Int. J. Nonlinear Anal. Appl. 14 (2023) 7, 21–34 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.28666.3954

Generalized hybrid contraction in weak partial metric spaces

Swati Saxena*, U. C. Gairola

Department of Mathematics, H.N.B. Garhwal University, BGR Campus, Pauri Garhwal-246001, Uttarakhand, India

(Communicated by Mohammad Resoul Velayati)

Abstract

In this paper, a common fixed point theorem for a generalized hybrid contraction map in weak partial metric space is proved. We also give illustrated examples in support of our result. Moreover, we provide a homotopy result as an application of our result.

Keywords: Generalized Hybrid contraction mapping, Weak Partial metric space, Partial Hausdorff metric, Coincidence Point, Common fixed point 2020 MSC: Primary 47H10, Secondary 54H25

1 Introduction

The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended Banach contraction principle. In 1969, the generalization of the famous Banach contraction principle for multi-valued mappings using Hausdorff metric is done by Nadler [10]. A rapid progress has been observed using weak and generalized contraction mappings afterwards. Multi-valued contraction mapping has many applications in differential equations, economics and control theory. Let (X, d) be a metric space and CB(X), the class of all nonempty closed and bounded subsets of X. The Hausdorff metric [2] induced by d on CB(X) is

$$H(A,B) = max \left\{ \sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A) \right\}$$

for every $A, B \in CB(X)$, where $d(a, B) = \inf\{d(a, b) : b \in B\}$ is the distance from a to $B \subseteq X$. Let $f : X \to X$ be a single-valued mapping and $U : X \to CB(X)$ be a multi-valued mapping.

- (i) A point $w \in X$ is said to be a fixed point of f (resp. U) if fw = w (resp. $w \in X$). The set of all fixed points of f (resp. U) is denoted by F(f)(resp. F(U)).
- (ii) A point $w \in X$ is said to be a coincidence point of f and U if $fw \in Uw$. The set of all coincidence points of f and U is denoted by C(f, U).
- (iii) A point $w \in X$ is a common fixed point of f and U if $w = fw \in Uw$. The set of all common fixed points of f and U is denoted by F(f, U).

*Swati Saxena

Email addresses: swatisaxena567@gmail.com (Swati Saxena), ucgairola@rediffmail.com (U. C. Gairola)

In 1969, Nadler proved the following theorem-

Theorem 1.1. [10] Let (X, d) be a complete metric space and $U: X \to CB(X)$ be a multi-valued mapping satisfying

 $H(Ux, Uy) \le kd(x, y), \ \forall x, y \in X$

where $k \in [0, 1)$ then there exists $x \in X$ such that $x \in Ux$.

The concept of (IT)- commutativity for a hybrid pair of single-valued and multivalued mappings is introduced by Singh and Mishra [14]. Further In 2004, Kamran [8] introduced a weaker condition than (IT)- commutativity for a hybrid pair of single-valued and multivalued maps which is the notion of T- weak commutativity. The definitions of (IT)- commutativity and T- weak commutativity are as follows:

Definition 1.2. [14] A mapping $f : X \longrightarrow X$ and $U : X \longrightarrow CB(X)$ is known as *(IT)*- commuting at $w \in X$ if $fUw \subseteq Ufw$.

Definition 1.3. [8] Let $f: X \longrightarrow X$ and $U: X \longrightarrow CB(X)$, the map f is known T- weakly commuting at $w \in X$ if $ffw \in Ufw$.

On the other hand, many authors introduced and generalized the distance notion in the metric fixed point theory in several different ways. In 1992, Mathews [9] introduced the notion of partial metric space as a part of the study of denotational semantics of data flow networks. He presented a modified version of Banach contraction principle. Several authors have done work in this direction [1, 3, 6, 7].

2 Preliminaries

Mathews gave the following definition of partial metric space:

Definition 2.1. [9] Let X be a non empty set. Then a mapping $p: X \times X \to \mathbb{R}^+$ is said to be a partial metric on X if for all $x, y, z \in X$,

- (P1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y);$
- (P2) $p(x,x) \le p(x,y);$
- (P3) p(x,y) = p(y,x);
- (P4) $p(x,y) \le p(x,z) + p(z,x) p(z,z).$

The pair (X, p) is called a partial metric space.

Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as weak partial metric space and defined as:

Definition 2.2. [5] Let X be a non empty set. A function $q: X \times X \to \mathbb{R}^+$ is called a weak partial metric on X if for all $x, y, z \in X$, the following conditions hold :

 $\begin{array}{l} \text{(WP1)} \ q(x,x) = q(x,y) \Leftrightarrow x = y; \\ \text{(WP2)} \ q(x,x) \leq q(x,y); \\ \text{(WP3)} \ q(x,y) = q(y,x); \\ \text{(WP4)} \ q(x,y) \leq q(x,z) + q(z,x). \end{array}$

The pair (X,q) is a weak partial metric space. Further, many authors have worked on weak partial metric space [4, 11, 12].

Example 2.3. (i) (\mathbb{R}^+, q) , where $q : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ defines as

$$q(x,y) = \max\{x,y\} + e^{|x-y|} \forall x, y \in \mathbb{R}^+.$$

(ii) (\mathbb{R}^+, q) , where $q : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ defines as

$$q(x,y) = \frac{1}{6} \max\{x,y\} \ \forall x,y \in \mathbb{R}^+$$

- ♦ If q(x, y) = 0, then (WP1) and (WP2) $\Rightarrow x = y$. But the converse need not be true.
- ♦ (P1) \Rightarrow (WP1), but the converse need not be true.
- \diamond (P4) \Rightarrow (WP4), but the converse need not be true.

Each weak partial metric q on X generates a T_0 topology τ_q on X. Topology τ_q has as a base the family of open q-balls $\{B_q(x,\epsilon) : x \in X, \epsilon > 0\}$, where $B_q(x,\epsilon) = \{y \in X : q(x,y) < q(x,x) + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$. If q is weak partial metric on X, then the function $q^s : X \times X \to \mathbb{R}^+$ given by

$$q^{s}(x,y) = q(x,y) - \frac{1}{2}[q(x,x) + q(y,y)]$$

defines a metric on X.

