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Abstract

In this paper, we introduce a new class of arcwise ρ-K-connected, arcwise ρ-K-quasi connected and arcwise ρ-K-pseudo
connected functions which encapsulate already known functions. Necessary and sufficient optimality conditions are
established for a vector optimization problem over cones by involving these functions. Wolfe type and Mond-Weir
type duals are formulated and corresponding duality results are also proved using these functions.
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1 Introduction

The concept of convex functions was extended by Ortega and Rheinboldt [7] by introducing the arcwise connected
functions defined on arcwise connected sets replacing a line segment joining two points by continuous arcs. Avriel
and Zhang [1] call them “arcwise connected” functions. They also extended the same to arcwise Quasi-connected
functions and arcwise Pseudo-connected functions and discussed their properties. Later on Singh [8] and Mukherjee
and Yadav [6] worked on certain properties of arcwise connected sets and functions. After that by using the directional
derivatives, Bhatia and Mehra [2] proposed optimality and duality results for scalar valued non-linear programming
problem involving these functions and their generalizations. In 1997 Mukherjee [5] introduced arcwise connected
functions over cones. They also discussed optimality conditions and duality theorems for a vector-valued non linear
programming problem involving these functions. Authors like Zhang [10] and Suneja et al. [9] studied various aspects
of arcwise connected functions in the form of their generalizations.

In this paper, we define arcwise ρ-K-connected, arcwise ρ-K-pseudo connected and arcwise ρ-K-quasi connected
functions. Relevant examples are given to illustrate their existence. Using these functions, necessary and sufficient
optimality conditions for vector optimization problem over cones are proved. Further, Wolfe type and Mond-Weir
type duals are formulated. Weak and strong duality results are established.
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2 Notations and Definitions

Let X be a nonempty subset of Rn and K be a nonempty subset of Rk. Let K be closed convex pointed cone with
nonempty interior. The positive polar cone K+ and the strict positive polar cone Ks+ are defined as follows:

K+ = {y ∈ Rk : xT y ≥ 0, for all x ∈ K}

and
Ks+ = {y ∈ Rk : xT y > 0, for all x ∈ K}.

The interior of K is denoted by intK.

Definition 2.1 ([7]). A subset X ⊆ Rn is said to be an arcwise connected (AC) set, if for every x1 ∈ X, x2 ∈ X,
there exists a continuous vector valued function Hx1,x2 : [0, 1] → X, called an arc, such that

Hx1,x2(0) = x1 and Hx1,x2(1) = x2 .

Definition 2.2 ([7]). Let f be a real-valued function defined on an AC set X ⊆ Rn. Then f is said to be an arcwise
connected function (CN), if for every x1 ∈ X, x2 ∈ X, there exists an arc Hx1,x2 such that

f(Hx1,x2(θ)) ≤ (1− θ)f(x1) + θf(x2), for 0 ≤ θ ≤ 1 .

The function f will be called CN at x1 on X if the above inequality holds for all x2 ∈ X.

Definition 2.3. Let f be a real-valued function defined on an AC set X ⊆ Rn. For every x̄ ∈ X, x ∈ X, the

directional derivative of f at x̄ with respect to an arc Hx̄,x at θ = 0 is defined as lim
θ→0+

f(Hx̄,x(θ))−f(x̄)
θ , provided the

limit exists and is denoted by f+(Hx̄,x(0)).

If f is an arcwise connected function at x̄ on x, then f(x)− f(x̄) ≥ f+(Hx̄,x(0)), for all x ∈ X.

Definition 2.4 ([5]). Let f : X → Rk, f = (f1, f2, · · · , fk)T be a vector valued function defined on an AC set
X ⊆ Rn. Then f is said to be an arcwise K-connected function (KCN), if for every x̄ ∈ X, x ∈ X, these exists an arc
Hx̄,x such that

(1− θ)f(x̄) + θf(x)− f(Hx̄,x(θ)) ∈ K, for 0 ≤ θ ≤ 1 .

