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Abstract

In this paper, a common fixed point theorem for a generalized hybrid contraction map in weak partial metric space
is proved. We also give illustrated examples in support of our result. Moreover, we provide a homotopy result as an
application of our result.
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1 Introduction

The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended
Banach contraction principle. In 1969, the generalization of the famous Banach contraction principle for multi-valued
mappings using Hausdorff metric is done by Nadler [10]. A rapid progress has been observed using weak and generalized
contraction mappings afterwards. Multi-valued contraction mapping has many applications in differential equations,
economics and control theory. Let (X, d) be a metric space and CB(X), the class of all nonempty closed and bounded
subsets of X. The Hausdorff metric [2] induced by d on CB(X) is

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
for every A,B ∈ CB(X), where d(a,B) = inf{d(a, b) : b ∈ B} is the distance from a to B ⊆ X. Let f : X → X be a
single-valued mapping and U : X → CB(X) be a multi-valued mapping.

(i) A point w ∈ X is said to be a fixed point of f (resp. U) if fw = w (resp. w ∈ X). The set of all fixed points of
f (resp. U) is denoted by F (f)(resp. F (U)).

(ii) A point w ∈ X is said to be a coincidence point of f and U if fw ∈ Uw. The set of all coincidence points of f
and U is denoted by C(f, U).

(iii) A point w ∈ X is a common fixed point of f and U if w = fw ∈ Uw. The set of all common fixed points of f
and U is denoted by F (f, U).
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In 1969, Nadler proved the following theorem-

Theorem 1.1. [10] Let (X, d) be a complete metric space and U : X → CB(X) be a multi-valued mapping satisfying

H(Ux,Uy) ≤ kd(x, y), ∀x, y ∈ X

where k ∈ [0, 1) then there exists x ∈ X such that x ∈ Ux.

The concept of (IT )- commutativity for a hybrid pair of single-valued and multivalued mappings is introduced by
Singh and Mishra [14]. Further In 2004, Kamran [8] introduced a weaker condition than (IT )- commutativity for a
hybrid pair of single-valued and multivalued maps which is the notion of T− weak commutativity. The definitions of
(IT )- commutativity and T - weak commutativity are as follows:

Definition 1.2. [14] A mapping f : X −→ X and U : X −→ CB(X) is known as (IT )- commuting at w ∈ X if
fUw ⊆ Ufw.

Definition 1.3. [8] Let f : X −→ X and U : X −→ CB(X), the map f is known T− weakly commuting at w ∈ X
if ffw ∈ Ufw.

On the other hand, many authors introduced and generalized the distance notion in the metric fixed point theory
in several different ways. In 1992, Mathews [9] introduced the notion of partial metric space as a part of the study
of denotational semantics of data flow networks. He presented a modified version of Banach contraction principle.
Several authors have done work in this direction [1, 3, 6, 7].

2 Preliminaries

Mathews gave the following definition of partial metric space:

Definition 2.1. [9] Let X be a non empty set. Then a mapping p : X ×X → R+ is said to be a partial metric on
X if for all x, y, z ∈ X,

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, y) ≤ p(x, z) + p(z, x)− p(z, z).

The pair (X, p) is called a partial metric space.

Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as weak
partial metric space and defined as:

Definition 2.2. [5] Let X be a non empty set. A function q : X ×X → R+ is called a weak partial metric on X if
for all x, y, z ∈ X, the following conditions hold :

(WP1) q(x, x) = q(x, y) ⇔ x = y;

(WP2) q(x, x) ≤ q(x, y);

(WP3) q(x, y) = q(y, x);

(WP4) q(x, y) ≤ q(x, z) + q(z, x).

The pair (X, q) is a weak partial metric space. Further, many authors have worked on weak partial metric space
[4, 11, 12].
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Example 2.3. (i) (R+, q), where q : R+ × R+ → R+ defines as

q(x, y) = max{x, y}+ e|x−y| ∀ x, y ∈ R+.

(ii) (R+, q), where q : R+ × R+ → R+ defines as

q(x, y) =
1

6
max{x, y} ∀x, y ∈ R+.

⋄ If q(x, y) = 0, then (WP1) and (WP2) ⇒ x = y. But the converse need not be true.

⋄ (P1) ⇒(WP1), but the converse need not be true.

⋄ (P4) ⇒ (WP4), but the converse need not be true.

Each weak partial metric q on X generates a T0 topology τq on X. Topology τq has as a base the family of open
q-balls {Bq(x, ϵ) : x ∈ X, ϵ > 0}, where Bq(x, ϵ) = {y ∈ X : q(x, y) < q(x, x) + ϵ} for all x ∈ X and ϵ > 0.
If q is weak partial metric on X, then the function qs : X ×X → R+ given by

qs(x, y) = q(x, y)− 1

2
[q(x, x) + q(y, y)]

defines a metric on X.