Definition 2.4. [5] Let (X, q) be a weak partial metric space. Then

(i) P is said to be a bounded subset in (X, q) if there exists $x \in X$ and $L \ge 0$ such that for all $p \in P$, we have $p \in B_q(x_0, L)$ that is

$$q(x_0, p) < q(p, p) + L$$

(ii) A sequence $\{x_n\}$ in (X, q) converges to a point $x \in X$, w.r.t. τ_q iff $q(x, x) = \lim_{n \to \infty} q(x, x_n)$. Moreover, a sequence $\{x_n\}$ converges in (X, q^s) to a point $x \in X$ iff

$$\lim_{n \to \infty} q(x_n, x_m) = \lim_{n \to \infty} q(x_n, x) = q(x, x)$$

- (iii) A sequence $\{x_n\}$ in X is said to be a Cauchy sequence if $\lim_{n \to \infty} q(x_n, x_m)$ exists and is finite.
- (iv) (X,q) is called complete if every Cauchy sequence $\{x_n\}$ in X converges to $x \in X$ with respect to topology τ_q .

Lemma 2.5. [5] Let (X,q) be a weak partial metric space. Then

- (a) A sequence $\{x_n\}$ in X is Cauchy sequence in (X,q) if and only if it is a Cauchy sequence in the metric space (X,q^s) .
- (b) (X,q) is complete iff the metric space (X,q^s) is complete.

For $L, M \in CB^{q}(X)$ and $x \in X$ define $q(x, L) = \inf\{q(x, l) : l \in L\}, \delta_{q}(L, M) = \sup\{q(l, M) : l \in L\}$ and $\delta_{q}(M, L) = \sup\{q(m, L) : m \in M\}$. Clearly, q(x, L) = 0 implies that $q^{s}(x, L) = 0$ where $q^{s}(x, L) = \inf\{q^{s}(x, l) : l \in L\}$.

Remark 2.6. [1] Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then

$$l \in \bar{L} \Leftrightarrow q(l,L) = q(l,l)$$

where L denotes the closure of L with respect to weak partial metric q. Observe that L is closed in (X,q) iff L = L.

Now, we study the following properties of the mapping $\delta_q : CB^q(X) \times CB^q(X) \to [0, \infty)$.

Proposition 2.7. [5] Let (X,q) be a weak partial metric space. For all $L, M, N \in CB^q(X)$, we have the following :

- (a) $\delta_q(L,L) = \sup\{q(l,l) : l \in L\};$
- (b) $\delta_q(L,L) \leq \delta_q(L,M);$
- (c) $\delta_q(L, M) = 0 \Rightarrow L \subseteq M;$
- (c) $\delta_q(L, M) \leq \delta_q(L, N) + \delta_q(N, M).$

Proposition 2.8. [5] Let (X,q) be a weak partial metric space. For all $L, M, N \in CB^q(X)$, we have

- (wh1) $H_q^+(L,L) \le H_q^+(L,M);$
- (wh2) $H_{q}^{+}(L, M) = H_{q}^{+}(M, L);$
- (wh3) (wh3) $H_q^+(L, M) \le H_q^+(L, N) + H_q^+(N, M).$

Definition 2.9. [5] Let (X,q) be a weak partial metric space. For $L, M \in CB^q(X)$, define

$$H_q^+(L, M) = \frac{1}{2} \{ \delta_q(L, M) + \delta_q(M, L) \}$$

The mapping $H_q^+: CB^q(X) \times CB^q(X) \to [0, +\infty)$ is called H_q^+ - type Hausdorff metric induced by q.

Definition 2.10. [5] Let (X, q) be a weak partial metric space. A multi-valued map $U: X \to CB^q(X)$ is called H_q^+ contraction if

(1) There exists $\alpha \in (0, 1)$ such that

$$H_a^+(U(x)\setminus\{x\}, U(y)\setminus\{y\}) \le q(x,y)$$
 for every $x, y \in X$

(2) For every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_a^+(U(y),U(x)) + \epsilon$$

Remark 2.11. Since, $\max\{a, b\} \ge \frac{1}{2}(a+b)$, for all $a, b \ge 0$, which follows that H_q contraction always implies H_q^+ contraction but the converse need not be true.

A variant of Nadler's fixed point theorem is given by Beg and Pathak [5] which is stated as:

Theorem 2.12. [5] Every H_q^+ - type multi-valued contraction map $U: X \to CB^q(X)$ on a complete weak partial metric space has a fixed point.

Definition 2.13. [13] Let (X, q) be a weak partial metric space. A mapping $f : X \to X$ be a single valued mapping and $U : X \to CB^q(X)$ be a multi-valued mapping. U is said to be a H_q^+ - hybrid contraction if

(1) There exists $\alpha \in (0, 1)$ such that

$$H_q^+(U(x)\setminus\{x\}, U(y)\setminus\{y\}) \le \alpha q(fx, fy)$$
 for every $x, y \in X$

(2) For every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_a^+(U(y),U(x)) + \epsilon.$$

Recently, Saxena and Gairola [13] prove a fixed point theorem for hybrid contraction map in weak partial metric space.

Theorem 2.14. Let (X,q) be a weak partial metric space, $f: X \longrightarrow X$ be a single-valued mapping and $U: X \longrightarrow CB^q(X)$ be a H_q^+ - type hybrid contraction mapping. Suppose fX is a complete subspace of X and $Ux \subset fX$. Then f and U have a coincidence point. Furthermore, if f is T- weakly commuting at coincidence points of f and U, then f and U have a common fixed point.

3 Main Result

We define H_q^+ -type generalized hybrid contraction mapping as follows:

Definition 3.1. Let (X,q) be a weak partial metric space. A mapping $f: X \to X$ be a single valued mapping and $U: X \to CB^q(X)$ be a multi-valued mapping. U is said to be a H_q^+ - generalized hybrid contraction if

(1) There exists $\alpha > 0$, $\beta > 0$, $\gamma > 0$ such that

$$H_q^+(U(x)\setminus\{x\}, U(y)\setminus\{y\}) \le \alpha M(x,y) + \beta \cdot \max\{q(fx, Ux), q(fy, Uy)\} + \gamma[q(fx, Uy) + q(fy, Ux)]$$

where

$$M(x,y) = max\{q(fx, fy), q(fx, Ux), q(fy, Uy), \frac{1}{2}[q(fx, Uy) + q(fy, Ux)]\}$$

and $2\alpha + \beta + 3\gamma \leq k < 1$.

