) : By(fxo,r) = CBYU(X)
satisfies all the hypothesis of theorem 2.1 and so F(.,¢) has a fixed point in B,(fxo,r) C C. But this fixed point
must be in A as (a) holds. Hence (to — k(e€), to + ke) C @ and therefore @ is open in [0, 1].

Next, we show that @ is closed in [0,1]. To prove this, let {¢,},n € N be a sequence in @ with ¢, — t* € [0, 1]
as n — 0o. We must prove that ¢* € Q. By the definition of @, for all n € N, there exists x,, € A such that
fxn, € A with fz, € F(zp,t,). Then, for m,n € N, using (d) and (wh3) we get
(fxmfwm) = HF (F(xn,tn), F(2m, tm))
;(F(xﬂ?tn) (xnv m)) + H;(F(x’mtm)yF(xnutm))
= ;(F(xnatn)\{xn} F(@n, tm)\{2n}) +H+(F(Inv )\ Zn by F(Tm, tm) \{Zm })
< aln(tn) — n(tm)| + aM (2, ) + Bmax{q(f2n, F(Tn,tn), ¢(fTm, F(Tm,tm))}
+7q(f2n, F(@m, tm)) + ¢(f2m, F(zn, tn))]
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where,

M (20, ) = max{q(f2n, frm), ¢(frn, F(Tn,t0)), d(fTm, F(Tm,tm)), [(fxnv F(Zm,tm))
+ q(fzm, F(zn,tn))]}.

It further implies that

q(frn, frm) < aln(tn) —ntm)| + aq(frn, frm) + Be(fm, fom) + 2vq(frn, f2m)
< aln(tn) —n(tm)| + (o + B+ 27)a(frn, frm)

and we have o

1 fom) S T v 5T

n(tn) —n(tm)|-

Since n is continuous and t,,n € N is convergent, letting m,n — oo in the above inequality, we obtain
lim q(fzn, fom) = 0, that is, {fx,},n € N is a Cauchy sequence in(X,q). Since fX is complete sub-

n,m—oo

space of X, there exists fo* € C with ¢(fz*, fa*) = lim q¢(fz*, fe,) = lm q(fzn, fom) = 0. On the other
n— o0 n,M—00

hand, we have

q(frn, F(2",t7)) = HS (F(wn, tn), F(z",t7))
< Hy (F(wn,tn), (xm )+ Hy (F(zn, t), F(a", 7))
< Hy (F(@n, tn)\{zn}, F(@n, t)\{zn}) + Hy (F(2n, t)\{2n}, F(2",t)\{z"})
< aln(tn) = (") + oM (zn, 2%) + fmax{q(fzn, F(zn, tn)), ¢(f2, F (2", 1))}
+Alg(fan, F(27,87)) + q(f2*, F(zn, tn))]

where,

M (zn, 2*) = max{q(fon, f2*), ¢(fon, F(2n,tn)), q(f2*, F(z7,1%)), %[q(fxn,F(x*,t*))vq(fx*,F(wmtn))]}-

So,

q(frn, F(a", 7)) < aln(tn) —n(t")| + aq(fon, f27) + Be(fon, f27) + 27¢(fon, f27)
< aln(ta) = n(t) + (e + 5+ 27)q(fon, f27).

Letting n — oo in te above inequality, we get lim ¢(fz,, F(z*,t*)) = 0 and so
n— oo
q(fx*, F(z*,t%)) = nl;rréo q(fxn, F(z*,t")) = 0.

It follows that fz* € F(x*,t*). Thus t* € @ and hence @ is closed in [0,1]. By the connectedness of [0, 1] we
have @ = [0, 1]. The reverse implication easily follows by applying the same method. This completes the proof.
(]
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