Definition 2.4. [5] Let (X, q) be a weak partial metric space. Then

(i) P is said to be a bounded subset in (X, q) if there exists x ∈ X and L ≥ 0 such that for all p ∈ P , we have
p ∈ Bq(x0, L) that is

q(x0, p) < q(p, p) + L.

(ii) A sequence {xn} in (X, q) converges to a point x ∈ X, w.r.t. τq iff q(x, x) = lim
n→∞

q(x, xn). Moreover, a sequence

{xn} converges in (X, qs) to a point x ∈ X iff

lim
n→∞m→∞

q(xn, xm) = lim
n→∞

q(xn, x) = q(x, x)

(iii) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

q(xn, xm) exists and is finite.

(iv) (X, q) is called complete if every Cauchy sequence {xn} in X converges to x ∈ X with respect to topology τq.

Lemma 2.5. [5] Let (X, q) be a weak partial metric space. Then

(a) A sequence {xn} in X is Cauchy sequence in (X, q) if and only if it is a Cauchy sequence in the metric space
(X, qs).

(b) (X, q) is complete iff the metric space (X, qs) is complete.

For L,M ∈ CBq(X) and x ∈ X define q(x, L) = inf{q(x, l) : l ∈ L}, δq(L,M) = sup{q(l,M) : l ∈ L} and
δq(M,L) = sup{q(m,L) : m ∈ M}. Clearly, q(x, L) = 0 implies that qs(x, L) = 0 where qs(x, L) = inf{qs(x, l) : l ∈ L}.

Remark 2.6. [1] Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then

l ∈ L̄ ⇔ q(l, L) = q(l, l)

where L̄ denotes the closure of L with respect to weak partial metric q. Observe that L is closed in (X, q) iff L = L̄.

Now, we study the following properties of the mapping δq : CBq(X)× CBq(X) → [0,∞).

Proposition 2.7. [5] Let (X, q) be a weak partial metric space. For all L,M,N ∈ CBq(X), we have the following :
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(a) δq(L,L) = sup{q(l, l) : l ∈ L};

(b) δq(L,L) ≤ δq(L,M);

(c) δq(L,M) = 0 ⇒ L ⊆ M ;

(c) δq(L,M) ≤ δq(L,N) + δq(N,M).

Proposition 2.8. [5] Let (X, q) be a weak partial metric space. For all L,M,N ∈ CBq(X), we have

(wh1) H+
q (L,L) ≤ H+

q (L,M);

(wh2) H+
q (L,M) = H+

q (M,L);

(wh3) (wh3) H+
q (L,M) ≤ H+

q (L,N) +H+
q (N,M).

Definition 2.9. [5] Let (X, q) be a weak partial metric space. For L,M ∈ CBq(X), define

H+
q (L,M) =

1

2
{δq(L,M) + δq(M,L)}

The mapping H+
q : CBq(X)× CBq(X) → [0,+∞) is called H+

q - type Hausdorff metric induced by q.

Definition 2.10. [5] Let (X, q) be a weak partial metric space. A multi-valued map U : X → CBq(X) is called H+
q -

contraction if

(1) There exists α ∈ (0, 1) such that

H+
q (U(x)\{x}, U(y)\{y}) ≤ q(x, y) for every x, y ∈ X

(2) For every x in X, y in U(x) and ϵ > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y), U(x)) + ϵ

Remark 2.11. Since, max{a, b} ≥ 1

2
(a + b), for all a, b ≥ 0 , which follows that Hq contraction always implies H+

q -

contraction but the converse need not be true.

A variant of Nadler’s fixed point theorem is given by Beg and Pathak [5] which is stated as:

Theorem 2.12. [5] Every H+
q - type multi-valued contraction map U : X → CBq(X) on a complete weak partial

metric space has a fixed point.

Definition 2.13. [13] Let (X, q) be a weak partial metric space. A mapping f : X → X be a single valued mapping
and U : X → CBq(X) be a multi-valued mapping. U is said to be a H+

q - hybrid contraction if

(1) There exists α ∈ (0, 1) such that

H+
q (U(x)\{x}, U(y)\{y}) ≤ αq(fx, fy) for every x, y ∈ X.

(2) For every x in X, y in U(x) and ϵ > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y), U(x)) + ϵ.

Recently, Saxena and Gairola [13] prove a fixed point theorem for hybrid contraction map in weak partial metric
space.