(2) For every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_a^+(U(y),U(x)) + \epsilon$$

Example 3.2. Let (X,q) be a weak partial metric space w.r.t. weak partial metric $q : X \times X \to [0,\infty)$ where X = [0,1] and q is defined by $q = \frac{1}{4} \max\{x, y\}$, for all $x, y \in X$, define the maps $U : X \to CB^q(X)$ such that

$$U(x) = \begin{bmatrix} 0, \frac{3}{4} \end{bmatrix} \quad \forall x \in X,$$

and $f: X \to X$ such that

$$f(x) = \begin{cases} 1 & if \ x \in \left[0, \frac{1}{2}\right) \\ \\ \frac{3x}{4} & if \ x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Clearly we can see that q is weak partial metric on X and (X,q) is a weak partial metric space w.r.t. q. Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

Case(i)
$$x \in \left[0, \frac{1}{2}\right], y \in \left[0, \frac{1}{2}\right]$$
 we have
$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+\left(\left(\frac{1}{2}, \frac{3}{4}\right], \left(\frac{1}{2}, \frac{3}{4}\right]\right) = \frac{3}{16} \le \frac{1}{4}(\alpha + \beta + 2\gamma)$$

and (1) satisfied.

Case(ii)
$$x \in \left[0, \frac{1}{2}\right], y \in \left(\frac{1}{2}, 1\right]$$
, we have
$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+\left(\left(\frac{1}{2}, \frac{3}{4}\right], \left[0, \frac{1}{2}\right]\right) = \frac{3}{16} \le \frac{1}{4}(\alpha + \beta + \frac{7}{4}\gamma)$$

and (1) satisfied.

Case(iii)
$$x \in \left(\frac{1}{2}, 1\right], y \in \left[0, \frac{1}{2}\right]$$
, we have
$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\left[0, \frac{1}{2}\right], \left(\frac{1}{2}, \frac{3}{4}\right]) = \frac{3}{16} \le \frac{1}{4}(\alpha + \beta + \frac{7}{4}\gamma)$$

and (1) satisfied.

Case(iv) $x \in \left(\frac{1}{2}, 1\right], y \in \left(\frac{1}{2}, 1\right]$, we have

$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\left[0, \frac{1}{2}\right], \left[0, \frac{1}{2}\right]) = \frac{1}{8} \le \frac{3}{16}(\alpha + \beta + 2\gamma)$$

and (1) satisfied.

Condition (1) is satisfied in all the possible cases. Further, we shall show that for every $x \in X, y \in U(x)$ and $\epsilon > 0$, there exists $z \in U(y)$ such that $q(y, z) \leq H_q^+(U(y), U(x)) + \epsilon$. Indeed,

(i) For
$$x \in \left[0, \frac{1}{2}\right], y \in U(x) = \left[0, \frac{3}{4}\right], \epsilon > 0$$
, there exists $z \in U(y) = \left[0, \frac{3}{4}\right]$ such that

$$\frac{3}{16} = q(y, z) < \frac{3}{16} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$$
(ii) For $x \in \left(\frac{1}{2}, 1\right], y \in U(x) = \left[0, \frac{3}{4}\right], \epsilon > 0$, there exists $z \in U(y) = \left[0, \frac{3}{4}\right]$ such that

$$\frac{3}{16} = q(y, z) < \frac{3}{16} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$$

Hence, contractive conditions (1) and (2) are satisfied. Also, for all $x \in \left[\frac{1}{2}, 1\right], f(x) \in U(x)$. Therefore $x \in \left[\frac{1}{2}, 1\right]$ are the coincidence points of f and U.

Now, we prove the following theorem for H_q^+ - generalized hybrid contraction mapping.

Theorem 3.3. Let (X,q) be a weak partial metric space. $f: X \longrightarrow X$ be a single-valued mapping and $U: X \longrightarrow CB^q(X)$ be a H_q^+ - type generalized hybrid contraction mapping. Suppose fX is a complete subspace of X and $Ux \subset fX$. Then f and U have a coincidence point. Furthermore, if f is T- weakly commuting at coincidence points of f and U then f and U have a common fixed point.

Proof. Let x_0 be an arbitrary point of X and fx_0 also let $\lambda = k + 2\epsilon < 1$. We construct sequences $\{x_k\}$ in X. Since $Ux \subset fX$, there exists $x_1 \in X$ such that $fx_1 \in Ux_0$. If $M(x_1, x_0) = 0$, then x_0 is a coincidence point. Hence, assume $M(x_1, x_0) > 0$. Now, there exists $fx_2 \in Ux_1$ such that $q(fx_1, fx_2) \leq H_q^+(Ux_0, Ux_1) + \epsilon M(x_0, x_1)$ Similarly, assume $M(x_1, x_2) > 0$. Again by (2) and the fact $Ux \subset fX$, there exists $fx_3 \in Ux_2$ such that $q(fx_2, fx_3) \leq H_q^+(Ux_1, Ux_2) + \epsilon M(x_1, x_2)$, assume $M(x_2, x_3) > 0$.