If f is KCN then
f(x)− f(x̄)− f+(Hx̄,x(0)) ∈ K,

where f+(Hx̄,x(0)) = (f+
1 (Hx̄,x(0)), f

+
2 (Hx̄,x(0)), . . . , f

+
k (Hx̄,x(0)))

T and each f+
i (Hx̄,x(0)) exists for i = 1, 2, . . . , k.

Generalizing the concept of arcwise K-connected function [5], we define new notions of arcwise ρ-K-connected
function and its generalizations. For this purpose, we consider ρ = (ρ1, ρ2, . . . , ρk)

T ∈ Rk, a nonempty subset X of
Rn, a pseudometric function d : X ×X → R+, f = (f1, f2, . . . , fk)

T : X → Rk and a closed convex pointed cone K in
Rk having nonempty interior.

Definition 2.5. The function f is said to be an arcwise ρ-K-connected function (ρKCN), if for every x̄ ∈ X, x ∈ X,
there exists an arc Hx̄,x such that

(1− θ)f(x̄) + θf(x)− f(Hz̄,x(θ))− ρθd(x̄, x) ∈ K, for 0 ≤ θ ≤ 1 .

If f is ρKCN then
f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) ∈ K,

where f+(Hx̄,x(0)) = (f+
1 (Hx̄,x(0)), f

+
2 (Hx̄,x(0)), . . . , f

+
k (Hx̄,x(0))))

T and each f+
i (Hx̄,x(0)) exists for i = 1, 2, . . . , k.

The function f will be called ρKCN at x̄ on X if the above result f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) ∈ K holds
for all x ∈ X.
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Definition 2.6 ([3]). The function f : X → Rk is said to be K-convex like if there exists θ ∈ (0, 1) such that, for
each x1 ∈ X, x2 ∈ X, there exists x3 ∈ X with

θf(x1) + (1− θ)f(x2)− f(x3) ∈ K .

We now give an example of a function which is arcwise ρ-K-connected function.

Example 2.7. Let n = 2, k = 2. Define X ⊆ R2 as

X = {(x1, x2)
T : x2

1 + x2
2 ≥ 1, x1 > 0, x2 > 0} .

Then X is an AC set with respect to Hx̄,x : [0, 1] → X given by

Hx̄,x(θ) = (((1− θ)x̄2
1 + θx2

1)
1/2, ((1− θ)x̄2

2 + θx2
2)

1/2)T , for all θ ∈ [0, 1],

where x̄ = (x̄1, x̄2)
T , x = (x1, x2)

T ∈ X. Let x̄ = (1, 1)T , K = {(x1, x2) : x1 ≥ x2, x1 ≤ 0}, ρ = (0, 1)T ∈ R2 and
d(x̄, x) = (x̄1 − x1)

2 + (x̄2 − x2)
2. Define f : X → R2, f(x) = (f1(x), f2(x)) as

f1(x) =

{
x2
1 + x2

2, if x1 > 1, x2 > 1

2, otherwise
; f2(x) =

{
−x2

1, if x1 > 1, x2 > 1

−1, otherwise
.

Clearly,

f+
1 (Hx̄,x(0)) =

{
x2
1 + x2

2 − 2, if both the components of Hx̄,x > 1

0, otherwise

f+
2 (Hx̄, x(0)) =

{
−x2

1 + 1, if both the components of Hx̄,x > 1

0, otherwise

and

f+(Hx̄,x(0)) =

{
(x2

1 + x2
2 − 2,−x2

1 + 1)T , if both the components of Hx̄,x > 1

(0, 0)T , otherwise

Now,

f(x)− f(x̄) =

{
(x2

1 + x2
2 − 2,−x2

1 + 1), if x1 > 1, x2 > 1

(0, 0)T , otherwise

then
f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) = (0,−{(x1 − 1)2 + (x2 − 1)2}) ∈ K .

Thus, f is arcwise ρ-K-connected function (ρKCN).