Theorem 2.14. Let (X, q) be a weak partial metric space, f : X −→ X be a single-valued mapping and U : X −→
CBq(X) be a H+

q - type hybrid contraction mapping. Suppose fX is a complete subspace of X and Ux ⊂ fX. Then
f and U have a coincidence point. Furthermore, if f is T− weakly commuting at coincidence points of f and U , then
f and U have a common fixed point.
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3 Main Result

We define H+
q -type generalized hybrid contraction mapping as follows:

Definition 3.1. Let (X, q) be a weak partial metric space. A mapping f : X → X be a single valued mapping and
U : X → CBq(X) be a multi-valued mapping. U is said to be a H+

q - generalized hybrid contraction if

(1) There exists α > 0, β > 0, γ > 0 such that

H+
q (U(x)\{x}, U(y)\{y}) ≤ αM(x, y) + β.max{q(fx, Ux), q(fy, Uy)}+ γ[q(fx, Uy) + q(fy, Ux)]

where

M(x, y) = max{q(fx, fy), q(fx, Ux), q(fy, Uy),
1

2
[q(fx, Uy) + q(fy, Ux)]}

and 2α+ β + 3γ ≤ k < 1.

(2) For every x in X, y in U(x) and ϵ > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y), U(x)) + ϵ

Example 3.2. Let (X, q) be a weak partial metric space w.r.t. weak partial metric q : X × X → [0,∞) where

X = [0, 1] and q is defined by q =
1

4
max{x, y}, for all x, y ∈ X, define the maps U : X → CBq(X) such that

U(x) =

[
0,

3

4

]
∀x ∈ X,

and f : X → X such that

f(x) =


1 if x ∈

[
0,

1

2

)
3x

4
if x ∈

[
1

2
, 1

]
.

Clearly we can see that q is weak partial metric on X and (X, q) is a weak partial metric space w.r.t. q. Now, for
all x, y ∈ X, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

Case(i) x ∈
[
0,

1

2

]
, y ∈

[
0,

1

2

]
we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

(
1

2
,
3

4

]
,

(
1

2
,
3

4

]
) =

3

16
≤ 1

4
(α+ β + 2γ)

and (1) satisfied.

Case(ii) x ∈
[
0,

1

2

]
, y ∈

(
1

2
, 1

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

(
1

2
,
3

4

]
,

[
0,

1

2

]
) =

3

16
≤ 1

4
(α+ β +

7

4
γ)

and (1) satisfied.

Case(iii) x ∈
(
1

2
, 1

]
, y ∈

[
0,

1

2

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

[
0,

1

2

]
,

(
1

2
,
3

4

]
) =

3

16
≤ 1

4
(α+ β +

7

4
γ)

and (1) satisfied.
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Case(iv) x ∈
(
1

2
, 1

]
, y ∈

(
1

2
, 1

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

[
0,

1

2

]
,

[
0,

1

2

]
) =

1

8
≤ 3

16
(α+ β + 2γ)

and (1) satisfied.

Condition (1) is satisfied in all the possible cases. Further, we shall show that for every x ∈ X, y ∈ U(x) and ϵ > 0,
there exists z ∈ U(y) such that q(y, z) ≤ H+

q (U(y), U(x)) + ϵ. Indeed,

(i) For x ∈
[
0,

1

2

]
, y ∈ U(x) =

[
0,

3

4

]
, ϵ > 0, there exists z ∈ U(y) =

[
0,

3

4

]
such that

3

16
= q(y, z) <

3

16
+ ϵ = H+

q (U(y), U(x)) + ϵ

(ii) For x ∈
(
1

2
, 1

]
, y ∈ U(x) =

[
0,

3

4

]
, ϵ > 0, there exists z ∈ U(y) =

[
0,

3

4

]
such that

3

16
= q(y, z) <

3

16
+ ϵ = H+

q (U(y), U(x)) + ϵ

Hence, contractive conditions (1) and (2) are satisfied. Also, for all x ∈
[
1

2
, 1

]
, f(x) ∈ U(x). Therefore x ∈

[
1

2
, 1

]
are the coincidence points of f and U .

Now, we prove the following theorem for H+
q - generalized hybrid contraction mapping.

Theorem 3.3. Let (X, q) be a weak partial metric space. f : X −→ X be a single-valued mapping and U : X −→
CBq(X) be a H+

q - type generalized hybrid contraction mapping. Suppose fX is a complete subspace of X and
Ux ⊂ fX. Then f and U have a coincidence point. Furthermore, if f is T− weakly commuting at coincidence points
of f and U then f and U have a common fixed point.

Proof . Let x0 be an arbitrary point of X and fx0 also let λ = k + 2ϵ < 1. We construct sequences {xk} in
X. Since Ux ⊂ fX, there exists x1 ∈ X such that fx1 ∈ Ux0. If M(x1, x0) = 0, then x0 is a coincidence point.
Hence, assume M(x1, x0) > 0. Now, there exists fx2 ∈ Ux1 such that q(fx1, fx2) ≤ H+

q (Ux0, Ux1) + ϵ.M(x0, x1)
Similarly, assume M(x1, x2) > 0. Again by (2) and the fact Ux ⊂ fX, there exists fx3 ∈ Ux2 such that q(fx2, fx3) ≤
H+

q (Ux1, Ux2) + ϵ.M(x1, x2), assume M(x2, x3) > 0.