Proceeding in this way, we can construct a sequence $fx_{n+1} \in Ux_n$, assume $q(fx_n, fx_{n+1}) > 0$ satisfying

$$q(fx_n, fx_{n+1}) \le H_q^+(Ux_{n-1}, Ux_n) + \epsilon M(x_{n-1}, x_n)$$

By using
$$(1)$$
, we get

$$\begin{aligned} q(fx_{n}, fx_{n+1}) &\leq H_{q}^{+}(Ux_{n-1}, Ux_{n}) + \epsilon M(x_{n-1}, x_{n}) \\ &= H_{q}^{+}(Ux_{n-1} \setminus \{x_{n-1}\}, Ux_{n} \setminus \{x_{n}\}) + \epsilon M(x_{n-1}, x_{n}) \\ &\leq \alpha M(x_{n-1}, x_{n}) + \beta \max\{q(fx_{n-1}, Ux_{n-1}), q(fx_{n}, Ux_{n})\} \\ &+ \gamma[q(fx_{n-1}, Ux_{n}) + q(fx_{n}, Ux_{n-1})] + \epsilon M(x_{n-1}, x_{n}) \\ &= (\alpha + \epsilon) \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n-1}, Ux_{n-1}), q(fx_{n}, Ux_{n}), \frac{1}{2}[q(fx_{n-1}, Ux_{n}) + q(fx_{n}, Ux_{n-1})]\} \\ &+ \beta \max\{q(fx_{n-1}, Ux_{n-1}), q(fx_{n}, Ux_{n})\} + \gamma[q(fx_{n-1}, Ux_{n}) + q(fx_{n}, Ux_{n-1})] \\ &\leq (\alpha + \epsilon) \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1}), \frac{1}{2}[q(fx_{n-1}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &= (\alpha + \epsilon) \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n+1}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, fx_{n}) + q(fx_{n}, fx_{n})]\} \\ &+ \beta \cdot \max\{q(fx_{n-1}, fx_{n}), q(fx_{n}, fx_{n+1})\} + \gamma[q(fx_{n-1}, f$$

Now, if $q(fx_n, fx_{n+1}) > q(fx_{n-1}, fx_n)$, then by (2.1) we have

$$\begin{aligned} q(fx_n, fx_{n+1}) &\leq (\alpha + \epsilon) \cdot \max\{q(fx_n, fx_{n+1}), \frac{3}{2}q(fx_n, fx_{n+1})\} + \beta q(fx_n, fx_{n+1}) + \gamma 3q(fx_n, fx_{n+1}) \\ &\leq (2\alpha + \beta + 3\gamma + 2\epsilon) \cdot q(fx_n, fx_{n+1}) \\ &= \lambda q(fx_n, fx_{n+1}) \end{aligned}$$

Since $2\alpha + \beta + 3\gamma + 2\epsilon < 1$, above inequality implies that $q(fx_n, fx_{n+1}) = 0$. Then $fx_n = fx_{n+1}$ but $fx_n \neq fx_{n+1}$. So, a contradiction occurs. Hence

$$q(fx_n, fx_{n+1}) \le q(fx_{n-1}, fx_n). \tag{3.-1}$$

Thus,

$$q(fx_{n}, fx_{n+1}) \leq (\alpha + \epsilon) \cdot \max\{q(fx_{n-1}, fx_{n}), \frac{3}{2}q(fx_{n-1}, fx_{n})\} + \beta q(fx_{n-1}, fx_{n}) + \gamma 3q(fx_{n-1}, fx_{n}) \leq (2\alpha + \beta + 3\gamma + 2\epsilon) \cdot q(fx_{n-1}, fx_{n}) \\ = \lambda q(fx_{n-1}, fx_{n}).$$

Adopting similar process, we obtain

$$q(fx_{n+1}, fx_{n+2}) \le \lambda q(fx_n, fx_{n+1})$$

Now, by induction on n, we get

$$q(fx_n, fx_{n+1}) \le \lambda^n q(fx_0, fx_1)$$

For any $m \in \mathbb{N}$, we have

$$\begin{split} q^{s}(fx_{n}, fx_{n+m}) &\leq q(fx_{n}, fx_{n+m}) \\ &\leq q(fx_{n}, fx_{n+1}) + q(fx_{n+1}, fx_{n+2}) + q(fx_{n+2}, fx_{n+3}) + \ldots + q(fx_{n+m-1}, fx_{n+m}) \\ &\leq \lambda^{n}q(fx_{0}, fx_{1}) + \lambda^{n+1}q(fx_{0}, fx_{1}) + \lambda^{n+2}q(fx_{0}, fx_{1}) + \ldots + \lambda^{n+m-1}q(fx_{0}, fx_{1}) \\ &= (\lambda^{n} + \lambda^{n+1} + \lambda^{n+2} + \ldots + \lambda^{n+m-1})q(fx_{0}, fx_{1}) \\ &\leq \frac{\lambda^{n}}{1 - \lambda}.q(fx_{0}, fx_{1}) \longrightarrow 0 \quad as \quad n \to \infty. \end{split}$$

This implies that $\{fx_k\}$ where k = 1, 2, 3, ... is a Cauchy sequence in (X, q^s) . Since fX is complete, there exists $w \in X$ such that the sequence fx_n converges to fw as $n \to \infty$ w.r.t. the metric q^s , that is, $\lim_{n \to \infty} q^s(fx_n, fw) = 0$. Moreover, we have

$$q(fw, fw) = \lim_{n \to \infty} q(fx_n, fw) = \lim_{n \to \infty} q(fx_n, fx_n) = 0.$$

We now show that $fw \in Uw$. Now, by triangle inequality,

$$\begin{split} q(fw, Uw) &\leq q(fw, fx_k) + q(fx_k, Uw) \\ &\leq q(fw, fx_k) + H_q^+(Ux_{k-1}, Uw) \\ &= q(fw, fx_k) + H_q^+(Ux_{k-1} \setminus \{x_{k-1}\}, Uw \setminus \{w\}) \\ &\leq q(fw, fx_k) + \alpha M(x_{k-1}, w) + \beta. \max\{q(fx_{k-1}, Ux_{k-1}), q(fw, Uw)\} \\ &+ \gamma[q(fx_{k-1}, Uw) + q(fw, Ux_{k-1})] \\ &= q(fw, fx_k) + \alpha. \max\{q(fx_{k-1}, fw), q(fx_{k-1}, Ux_{k-1}), q(fw, Uw), \frac{1}{2}[q(fx_{k-1}, Uw) + q(fw, Ux_{k-1})]\} \\ &+ \beta. \max\{q(fx_{k-1}, fx_k), q(fw, Uw)\} + \gamma[q(fx_{k-1}, Uw) + q(fw, fx_k)]. \end{split}$$