Remark 2.8. If ρ ∈ K, then definition of arcwise ρKCN reduces to that of KCN function (Definition 2.4).

We now give an example of a function which is arcwise ρ-K-connected function at x̄ but fails to be arcwise
K-connected function at the same point when ρ /∈ K.

Example 2.9. Let X be an AC set with respect to Hx̄,x as defined in Example 2.7. Let us consider x̄ = (1, 1)T ,

K = {(x1, x2) : −x1 ≤ x2, x2 ≥ 0}, ρ = (−1,−1)T /∈ K and d(x̄, x) =

{
x2
1x

2
2 − 1, if x1 > 1, x2 > 1

(x1 + x̄1)
2 + (x2 + x̄2)

2, otherwise
.

Let us define f : X → R2 as

f(x1, x2) =

{
(−x2

1x
2
2, x

2
1 − x2

2), if x1 > 1, x2 > 1

(−1, 0), otherwise
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So,

f+(Hx̄,x(0)) =

{
(2− x2

1 − x2
2, x

2
1 − x2

2), if both the components of Hx̄,x > 1

(0, 0), otherwise

Then,

f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) =


(x2

1 + x2
2 − 2, x2

1x
2
2 − 1), if x1 > 1, x2 > 1 and both

components of Hx̄,x > 1

((x1 + 1)2 + (x2 + 1)2, (x1 + 1)2 + (x2 + 1)2), otherwise

∈ K

Therefore, f is arcwise ρ-K-connected function at x̄ on X. Since,

f(x)− f(x̄)− f+(Hx̄,x(0)) =


(−x2

1x
2
2 + x2

1 + x2
2 − 1, 0), if x1 > 1, x2 > 1 and both

the components of Hx̄,x > 1

(0, 0), otherwise

However, the function f fails to be arcwise K-connected function, because for
x = (2, 2)T ∈ X, f(x)− f(x̄)− f+(Hx̄,x(0)) = (−9, 0)T /∈ K.

We now introduce the notions of arcwise ρ-K-pseudo connected and arcwise ρ-K-quasi connected functions.

Definition 2.10. f is said to be an arcwise ρ-K-pseudo connected function at x̄ ∈ X on X with respect to Hx̄,x, if
for every x ∈ X,

f(x̄)− f(x) ∈ intK ⇒ −(f+(Hx̄,x(0)) + ρd(x̄, x)) ∈ intK .

Remark 2.11. Every arcwise ρ-K-connected function at x̄ ∈ X is arcwise ρ-K-pseudo connected but the converse is
not true as can be seen from the following example.

Example 2.12. Let us consider the set X, an arc Hx̄,x, K, f and x̄ as defined in Example 2.9. Let ρ = (1,−1)T and

d(x̄, x) =

{
x2
1x

2
2 − 1, if x1 > 1, x2 > 1

(x1 + x̄1)
2 + (x2 + x̄2)

2 + 2, otherwise

Then

f(x̄)− f(x) =

{
(x2

1x
2
2 − 1,−x2

1 + x2
2), if x1 > 1, x2 > 1

(0, 0), otherwise

If f(x̄)− f(x) ∈ intK which implies that

x1 > 1, x2 > 1, 1− x2
1x

2
2 < −x2

1 + x2
2 and x2

2 − x2
1 > 0 .

Then

− f+(Hx̄,x(0))− ρd(x̄, x) =


(x2

1 + x2
2 − x2

1x
2
2 − 1, x2

2 − x2
1 + x2

1x
2
2 − 1), if x1 > 1, x2 > 1 and both

the components of Hx̄,x > 1

(−(x1 + 1)2 − (x2 + 1)2 − 2, (x1 + 1)2 + (x2 + 1)2 + 2), otherwise

∈ intK .

Therefore, the function is arcwise ρ-K-pseudoconnected at x̄. However, the function fails to be arcwise ρ-K-
connected function at x̄ because for x = (2, 2)T ,

f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) = (−24, 15)T /∈ K .