Proceeding in this way, we can construct a sequence fxn+1 ∈ Uxn, assume q(fxn, fxn+1) > 0 satisfying

q(fxn, fxn+1) ≤ H+
q (Uxn−1, Uxn) + ϵ.M(xn−1, xn)

By using (1), we get

q(fxn, fxn+1) ≤ H+
q (Uxn−1, Uxn) + ϵM(xn−1, xn)

= H+
q (Uxn−1\{xn−1}, Uxn\{xn}) + ϵM(xn−1, xn)

≤ αM(xn−1, xn) + βmax{q(fxn−1, Uxn−1), q(fxn, Uxn)}
+ γ[q(fxn−1, Uxn) + q(fxn, Uxn−1)] + ϵM(xn−1, xn)

= (α+ ϵ).max{q(fxn−1, fxn), q(fxn−1, Uxn−1), q(fxn, Uxn),
1

2
[q(fxn−1, Uxn) + q(fxn, Uxn−1)]}

+ βmax{q(fxn−1, Uxn−1), q(fxn, Uxn)}+ γ[q(fxn−1, Uxn) + q(fxn, Uxn−1)]

≤ (α+ ϵ).max{q(fxn−1, fxn), q(fxn−1, fxn), q(fxn, fxn+1),
1

2
[q(fxn−1, fxn+1) + q(fxn, fxn)]}

+ β.max{q(fxn−1, fxn), q(fxn, fxn+1)}+ γ[q(fxn−1, fxn+1) + q(fxn, fxn)]

= (α+ ϵ).max{q(fxn−1, fxn), q(fxn, fxn+1),
1

2
[q(fxn−1, fxn) + q(fxn, fxn+1) + q(fxn, fxn)]}

+ β.max{q(fxn−1, fxn), q(fxn, fxn+1)}+ γ[q(fxn−1, fxn) + q(fxn, fxn+1) + q(fxn, fxn)]

(3.1)
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Now, if q(fxn, fxn+1) > q(fxn−1, fxn), then by (2.1) we have

q(fxn, fxn+1) ≤ (α+ ϵ).max{q(fxn, fxn+1),
3

2
q(fxn, fxn+1)}+ βq(fxn, fxn+1) + γ3q(fxn, fxn+1)

≤ (2α+ β + 3γ + 2ϵ).q(fxn, fxn+1)

= λq(fxn, fxn+1)

Since 2α+β+3γ+2ϵ < 1, above inequality implies that q(fxn, fxn+1) = 0. Then fxn = fxn+1 but fxn ̸= fxn+1.
So, a contradiction occurs. Hence

q(fxn, fxn+1) ≤ q(fxn−1, fxn). (3.-1)

Thus,

q(fxn, fxn+1) ≤ (α+ ϵ).max{q(fxn−1, fxn),
3

2
q(fxn−1, fxn)}+ βq(fxn−1, fxn)

+ γ3q(fxn−1, fxn)

≤ (2α+ β + 3γ + 2ϵ).q(fxn−1, fxn)

= λq(fxn−1, fxn).

Adopting similar process, we obtain

q(fxn+1, fxn+2) ≤ λq(fxn, fxn+1).

Now, by induction on n, we get
q(fxn, fxn+1) ≤ λnq(fx0, fx1).

For any m ∈ N, we have

qs(fxn, fxn+m) ≤ q(fxn, fxn+m)

≤ q(fxn, fxn+1) + q(fxn+1, fxn+2) + q(fxn+2, fxn+3) + ...+ q(fxn+m−1, fxn+m)

≤ λnq(fx0, fx1) + λn+1q(fx0, fx1) + λn+2q(fx0, fx1) + .....+ λn+m−1q(fx0, fx1)

= (λn + λn+1 + λn+2 + ...+ λn+m−1)q(fx0, fx1)

≤ λn

1− λ
.q(fx0, fx1) −→ 0 as n → ∞.

This implies that {fxk} where k = 1, 2, 3, ... is a Cauchy sequence in (X, qs). Since fX is complete, there exists
w ∈ X such that the sequence fxn converges to fw as n −→ ∞ w.r.t. the metric qs, that is, lim

n→∞
qs(fxn, fw) = 0.

Moreover, we have
q(fw, fw) = lim

n→∞
q(fxn, fw) = lim

n→∞
q(fxn, fxn) = 0.

We now show that fw ∈ Uw. Now, by triangle inequality,

q(fw,Uw) ≤ q(fw, fxk) + q(fxk, Uw)

≤ q(fw, fxk) +H+
q (Uxk−1, Uw)

= q(fw, fxk) +H+
q (Uxk−1\{xk−1}, Uw\{w})

≤ q(fw, fxk) + αM(xk−1, w) + β.max{q(fxk−1, Uxk−1), q(fw,Uw)}
+ γ[q(fxk−1, Uw) + q(fw,Uxk−1)]

= q(fw, fxk) + α.max{q(fxk−1, fw), q(fxk−1, Uxk−1), q(fw,Uw),
1

2
[q(fxk−1, Uw) + q(fw,Uxk−1)]}

+ β.max{q(fxk−1, fxk), q(fw,Uw)}+ γ[q(fxk−1, Uw) + q(fw, fxk)].