Letting $k \to \infty$ we get

$$q(fw, Uw) \le (\alpha + \beta + \gamma)q(fw, Uw).$$

As $\alpha + \beta + \gamma < 1$, therefore q(fw, Uw) = 0. Since Uw is closed, $fw \in Uw$. Therefore, f and U have a coincidence point $w \in X$. Let $t = fw \in Uw$. It follows from the definition of H_q^+ - type Hausdroff metric that

$$\begin{split} q(t,ft) &\leq q(t,Ut) = q(fw,Ut) \\ &\leq H_q^+(Uw,Ut) \\ &= H_q^+(Uw\backslash\{w\},Ut\backslash\{t\}) \\ &\leq \alpha M(w,t) + \beta.\max\{q(fw,Uw),q(ft,Ut)\} + \gamma[q(fw,Ut) + q(ft,Uw)] \\ &= \alpha.\max\{q(fw,ft),q(fw,Uw),q(ft,Ut),\frac{1}{2}[q(fw,Ut) + q(ft,Uw)]\} \\ &\quad + \beta.\max\{q(fw,Uw),q(ft,Ut)\} + \gamma[q(fw,Ut) + q(ft,Uw)] \\ &= (\alpha + \gamma).q(fw,ft) \\ &= (\alpha + \gamma).q(t,ft). \end{split}$$

This implies that q(t, ft) = 0. It follows from $q(ft, Ut) = q(fw, Ut) \leq H_q^+(Uw, Ut) = 0$. Since Ut is closed, $t = ft \in Ut$. Thus f and U have a common fixed point. \Box

Example 3.4. Let (X,q) be a weak partial metric space w.r.t. weak partial metric $q: X \times X \to [0,\infty)$ where $X = \{0,1,2\}$ and q is defined by

$$q(0,0) = q(1,1) = 0, q(2,2) = \frac{4}{9}, q(0,1) = \frac{1}{3}, q(0,2) = \frac{11}{24}, q(1,2) = \frac{1}{2} \ \forall \ x, y \in X$$

Define the maps $U: X \to CB^q(X)$ such that

$$U(x) = \begin{cases} \{0\}, & \text{if } x = \{0, 1\} \\ \{0, 1\}, & \text{if } x = 2 \end{cases}$$

and $f: X \to X$ such that

$$f(x) = x$$
 for all $x \in X$.

Since $q(2,2) = \frac{4}{9} \neq 0$, q is not a metric on X. Here $Ux \subset fX$. Also, note that Ux is closed and bounded for all $x \in X$ under the given weak partial metric space (X,q). Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

(i) x = 0, y = 0. We have

$$H_q^+(U(0)\setminus\{0\}, U(0)\setminus\{0\}) = H_q^+(\phi, \phi) = 0$$

and (1) is satisfied.

(ii) x = 0, y = 2. We have

$$H_q^+(U(0) \setminus \{0\}, U(2) \setminus \{2\}) = H_q^+(\{0\}, \{0, 1\}) = \frac{1}{6} \le \frac{11}{24}(\alpha + \beta + \gamma)$$

and (1) is satisfied.

(iii) x = 2, y = 0. We have

$$H_q^+(U(2) \setminus \{2\}, U(0) \setminus \{0\}) = H_q^+(\{0,1\}, \{0\}) = \frac{1}{6} \le \frac{11}{24}(\alpha + \beta + \gamma)$$

and (1) is satisfied.

(iv) x = 0, y = 1. We have

$$H_q^+(U(0)\setminus\{0\}, U(1)\setminus\{1\}) = H_q^+(\phi, \{0\}) = 0$$

and (1) is satisfied.

(v) x = 1, y = 0. We have

 $H_q^+(U(1) \setminus \{1\}, U(0) \setminus \{0\}) = H_q^+(\{0\}, \phi) = 0$

and (1) is satisfied.

(vi) x = 2, y = 2. We have

$$H_q^+(U(2)\backslash\{2\}, U(2)\backslash\{2\}) = H_q^+(\{0,1\}, \{0,1\}) = 0$$

and (1) is satisfied.

(vii) x = 2, y = 1. We have

$$H_q^+(U(2)\backslash\{2\}, U(1)\backslash\{1\}) = H_q^+(\{0,1\},\{0\}) = \frac{1}{6} \le \frac{12\alpha + 11\beta + 11\gamma}{24}$$

and (1) is satisfied.

(viii) x = 1, y = 2. We have

$$H_q^+(U(1) \setminus \{1\}, U(2) \setminus \{2\}) = H_q^+(\{0\}, \{0, 1\}) = \frac{1}{6} \le \frac{12\alpha + 11\beta + 11\gamma}{24}$$

and (1) is satisfied.

(ix) x = 1, y = 1. We have

$$H_q^+(U(1) \setminus \{1\}, U(1) \setminus \{1\}) = H_q^+(\{0\}, \{0\}) = 0$$

and (1) is satisfied.

Further, we shall show that for every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that $q(y,z) \le H_q^+(U(y), U(x)) + \epsilon$. Indeed,

(1) if $x = 0, y \in U(0) = \{0\}, \epsilon > 0$, there exists $z \in U(y) = \{0\}$ such that

$$0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon.$$

(2a) if $x = 2, y \in U(2) = \{0, 1\}$, say $y = 0, \epsilon > 0$, there exists $z \in U(y) = \{0\}$, such that

$$0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon.$$

(2b) if $x = 2, y \in U(2) = \{0, 1\}$, say $y = 1, \epsilon > 0$, there exists $z \in U(y) = \{0\}$, such that

$$\frac{1}{3}=q(y,z)<\frac{1}{6}+\epsilon=H_q^+(U(y),U(x))+\epsilon.$$

(3) If $x = 1, y \in U(1) = \{0\}, \epsilon > 0$, there exists $z \in U(0) = \{0\}$ such that

$$0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon.$$

Here x = 0 is the coincidence point of f and U. Also f is T-weakly commuting at coincidence point.

- (i) For x = 0, ff(0) = 0 and $Uf(0) = \{0\}$. Thus $ff(0) \in Uf(0)$.
- (ii) For x = 1, ff(1) = 1 and $Uf(1) = \{0\}$. Thus $ff(1) \notin Uf(1)$.
- (iii) For x = 2, ff(2) = 2 and $Uf(2) = \{0, 1\}$. Thus $ff(2) \notin Uf(2)$

Hence, all the conditions of theorem are satisfied. Here $x = 0 = f(0) \in U(0)$ so x = 0 is a common fixed point of f and U.