Definition 2.13. f is said to be an arcwise ρ-K-quasi connected function at x̄ ∈ X on X with respect to Hx̄,x, if
for every x ∈ X,

f(x)− f(x̄) /∈ intK ⇒ −f+(Hx̄,x(0))− ρd(x̄, x) ∈ K .
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We now give an example of a function which is arcwise ρ-K-quasi connected function at x̄.

Example 2.14. Let X be an AC set with respect to Hx̄,x as defined in Example 2.7. Let us consider x̄ = (1, 1)T ,
K = {(x1, x2) : x1 ≤ x2, x1 ≤ 0}, ρ = (1, 0)T /∈ K and d(x̄, x) = (x1 − x̄1)

2 + (x2 − x̄2)
2.

Let us define f : X → R2 as

f(x1, x2) =

{
(x2

1x
2
2, x

2
2), if x1 > 1, x2 > 1

(1, 1), otherwise.

So,

f+(Hx̄,x(0)) =


(x2

1 + x2
2 − 2, x2

2 − 1), if both the components

of Hx̄,x > 1

(0, 0), otherwise.

Now, f(x) − f(x̄) /∈ intK which implies that both the components of x cannot be greater than 1 which further
implies that both the components of Hx̄,x cannot be greater than 1. So,

−f+(Hx̄,x(0))− ρd(x̄, x) = (−(x1 − 1)2 − (x2 − 1)2, 0) ∈ K .

Therefore, f is arcwise ρ-K-quasi connected function at x̄ on X.

3 Optimality Conditions

Consider the following vector optimization problem:

(VP) K-Minimize f(x)

subject to − g(x) ∈ Q

where f : X → Rk, g : X → Rm, X ⊆ Rn is an AC set, with respect to an arc Hx̄,x : [0, 1] → X, where x̄ ∈ X, x ∈ X,
K and Q are closed convex pointed cones with nonempty interiors in Rk and Rm respectively. We denote the set of
feasible solutions of (VP) by X0, that is,

X0 = {x ∈ X : −g(x) ∈ Q} .

We now recall optimality notion of weak minimum for the problem (VP) involving cones.

Definition 3.1. A feasible point x̄ of the problem (VP) is called a weak minimum of (VP), if

f(x̄)− f(x) /∈ intK, for all x ∈ X0 .

We shall be obtaining the necessary optimality conditions for a feasible point to be a weak minimum of (VP) using
the following generalized Slater’s type cone constraint qualification.

Definition 3.2. The problem (VP) is said to satisfy the generalized Slater’s type cone constraint qualification at
x̄ ∈ X0, if g is arcwise σ-Q-connected at x̄ on X with respect to the same arc Hx̄,x and there exists x̂ ∈ X such that
−g(x̂) + σd(x̄, x̂) ∈ intQ.

We now establish the following necessary optimality conditions.

Theorem 3.3. Suppose that x̄ ∈ X0 is a weak minimum of the problem (VP) and problem (VP) satisfies the
generalized Slater’s type cone constraint qualification at x̄. Let F (x) = (f+(Hx̄,x(0)), g

+(Hx̄,x(0))), for all x ∈ X and
let F (X)+(K×Q) have nonempty interior. Also assume f+(Hx̄,x(0)) is K-convexlike and g+(Hx̄,x(0)) is Q-convexlike,
then there exist 0 ̸= α∗ ∈ K+, β∗ ∈ Q+ such that

(α∗T f)+(Hx̄,x(0)) + (β∗T g)+(Hx̄,x(0)) ≥ 0, for all x ∈ X (3.1)

(β∗T g)(x̄) = 0 (3.2)
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Proof . First, we claim that there is no x ∈ X such that

f+(Hx̄,x(0)) ∈ − intK, g+(Hx̄,x(0)) + g(x̄) ∈ −Q . (3.3)

Let if possible, there exist x̂ ∈ S satisfying (3.3). Then there exists θ0 > 0 such that 0 < θ < θ0,