Letting k → ∞ we get
q(fw,Uw) ≤ (α+ β + γ)q(fw,Uw).
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As α+ β + γ < 1, therefore q(fw,Uw) = 0. Since Uw is closed, fw ∈ Uw. Therefore, f and U have a coincidence
point w ∈ X. Let t = fw ∈ Uw. It follows from the definition of H+

q - type Hausdroff metric that

q(t, ft) ≤ q(t, Ut) = q(fw,Ut)

≤ H+
q (Uw,Ut)

= H+
q (Uw\{w}, Ut\{t})

≤ αM(w, t) + β.max{q(fw,Uw), q(ft, Ut)}+ γ[q(fw,Ut) + q(ft, Uw)]

= α.max{q(fw, ft), q(fw,Uw), q(ft, Ut),
1

2
[q(fw,Ut) + q(ft, Uw)]}

+ β.max{q(fw,Uw), q(ft, Ut)}+ γ[q(fw,Ut) + q(ft, Uw)]

= (α+ γ).q(fw, ft)

= (α+ γ).q(t, ft).

This implies that q(t, ft) = 0. It follows from q(ft, Ut) = q(fw,Ut) ≤ H+
q (Uw,Ut) = 0. Since Ut is closed,

t = ft ∈ Ut. Thus f and U have a common fixed point. □

Example 3.4. Let (X, q) be a weak partial metric space w.r.t. weak partial metric q : X × X → [0,∞) where
X = {0, 1, 2} and q is defined by

q(0, 0) = q(1, 1) = 0, q(2, 2) =
4

9
, q(0, 1) =

1

3
, q(0, 2) =

11

24
, q(1, 2) =

1

2
∀ x, y ∈ X.

Define the maps U : X → CBq(X) such that

U(x) =

{
{0}, if x = {0, 1}
{0, 1} , if x = 2

and f : X → X such that

f(x) = x for all x ∈ X.

Since q(2, 2) =
4

9
̸= 0, q is not a metric on X. Here Ux ⊂ fX. Also, note that Ux is closed and bounded for all

x ∈ X under the given weak partial metric space (X, q). Now, for all x, y ∈ X, we shall show that the contractive
condition (1) is satisfied. For this, consider the following cases:

(i) x = 0, y = 0. We have
H+

q (U(0)\{0}, U(0)\{0}) = H+
q (ϕ, ϕ) = 0

and (1) is satisfied.

(ii) x = 0, y = 2. We have

H+
q (U(0)\{0}, U(2)\{2}) = H+

q ({0}, {0, 1}) = 1

6
≤ 11

24
(α+ β + γ)

and (1) is satisfied.

(iii) x = 2, y = 0. We have

H+
q (U(2)\{2}, U(0)\{0}) = H+

q ({0, 1}, {0}) = 1

6
≤ 11

24
(α+ β + γ)

and (1) is satisfied.

(iv) x = 0, y = 1. We have
H+

q (U(0)\{0}, U(1)\{1}) = H+
q (ϕ, {0}) = 0

and (1) is satisfied.
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(v) x = 1, y = 0. We have
H+

q (U(1)\{1}, U(0)\{0}) = H+
q ({0}, ϕ) = 0

and (1) is satisfied.

(vi) x = 2, y = 2. We have

H+
q (U(2)\{2}, U(2)\{2}) = H+

q ({0, 1}, {0, 1}) = 0

and (1) is satisfied.

(vii) x = 2, y = 1. We have

H+
q (U(2)\{2}, U(1)\{1}) = H+

q ({0, 1}, {0}) = 1

6
≤ 12α+ 11β + 11γ

24

and (1) is satisfied.

(viii) x = 1, y = 2. We have

H+
q (U(1)\{1}, U(2)\{2}) = H+

q ({0}, {0, 1}) = 1

6
≤ 12α+ 11β + 11γ

24

and (1) is satisfied.

(ix) x = 1, y = 1. We have
H+

q (U(1)\{1}, U(1)\{1}) = H+
q ({0}, {0}) = 0

and (1) is satisfied.

Further, we shall show that for every x in X, y in U(x) and ϵ > 0, there exists z in U(y) such that q(y, z) ≤
H+

q (U(y), U(x)) + ϵ. Indeed,

(1) if x = 0, y ∈ U(0) = {0}, ϵ > 0,, there exists z ∈ U(y) = {0} such that

0 = q(y, z) ≤ H+
q (U(y), U(x)) + ϵ.

(2a) if x = 2, y ∈ U(2) = {0, 1}, say y = 0, ϵ > 0,, there exists z ∈ U(y) = {0}, such that

0 = q(y, z) ≤ H+
q (U(y), U(x)) + ϵ.