Example 3.5. Let (X,q) be a weak partial metric space w.r.t. weak partial metric $q : X \times X \to [0,\infty)$ where X = [0,1] and q is defined by $q = \max\{x, y\}$, define the maps $U : X \to CB^q(X)$ such that

$$U(x) = \left[0, \frac{3}{8}\right] \qquad \forall x \in X$$

and $f:X\to X$ such that

$$f(x) = \begin{cases} \frac{3x}{4} & \text{if } x \in \left[0, \frac{1}{2}\right] \\ \\ 1 & \text{if } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Clearly, we can see that q is weak partial metric but not a metric on X. Here $Ux \subset fX$. Also, note that Ux is closed and bounded for all $x \in X$ under the given weak partial metric space (X,q). Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

Case(i)
$$x \in \left[0, \frac{1}{2}\right], y \in \left[0, \frac{1}{2}\right]$$
 we have

$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\phi, \phi) = 0$$

and (1) satisfied.

Case(ii)
$$x \in \left[0, \frac{1}{2}\right], y \in \left(\frac{1}{2}, 1\right]$$
, we have

$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\phi, \left[0, \frac{3}{8}\right]) = 0$$

and (1) satisfied.

Case(iii)
$$x \in \left(\frac{1}{2}, 1\right], y \in \left[0, \frac{1}{2}\right]$$
, we have
$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\left[0, \frac{3}{8}\right], \phi) = 0$$

and (1) satisfied.

Case(iv)
$$x \in \left(\frac{1}{2}, 1\right], y \in \left(\frac{1}{2}, 1\right]$$
, we have
$$H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) = H_q^+(\left[0, \frac{1}{2}\right], \left[0, \frac{1}{2}\right]) = \frac{1}{2} \le \alpha + \beta + 2\gamma$$

and (1) satisfied.

Further, we shall show that for every $x \in X, y \in U(x)$ and $\epsilon > 0$, there exists $z \in U(y)$ such that $q(y, z) \leq H_q^+(U(y), U(x)) + \epsilon$. Indeed,

(i) For
$$x \in \left[0, \frac{1}{2}\right], y \in U(x) = \left[0, \frac{3}{8}\right], \epsilon > 0$$
, there exists $z \in U(y) = \left[0, \frac{3}{8}\right]$ such that

$$\frac{3}{8} = q(y, z) < \frac{3}{8} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$$
(ii) For $x \in \left(\frac{1}{2}, 1\right], y \in U(x) = \left[0, \frac{3}{8}\right], \epsilon > 0$, there exists $z \in U(y) = \left[0, \frac{3}{8}\right]$ such that

$$\frac{3}{8} = q(y, z) < \frac{3}{8} + \epsilon = H_q^+(U(y), U(x)) + \epsilon.$$

Hence, Condition (1) and (2) are satisfied. Here X = 0, 1 are the coincidence points of f and U. Furthermore, f is T-weakly commuting at x = 0.

(i) For
$$x = 0, ff(0) = 0$$
 and $Uf(0) = \left[0, \frac{3}{8}\right]$. Thus, $ff(0) \in Uf(0)$.

(ii) For
$$x = 1, ff(1) = 1$$
 and $Uf(1) = \left[0, \frac{3}{8}\right]$. Thus, $ff(1) \notin Uf(1)$.

Hence, all the conditions of theorem are satisfied. Here $x = 0 = f(0) \in U(0)$, so x = 0 is a common fixed point of f and U.

Corollary 3.6. In theorem 2.1, if M(x,y) = q(fx, fy), taking $\beta = \gamma = 0$ we get theorem 1.5 as special case of our result.

In Theorem 2.1, taking f = I (Identity map) we get the following corollary.

Corollary 3.7. Let (X,q) be a complete weak partial metric space and U be a multivalued map from X to $CB^q(X)$ such that for all $x, y \in X$,

$$\begin{split} H_q^+(Ux \setminus \{x\}, Uy \setminus \{y\}) \leq &\alpha \max\{q(fx, fy), q(fx, Ux), q(fy, Uy), \frac{1}{2}[q(fx, Uy) + q(fy, Ux)]\} \\ &+ \beta \max\{q(fx, Ux), q(fy, Uy)\} + \gamma[q(fx, Uy) + q(fy, Ux)] \end{split}$$

where $\alpha + \beta + \gamma \leq k < 1$. Then U has a fixed point.

Again by taking $\beta = 0, \gamma = 0$ in Theorem 2.1, we obtain the following corollary.

Corollary 3.8. Let (X,q) be a weak partial metric space. Let $f: X \to X$ and $U: X \to CB^q(X)$ be a single valued and multivalued maps respectively such that $U(x) \subset fX$ and fX is a complete subspace of X. If for all $x, y \in X$,

1. there exists $\alpha \in (0, 1)$ such that

$$H_q^+(U(x)\backslash\{x\}, U(y)\backslash\{y\}) \le \alpha M(x, y)$$

where

$$M(x,y) = \max\left\{q(fx, fy), q(fx, Ux), q(fy, Uy), \frac{1}{2}[q(fx, Uy) + q(fy, Ux)]\right\}.$$

2. for every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_q^+(U(y),U(x)) + \epsilon$$

Then f and U have a coincidence point. Furthermore if f is T-weakly commutative then f and U have a common fixed point.

4 Application

In this section, we give an application of our main result on homotopy for weak partial metric spaces. Let (X, q) be a weak partial metric space, \mathbb{R} be endowed with Hausdorff topology and let [0,1] be equipped with subspace topology. First, we observe that

- (i) Weak partial metric q on X generates a T_0 topology τ_q on X.
- (ii) A topological space X is connected if and only if its only clopen sets are X and ϕ .