− (f(Hx̄,x̂(θ))− f(x̄)) ∈ intK (3.4)

− (g(Hx̄,x̂(θ))− g(x̄))− g(x̄) ∈ Q, that is − g(Hx̄,x̂(θ)) ∈ Q

On using (3.4), we get a contradiction to the fact that x̄ is weak minimum of (VP). Hence, the system (3.3) has
no solution. We are given that f+(Hx̄,x(0)) is K-convexlike, g+(Hx̄,x(0)) is Q-convexlike, therefore by Alternative
Theorem given by Illes and Kassay in [4], there exist α∗ ∈ K+, β∗ ∈ Q+, not all zero, such that for all x ∈ X

(α∗T f)+(Hx̄,x(0)) + (β∗T g)+(Hx̄,x(0)) + (β∗T g)(x̄) > 0 . (3.5)

Substituting x = x̄ in the above equation, we get (β∗T g)(x̄) ≥ 0. Using the fact that β∗ ∈ Q+ and −g(x̄) ∈ Q we
get (β∗T g)(x̄) ≤ 0. It follows that (β∗g)(x̄) = 0.

Using the above equation in (3.5), we get

(α∗T f)+(Hx̄,x(0)) + (β∗T g)+(Hx̄,x(0)) ≥ 0, for all x ∈ X . (3.6)

Now we proceed to show that α∗ ̸= 0. Let if possible, α∗ = 0. Then (3.6) reduces to

(β∗T g)+(Hx̄,x(0)) ≥ 0, for all x ∈ X . (3.7)

Since g is arcwise σ-Q-connected function at x̄ on X with respect to Hx̄,x, it follows that

g(x)− g(x̄)− g+(Hx̄,x(0))− σd(x̄, x) ∈ Q .

As β∗ ∈ Q+, we get

(β∗T g)(x)− (β∗T g)(x̄)− (β∗T g)+(Hx̄,x(0))− (β∗Tσ)d(x̄, x) ≥ 0 . (3.8)

On adding (3.7) and (3.8), we get

(β∗T g)(x)− (β∗T g)(x̄)− (β∗Tσ)d(x̄, x) ≥ 0, for all x ∈ X .

Using (β∗T g)(x̄) = 0 in the above equation, we conclude that

(β∗T g)(x)− (β∗Tσ)d(x̄, x) ≥ 0, for all x ∈ X . (3.9)

Now by the generalized Slater’s type cone constraint qualification at x̄ ∈ X0 there exists x̂ ∈ X such that

−g(x̂) + σd(x̄, x̂) ∈ intQ

which gives that
(β∗T g)(x̂)− (β∗Tσ)d(x̄, x̂) < 0

which is a contradiction to (3.9). Hence α∗ ̸= 0. □

In proving the sufficient optimality conditions, we will be using the following
condition

α∗T ρ+ β∗Tσ ≥ 0 . (3.10)

We give a sufficient optimality theorem for a weak minimum of (VP).

Theorem 3.4. Let x̄ ∈ X0, f be arcwise ρ-K-connected and g be arcwise σ-Q-connected at x̄ on X0 with respect to
same arc Hx̄,x for every x ∈ X. If there exist 0 ̸= α∗ ∈ K+ and β∗ ∈ Q+ such that (3.1), (3.2) and (3.10) hold, then
x̄ is a weak minimum of (VP).
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Proof . Let if possible x̄ be not a weak minimum of (VP) then there exists x ∈ X0 such that

f(x̄)− f(x) ∈ intK

⇒ α∗T (f(x̄)− f(x)) > 0 (3.11)

Since f is arcwise ρ-K connected at x̄ on X0, we get

f(x)− f(x̄)− f+(Hx̄,x(0))− ρd(x̄, x) ∈ K

⇒ α∗T (f(x)− f(x̄))− (α∗T f)+(Hx̄,x(0))− (α∗T ρ)d(x̄, x) ≥ 0 (3.12)

Similarly,

β∗T (g(x)− g(x̄))− (β∗T g)+(Hx̄,x(0))− (β∗Tσ)d(x̄, x) ≥ 0 . (3.13)

Adding (3.12) and (3.13), and using (3.1) and (3.2), we get

α∗T (f(x)− f(x̄))− (α∗T ρ+ β∗Tσ)d(x̄, x) + β∗T g(x) ≥ 0.