(2b) if x = 2, y ∈ U(2) = {0, 1}, say y = 1, ϵ > 0,, there exists z ∈ U(y) = {0}, such that

1

3
= q(y, z) <

1

6
+ ϵ = H+

q (U(y), U(x)) + ϵ.

(3) If x = 1, y ∈ U(1) = {0}, ϵ > 0, there exists z ∈ U(0) = {0} such that

0 = q(y, z) ≤ H+
q (U(y), U(x)) + ϵ.

Here x = 0 is the coincidence point of f and U . Also f is T -weakly commuting at coincidence point.

(i) For x = 0, ff(0) = 0 and Uf(0) = {0}. Thus ff(0) ∈ Uf(0).

(ii) For x = 1, ff(1) = 1 and Uf(1) = {0}. Thus ff(1) /∈ Uf(1).

(iii) For x = 2, ff(2) = 2 and Uf(2) = {0, 1}. Thus ff(2) /∈ Uf(2)

Hence, all the conditions of theorem are satisfied. Here x = 0 = f(0) ∈ U(0) so x = 0 is a common fixed point of
f and U .
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Example 3.5. Let (X, q) be a weak partial metric space w.r.t. weak partial metric q : X × X → [0,∞) where
X = [0, 1] and q is defined by q = max{x, y}, define the maps U : X → CBq(X) such that

U(x) =

[
0,

3

8

]
∀x ∈ X

and f : X → X such that

f(x) =


3x

4
if x ∈

[
0,

1

2

]

1 if x ∈
(
1

2
, 1

]
.

Clearly, we can see that q is weak partial metric but not a metric on X. Here Ux ⊂ fX. Also, note that Ux is
closed and bounded for all x ∈ X under the given weak partial metric space (X, q). Now, for all x, y ∈ X, we shall
show that the contractive condition (1) is satisfied. For this, consider the following cases:

Case(i) x ∈
[
0,

1

2

]
, y ∈

[
0,

1

2

]
we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (ϕ, ϕ) = 0

and (1) satisfied.

Case(ii) x ∈
[
0,

1

2

]
, y ∈

(
1

2
, 1

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (ϕ,

[
0,

3

8

]
) = 0

and (1) satisfied.

Case(iii) x ∈
(
1

2
, 1

]
, y ∈

[
0,

1

2

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

[
0,

3

8

]
, ϕ) = 0

and (1) satisfied.

Case(iv) x ∈
(
1

2
, 1

]
, y ∈

(
1

2
, 1

]
, we have

H+
q (Ux\{x}, Uy\{y}) = H+

q (

[
0,

1

2

]
,

[
0,

1

2

]
) =

1

2
≤ α+ β + 2γ

and (1) satisfied.

Further, we shall show that for every x ∈ X, y ∈ U(x) and ϵ > 0, there exists z ∈ U(y) such that q(y, z) ≤
H+

q (U(y), U(x)) + ϵ. Indeed,

(i) For x ∈
[
0,

1

2

]
, y ∈ U(x) =

[
0,

3

8

]
, ϵ > 0, there exists z ∈ U(y) =

[
0,

3

8

]
such that

3

8
= q(y, z) <

3

8
+ ϵ = H+

q (U(y), U(x)) + ϵ

(ii) For x ∈
(
1

2
, 1

]
, y ∈ U(x) =

[
0,

3

8

]
, ϵ > 0, there exists z ∈ U(y) =

[
0,

3

8

]
such that

3

8
= q(y, z) <

3

8
+ ϵ = H+

q (U(y), U(x)) + ϵ.
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Hence, Condition (1) and (2) are satisfied. Here X = 0, 1 are the coincidence points of f and U . Furthermore, f
is T−weakly commuting at x = 0.

(i) For x = 0, ff(0) = 0 and Uf(0) =

[
0,

3

8

]
. Thus, ff(0) ∈ Uf(0).

(ii) For x = 1, ff(1) = 1 and Uf(1) =

[
0,

3

8

]
. Thus, ff(1) /∈ Uf(1).

Hence, all the conditions of theorem are satisfied. Here x = 0 = f(0) ∈ U(0), so x = 0 is a common fixed point of
f and U .

Corollary 3.6. In theorem 2.1, if M(x, y) = q(fx, fy), taking β = γ = 0 we get theorem 1.5 as special case of our
result.

In Theorem 2.1, taking f = I(Identity map) we get the following corollary.

Corollary 3.7. Let (X, q) be a complete weak partial metric space and U be a multivalued map from X to CBq(X)
such that for all x, y ∈ X,

H+
q (Ux\{x}, Uy\{y}) ≤αmax{q(fx, fy), q(fx, Ux), q(fy, Uy),

1

2
[q(fx, Uy) + q(fy, Ux)]}

+ βmax{q(fx, Ux), q(fy, Uy)}+ γ[q(fx, Uy) + q(fy, Ux)]

where α+ β + γ ≤ k < 1. Then U has a fixed point.