Theorem 4.1. Let (X,q) be a weak partial metric space, $f : X \to X$ such that $F(x,t) \subset fX$ and fX be a complete subspace of X, A be an open subset of X and C be a closed subset of X, with $A \subset C$. Let $F : C \times [0,1] \to CB^q(X)$ be an operator satisfying:

- (a) $x \notin F(x,t)$ for every $x \in C \setminus A$ and each $t \in [0,1]$,
- (b1) there exists α , β , $\gamma > 0$ such that for each $t \in [0, 1]$ and each $x, y \in C$ we have
- $H_{q}^{+}(F(x,t) \setminus \{x\}, F(y,t) \setminus \{y\}) \leq \alpha M(x,y) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(x,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \gamma[q(fx,F(y,t)) + q(fy,F(x,t))] \cdot q(fy,F(y,t)) + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(x,t))\} + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(y,t))\} + \beta \cdot \max\{q(fx,F(x,t)), q(fy,F(x,t))\} + \beta$

where $M(x,y) = \max\{q(fx, fy), q(fx, F(x,t)), q(fy, F(y,t)), \frac{1}{2}[q(fx, F(y,t)) + q(fy, F(x,t))]\}$

(b2) for every $x \in C, y \in F(x, t)$ and $\epsilon > 0, \exists z \in F(y, t)$ such that

$$q(y,z) \le H_a^+(F(y,t),F(x,t)) + \epsilon$$

(c) there exists a continuous function $\eta: [0,1] \to \mathbb{R}$ such that

$$H_q^+(F(x,t)\backslash\{x\},F(x,s)\backslash\{x\}) \le \alpha |\eta(t) - \eta(s)|$$

for all $t, s \in [0, 1]$ and each $x \in C$,

(d) if $x \in F(x,t)$ then $F(x,t) = \{x\}$, then F(.,0) has a fixed point if and only if F(.,1) has a fixed point.

Proof. Let F(.,0) has a fixed point. Consider the set

$$Q := \{t \in [0,1] | x \in F(x,t) \text{ for some } x \in A\}.$$

As (a) holds and F(.,0) has a fixed point, we have $0 \in Q$, so Q is a non-empty set. Now we show that Q is both closed and open in [0,1]. Thus, by the connectedness of [0,1] we are accomplished since Q = [0,1].

First, let us prove that Q is open in [0,1]. For this, let $t_0 \in Q$ and $x_0 \in F(x_0, t_0)$. As A is open in (X, q), there exists r > 0 such that $B_q(fx_0, r) \subseteq A$. Consider $\epsilon = r + q(fx_0, fx_0) - (\alpha + \beta + \gamma)(r + q(fx_0, fx_0)) > 0$. Since η is continuous on t_0 , there exists $k(\epsilon) > 0$ such that $|\eta(t) - \eta(t_0)| < \epsilon$ for all $t \in (t_0 - k(\epsilon), t_0 + k(\epsilon))$ for $x \in \overline{B_q(fx_0, r)} = \{fx \in X | q(fx_0, fx) \le q(fx_0, fx_0) + r\}$, thus

$$\begin{split} q(F(x,t),fx_0) &\leq H_q^+(F(x,t),F(x_0,t_0)) \\ &\leq H_q^+(F(x,t),F(x,t_0)) + H_q^+(F(x,t_0),F(x_0,t_0)) \\ &= H_q^+(F(x,t)\backslash\{x\},F(x,t_0)\backslash\{x\}) + H_q^+(F(x,t_0)\backslash\{x\},F(x_0,t_0)\backslash\{x_0\}) \\ &\leq \alpha |\eta(t) - \eta(t_0)| + \alpha M(x,x_0) + \beta . \max\{q(fx,F(x,t)),q(fx_0,F(x_0,t_0))\} \\ &+ \gamma[q(fx,F(x_0,t_0)) + q(fx_0,F(x,t))] \\ &\leq \alpha |\eta(t) - \eta(t_0)| + \alpha q(fx,fx_0) + \beta . q(fx,F(x,t)) + \gamma[q(fx,fx_0) + q(fx_0,F(x,t))] \\ &\leq \alpha \epsilon + \alpha (q(fx,fx_0) + r) + \beta (q(fx,fx_0) + r) + \gamma (q(fx,fx_0) + r) \\ &\leq \alpha \epsilon + (\alpha + \beta + \gamma)(q(fx,fx_0) + r) \\ &\leq \alpha \epsilon + (\alpha + \beta + \gamma)(q(fx_0,fx_0) + r) \\ &\leq \alpha \{r + q(fx_0,fx_0) - (\alpha + \beta + \gamma)(r + q(fx_0,fx_0))\} + (\alpha + \beta + \gamma)(q(fx_0,fx_0) + r) \\ &< r + q(fx_0,fx_0) - (\alpha + \beta + \gamma)(r + q(fx_0,fx_0)) + (\alpha + \beta + \gamma)(q(fx_0,fx_0) + r) \\ &= r + q(fx_0,fx_0). \end{split}$$

Note that (b1) implies (1). It follows that for every $t \in (t_0 - k(\epsilon), t_0 + k(\epsilon)), F(.,t) : \overline{B_q(fx_0, r)} \to CB^q(X)$ satisfies all the hypothesis of theorem 2.1 and so F(.,t) has a fixed point in $B_q(fx_0,r) \subset C$. But this fixed point must be in A as (a) holds. Hence $(t_0 - k(\epsilon), t_0 + k\epsilon) \subseteq Q$ and therefore Q is open in [0, 1].

Next, we show that Q is closed in [0,1]. To prove this, let $\{t_n\}, n \in \mathbb{N}$ be a sequence in Q with $t_n \to t^* \in [0,1]$ as $n \to \infty$. We must prove that $t^* \in Q$. By the definition of Q, for all $n \in \mathbb{N}$, there exists $x_n \in A$ such that $fx_n \in A$ with $fx_n \in F(x_n, t_n)$. Then, for $m, n \in \mathbb{N}$, using (d) and (wh3) we get

$$\begin{aligned} q(fx_n, fx_m) &= H_q^+(F(x_n, t_n), F(x_m, t_m)) \\ &\leq H_q^+(F(x_n, t_n), F(x_n, t_m)) + H_q^+(F(x_n, t_m), F(x_m, t_m)) \\ &= H_q^+(F(x_n, t_n) \setminus \{x_n\}, F(x_n, t_m) \setminus \{x_n\}) + H_q^+(F(x_n, t_m) \setminus \{x_n\}, F(x_m, t_m) \setminus \{x_m\}) \\ &\leq \alpha |\eta(t_n) - \eta(t_m)| + \alpha M(x_n, x_m) + \beta \max\{q(fx_n, F(x_n, t_n), q(fx_m, F(x_m, t_m))\} \\ &+ \gamma [q(fx_n, F(x_m, t_m)) + q(fx_m, F(x_n, t_n))] \end{aligned}$$

where,

$$M(x_n, x_m) = \max\{q(fx_n, fx_m), q(fx_n, F(x_n, t_n)), q(fx_m, F(x_m, t_m)), \frac{1}{2}[q(fx_n, F(x_m, t_m)) + q(fx_m, F(x_n, t_n))]\}.$$