For all x ∈ X0, β
∗T g(x) ≤ 0, as β∗ ∈ Q+ and −g(x) ∈ Q and on using (3.10), we have

α∗T (f(x)− f(x̄)) ≥ 0

which is a contradiction to (3.11). Therefore, x̄ is a weak minimum of (VP).□

We now give another sufficient optimality theorem for a weak minimum of (VP).

Theorem 3.5. Let x̄ ∈ X0, f be arcwise ρ-K-pseudo connected and g be arcwise σ-Q-quasi connected at x̄ on X0

with respect to same arc Hx̄,x for every x ∈ X. If there exist 0 ̸= α∗ ∈ K+ and β∗ ∈ Q+ such that (3.1), (3.2) and
(3.10) hold, then x̄ is a weak minimum of (VP).

Proof . For all x ∈ X0, β
∗T g(x) ≤ 0, as β∗ ∈ Q+ and −g(x) ∈ Q. On using (3.2), we get β∗T (g(x) − g(x̄)) ≤ 0 for

all x ∈ X0. If β
∗ ̸= 0, then we have,

g(x)− g(x̄) /∈ intQ, for all x ∈ X0.

Since g is arcwise σ-Q-quasi connected at x̄ on X0,

−(g+(Hx̄,x(0)) + σd(x̄, x)) ∈ Q, for all x ∈ X0

which implies that

−((β∗T g)+(Hx̃,x(0)) + (β∗Tσ)d(x̄, x)) ≥ 0, for all x ∈ X0 . (3.14)

If β∗ = 0, then also (3.14) holds. Now on using (3.1) and (3.10) in (3.14)

((α∗T f)+(Hx̄,x(0)) + (α∗T ρ)d(x̄, x) ≥ 0, for all x ∈ X0

which implies that
−(f+(Hx̄,x(0)) + ρd(x̄, x)) /∈ intK, for all x ∈ X0 .

Since f is arcwise ρ-K-pseudo connected at x̄ on X0, we get

f(x̄)− f(x) /∈ intK, for all x ∈ X0.

Therefore, x̄ is a weak minimum of (VP). □
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4 Wolfe Type Dual

We first consider the following Wolfe type dual associated with the vector optimization problem (VP):

(WD) K-Maximize f(u) + (βT g)(u)k

subject to (αT f)+(Hu,x(0)) + (βT g)+(Hu,x(0)), for all x ∈ X0 (4.1)

0 ̸= α ∈ K+, αT k = 1, β ∈ Q+, u ∈ X,

where k ∈ intK is a fixed vector. Now we prove weak duality and strong duality results.

Theorem 4.1 (Weak Duality). Let x and (u, α, β) be feasible for (VP) and (WD), respectively. If f is arcwise
ρ-K-connected and g is arcwise σ-Q-connected at u ∈ X on X0 with respect to same arc Hu,x for every x ∈ X and

αT ρ+ βTσ ≥ 0 (4.2)

then, f(u) + (βT g)(u)k − f(x) /∈ intK.

Proof . Let if possible,

f(u) + (βT g)(u)k − f(x) ∈ intK. (4.3)

Since f is arcwise ρ-K connected at u ∈ S on X0, therefore,

f(x)− f(u)− f+(Hu,x(0))− ρd(u, x) ∈ K . (4.4)

Adding (4.3) and (4.4), we get

−f+(Hu,x(0)) + (βT g)(u)k − ρd(u, x) ∈ intK

which implies on using 0 ̸= α ∈ K+,

−(αT f)+(Hu,x(0)) + (βT g)(u)(αT k)− (αT ρ)d(u, x) > 0 .