Again by taking β = 0, γ = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 3.8. Let (X, q) be a weak partial metric space. Let f : X → X and U : X → CBq(X) be a single valued
and multivalued maps respectively such that U(x) ⊂ fX and fX is a complete subspace of X. If for all x, y ∈ X,

1. there exists α ∈ (0, 1) such that
H+

q (U(x)\{x}, U(y)\{y}) ≤ αM(x, y)

where

M(x, y) = max

{
q(fx, fy), q(fx, Ux), q(fy, Uy),

1

2
[q(fx, Uy) + q(fy, Ux)]

}
.

2. for every x in X, y in U(x) and ϵ > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y), U(x)) + ϵ

Then f and U have a coincidence point. Furthermore if f is T-weakly commutative then f and U have a common
fixed point.

4 Application

In this section, we give an application of our main result on homotopy for weak partial metric spaces. Let (X, q) be
a weak partial metric space, R be endowed with Hausdorff topology and let [0,1] be equipped with subspace topology.
First, we observe that

(i) Weak partial metric q on X generates a T0 topology τq on X.

(ii) A topological space X is connected if and only if its only clopen sets are X and ϕ.

Theorem 4.1. Let (X, q) be a weak partial metric space, f : X → X such that F (x, t) ⊂ fX and fX be
a complete subspace of X, A be an open subset of X and C be a closed subset of X, with A ⊂ C. Let
F : C × [0, 1] → CBq(X) be an operator satisfying:
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(a) x /∈ F (x, t) for every x ∈ C\A and each t ∈ [0, 1],

(b1) there exists α, β, γ > 0 such that for each t ∈ [0, 1] and each x, y ∈ C we have

H+
q (F (x, t)\{x}, F (y, t)\{y}) ≤ αM(x, y)+β.max{q(fx, F (x, t)), q(fy, F (y, t))}+γ[q(fx, F (y, t))+q(fy, F (x, t))].

where M(x, y) = max{q(fx, fy), q(fx, F (x, t)), q(fy, F (y, t)),
1

2
[q(fx, F (y, t)) + q(fy, F (x, t))]}

(b2) for every x ∈ C, y ∈ F (x, t) and ϵ > 0,∃ z ∈ F (y, t) such that

q(y, z) ≤ H+
q (F (y.t), F (x, t)) + ϵ

(c) there exists a continuous function η : [0, 1] → R such that

H+
q (F (x, t)\{x}, F (x, s)\{x}) ≤ α|η(t)− η(s)|

for all t, s ∈ [0, 1] and each x ∈ C,

(d) if x ∈ F (x, t) then F (x, t) = {x}, then F (., 0) has a fixed point if and only if F (., 1) has a fixed point.

Proof . Let F (., 0) has a fixed point. Consider the set

Q := {t ∈ [0, 1]|x ∈ F (x, t) for some x ∈ A}.

As (a) holds and F (., 0) has a fixed point, we have 0 ∈ Q, so Q is a non-empty set. Now we show that Q is both
closed and open in [0, 1]. Thus, by the connectedness of [0, 1] we are accomplished since Q = [0, 1].

First, let us prove that Q is open in [0,1]. For this, let t0 ∈ Q and x0 ∈ F (x0, t0). As A is open in (X, q),
there exists r > 0 such that Bq(fx0, r) ⊆ A. Consider ϵ = r + q(fx0, fx0) − (α + β + γ)(r + q(fx0, fx0)) > 0.
Since η is continuous on t0, there exists k(ϵ) > 0 such that |η(t)− η(t0)| < ϵ for all t ∈ (t0 − k(ϵ), t0 + k(ϵ)) for
x ∈ Bq(fx0, r) = {fx ∈ X|q(fx0, fx) ≤ q(fx0, fx0) + r}, thus

q(F (x, t), fx0) ≤ H+
q (F (x, t), F (x0, t0))

≤ H+
q (F (x, t), F (x, t0)) +H+

q (F (x, t0), F (x0, t0))

= H+
q (F (x, t)\{x}, F (x, t0)\{x}) +H+

q (F (x, t0)\{x}, F (x0, t0)\{x0})
≤ α|η(t)− η(t0)|+ αM(x, x0) + β.max{q(fx, F (x, t)), q(fx0, F (x0, t0))}
+ γ[q(fx, F (x0, t0)) + q(fx0, F (x, t))]

≤ α|η(t)− η(t0)|+ αq(fx, fx0) + β.q(fx, F (x, t)) + γ[q(fx, fx0) + q(fx0, F (x, t))]

≤ αϵ+ α(q(fx, fx0) + r) + β(q(fx, fx0) + r) + γ(q(fx, fx0) + r)

≤ αϵ+ (α+ β + γ)(q(fx, fx0) + r)

≤ αϵ+ (α+ β + γ)(q(fx0, fx0) + r)

≤ α{r + q(fx0, fx0)− (α+ β + γ)(r + q(fx0, fx0))}+ (α+ β + γ)(q(fx0, fx0) + r)

< r + q(fx0, fx0)− (α+ β + γ)(r + q(fx0, fx0)) + (α+ β + γ)(q(fx0, fx0) + r)

= r + q(fx0, fx0).