It further implies that

$$q(fx_n, fx_m) \le \alpha |\eta(t_n) - \eta(t_m)| + \alpha q(fx_n, fx_m) + \beta q(fx_m, fx_m) + 2\gamma q(fx_n, fx_m)$$
$$\le \alpha |\eta(t_n) - \eta(t_m)| + (\alpha + \beta + 2\gamma)q(fx_n, fx_m)$$

and we have

$$q(fx_n, fx_m) \le \frac{\alpha}{1 - (\alpha + \beta + 2\gamma)} |\eta(t_n) - \eta(t_m)|$$

Since η is continuous and $t_n, n \in \mathbb{N}$ is convergent, letting $m, n \to \infty$ in the above inequality, we obtain $\lim_{\substack{n,m\to\infty\\n,m\to\infty}} q(fx_n, fx_m) = 0$, that is, $\{fx_n\}, n \in \mathbb{N}$ is a Cauchy sequence $\operatorname{in}(X,q)$. Since fX is complete subspace of X, there exists $fx^* \in C$ with $q(fx^*, fx^*) = \lim_{\substack{n\to\infty\\n\to\infty}} q(fx^*, fx_n) = \lim_{\substack{n,m\to\infty\\n\to\infty}} q(fx_n, fx_m) = 0$. On the other hand, we have

$$\begin{aligned} q(fx_n, F(x^*, t^*)) &= H_q^+(F(x_n, t_n), F(x^*, t^*)) \\ &\leq H_q^+(F(x_n, t_n), F(x_n, t^*)) + H_q^+(F(x_n, t^*), F(x^*, t^*)) \\ &\leq H_q^+(F(x_n, t_n) \setminus \{x_n\}, F(x_n, t^*) \setminus \{x_n\}) + H_q^+(F(x_n, t^*) \setminus \{x_n\}, F(x^*, t^*) \setminus \{x^*\}) \\ &\leq \alpha |\eta(t_n) - \eta(t^*)| + \alpha M(x_n, x^*) + \beta \max\{q(fx_n, F(x_n, t_n)), q(fx^*, F(x^*, t^*))\} \\ &+ \gamma [q(fx_n, F(x^*, t^*)) + q(fx^*, F(x_n, t_n))] \end{aligned}$$

where,

$$M(x_n, x^*) = \max\{q(fx_n, fx^*), q(fx_n, F(x_n, t_n)), q(fx^*, F(x^*, t^*)), \frac{1}{2}[q(fx_n, F(x^*, t^*)), q(fx^*, F(x_n, t_n))]\}$$

So,

$$q(fx_n, F(x^*, t^*)) \le \alpha |\eta(t_n) - \eta(t^*)| + \alpha q(fx_n, fx^*) + \beta q(fx_n, fx^*) + 2\gamma q(fx_n, fx^*) \\ \le \alpha |\eta(t_n) - \eta(t^*)| + (\alpha + \beta + 2\gamma)q(fx_n, fx^*).$$

Letting $n \to \infty$ in the above inequality, we get $\lim_{n \to \infty} q(fx_n, F(x^*, t^*)) = 0$ and so

$$q(fx^*, F(x^*, t^*)) = \lim_{n \to \infty} q(fx_n, F(x^*, t^*)) = 0$$

It follows that $fx^* \in F(x^*, t^*)$. Thus $t^* \in Q$ and hence Q is closed in [0, 1]. By the connectedness of [0, 1] we have Q = [0, 1]. The reverse implication easily follows by applying the same method. This completes the proof. \Box

Acknowledgements

Authors are indebted to the reviewers for their valuable suggestions for the improvement of the paper.

References

- I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778–2785.
- [2] H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric space, Topology Appl. 159 (2012), 3234–3242.

- [3] H. Aydi, M. Abbas, and C. Vetro, Common fixed points for multivalued generalized contraction on partial metric spaces, Rev. Real Acad. Cien. Exacts Fis. Natur. A. Mat. 108 (2014), 483–501.
- [4] H. Aydi, M.A. Barakat, Z.D. Mitrovć, and V.S. Cavic, A Suzuki type multi-valued contraction on weak partial metric space and applications, J. Inequal. Appl. 2018 (2018), 270.
- [5] I. Beg and H.K. Pathak, A variant of Nadler's theorem on weak partial metric spaces with application to homotopy result, Vietnam J. Math. 46 (2018), 693–706.
- [6] N. Chandra, M.C. Arya, and M.C. Joshi, Coincidence point theorems for generalized contraction in partial metric spaces, Recent Advances in Fixed Point Theory and Applications, Chapter 10, Nova Science Publishers, Inc., USA, 2017.
- [7] L. Ciric, B. Samet, H. Aydi, and C. Vetro, Common fixed points of generalized contraction on partial metric spaces and an application, Appl. Math. Comp. 218 (2011), 2398–2406.
- [8] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004), 235–241.
- [9] S.G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994), no. 1, 183–197.
- [10] S.B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475–488.
- [11] S. Negi, U.C. Gairola, Common fixed points for generalized multivalued contraction mappings on weak partial metric spaces, Jñānābha 49 (2019), no. 2, 34–44.
- [12] S. Negi and U.C. Gairola, Fixed point of Suzuki-type generalized multivalued contraction mappings on weak partial metric spaces, Jñānābha. 50 (2020), no. 1, 35-42.
- [13] S. Saxena and U.C. Gairola, Hybrid contraction in weak partial metric spaces, Jñānābha 52 (2022), no. 2, 229–237.
- [14] S.L. Singh and S.N. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl. 256 (2001), 486–497.