Note that (b1) implies (1). It follows that for every t ∈ (t0 − k(ϵ), t0 + k(ϵ)), F (., t) : Bq(fx0, r) → CBq(X)
satisfies all the hypothesis of theorem 2.1 and so F (., t) has a fixed point in Bq(fx0, r) ⊂ C. But this fixed point
must be in A as (a) holds. Hence (t0 − k(ϵ), t0 + kϵ) ⊆ Q and therefore Q is open in [0, 1].

Next, we show that Q is closed in [0, 1]. To prove this, let {tn}, n ∈ N be a sequence in Q with tn → t∗ ∈ [0, 1]
as n → ∞. We must prove that t∗ ∈ Q. By the definition of Q, for all n ∈ N, there exists xn ∈ A such that
fxn ∈ A with fxn ∈ F (xn, tn). Then, for m,n ∈ N, using (d) and (wh3) we get

q(fxn, fxm) = H+
q (F (xn, tn), F (xm, tm))

≤ H+
q (F (xn, tn), F (xn, tm)) +H+

q (F (xn, tm), F (xm, tm))

= H+
q (F (xn, tn)\{xn}, F (xn, tm)\{xn}) +H+

q (F (xn, tm)\{xn}, F (xm, tm)\{xm})
≤ α|η(tn)− η(tm)|+ αM(xn, xm) + βmax{q(fxn, F (xn, tn), q(fxm, F (xm, tm))}
+ γ[q(fxn, F (xm, tm)) + q(fxm, F (xn, tn))]
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where,

M(xn, xm) = max{q(fxn, fxm), q(fxn, F (xn, tn)), q(fxm, F (xm, tm)),
1

2
[q(fxn, F (xm, tm))

+ q(fxm, F (xn, tn))]}.

It further implies that

q(fxn, fxm) ≤ α|η(tn)− η(tm)|+ αq(fxn, fxm) + βq(fxm, fxm) + 2γq(fxn, fxm)

≤ α|η(tn)− η(tm)|+ (α+ β + 2γ)q(fxn, fxm)

and we have
q(fxn, fxm) ≤ α

1− (α+ β + 2γ)
|η(tn)− η(tm)|.

Since η is continuous and tn, n ∈ N is convergent, letting m,n → ∞ in the above inequality, we obtain
lim

n,m→∞
q(fxn, fxm) = 0, that is, {fxn}, n ∈ N is a Cauchy sequence in(X, q). Since fX is complete sub-

space of X, there exists fx∗ ∈ C with q(fx∗, fx∗) = lim
n→∞

q(fx∗, fxn) = lim
n,m→∞

q(fxn, fxm) = 0. On the other

hand, we have

q(fxn, F (x∗, t∗)) = H+
q (F (xn, tn), F (x∗, t∗))

≤ H+
q (F (xn, tn), F (xn, t

∗)) +H+
q (F (xn, t

∗), F (x∗, t∗))

≤ H+
q (F (xn, tn)\{xn}, F (xn, t

∗)\{xn}) +H+
q (F (xn, t

∗)\{xn}, F (x∗, t∗)\{x∗})
≤ α|η(tn)− η(t∗)|+ αM(xn, x

∗) + βmax{q(fxn, F (xn, tn)), q(fx
∗, F (x∗, t∗))}

+ γ[q(fxn, F (x∗, t∗)) + q(fx∗, F (xn, tn))]

where,

M(xn, x
∗) = max{q(fxn, fx

∗), q(fxn, F (xn, tn)), q(fx
∗, F (x∗, t∗)),

1

2
[q(fxn, F (x∗, t∗)), q(fx∗, F (xn, tn))]}.

So,

q(fxn, F (x∗, t∗)) ≤ α|η(tn)− η(t∗)|+ αq(fxn, fx
∗) + βq(fxn, fx

∗) + 2γq(fxn, fx
∗)

≤ α|η(tn)− η(t∗)|+ (α+ β + 2γ)q(fxn, fx
∗).

Letting n → ∞ in te above inequality, we get lim
n→∞

q(fxn, F (x∗, t∗)) = 0 and so

q(fx∗, F (x∗, t∗)) = lim
n→∞

q(fxn, F (x∗, t∗)) = 0.

It follows that fx∗ ∈ F (x∗, t∗). Thus t∗ ∈ Q and hence Q is closed in [0, 1]. By the connectedness of [0, 1] we
have Q = [0, 1]. The reverse implication easily follows by applying the same method. This completes the proof.
□
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