Since (u, α, β) is feasible for (WD), (4.1) holds and αT k = 1. Adding (4.1) and using (4.2) in the above inequality,
we have,

(βT g)+(Hu,x(0)) + (βT g)(u) + (βTσ)d(u, x) > 0 . (4.5)

Since g is arcwise σ-Q-connected at u ∈ X on X0 and using β ∈ Q+, we get

(βT g)(x)− (βT g)(u)− (βT g)+(Hu,x(0))− (βTσ)d(u, x) ≥ 0 (4.6)

Adding (4.5) and (4.6), we get

(βT g)(x) > 0. (4.7)

Since x is feasible for (VP) and β ∈ Q+, we have (βT g)(x) ≤ 0 which is a contradiction to (4.7) and hence the
result. □

Theorem 4.2 (Strong Duality). Let x̄ ∈ X0 be a weak minimum of the problem (VP) and suppose hypothesis
of Theorem 3.3 are satisfied. Then there exists 0 ̸= α∗ ∈ K+, β∗ ∈ Q+ such that (x̄, α∗, β∗) is a feasible solution
of (WD). Further if conditions of Weak Duality Theorem 4.1 hold for all feasible solutions of (VP) and (WD) then
(x̄, α∗, β∗) is a weak maximum of (WD).

Proof . Since x̄ is a weak minimum of (VP), by Theorem 3.3, there exist 0 ̸= α∗ ∈ K+, β∗ ∈ Q+ such that (3.1)
and (3.2) hold, which gives that (x̄, α∗, β∗) is a feasible solution of (WD) and the values of two objective functions are
equal. Further if (x̄, α∗, β∗) is not a weak maximum of (WD), then there exists a feasible solution (u, α, β) of (WD)
such that

f(u) + (βT g)(u)− f(x̄)− (β∗T g)(x̄) ∈ intK .

On using (3.2), we get
f(u) + (βT g)(u)− f(x̄) ∈ intK

which is a contradiction to the Weak Duality Theorem 4.1 for the feasible solution x̄ of (VP) and (u, α, β) of (WD).
Therefore, (x̄, α∗, β∗) is a weak maximum of (WD).□



Arcwise ρ-connected functions and their generalizations in vector optimization over cones 31

5 Mond-Weir Type Dual

Next, we associate Mond-Weir type dual to (VP) and prove duality results using arcwise ρ-K-pseudo connected,
arcwise σ-Q-quasi connected functions

(MD) K-Maximize f(u)

subject to (αT f)+(Hu,x(0)) + (βT g)+(Hu,x(0)) ≥ 0, for all x ∈ X0, (5.1)

βT g(u) ≥ 0, (5.2)

0 ̸= α ∈ K+, β ∈ Q+, u ∈ X.

Theorem 5.1 (Weak Duality). Let x be feasible for (VP) and (u, α, β) be feasible for (MD). Let f be arcwise ρ-
K-pseudo connected and g be arcwise σ-Q-quasi connected at u ∈ X on X0 and (4.2) holds then, f(u)− f(x) /∈ intK.

Proof . For x ∈ X0, β
T g(x) ≤ 0, as β ∈ Q+ and −g(x) ∈ Q. Since (u, α, β) is feasible for (MD) therefore (5.1) and

(5.2) hold. Adding βT g(x) ≤ 0 and (5.2), we get

βT (g(x)− g(u)) ≤ 0 .

If β ̸= 0, then we have,
g(x)− g(u) /∈ intQ.

Since g is arcwise σ-Q-quasi connected at u ∈ X on X0, therefore

−(g+(Hu,x(0)) + σd(u, x)) ∈ Q .

Since β ∈ Q+, we get

−(βT g)+(Hu,x(0)) + (βTσ)d(u, x) ≥ 0. (5.3)

If β = 0, then also (5.3) holds. Using (5.1) and (5.2), we get

(αT f)+(Hu,x(0)) + (αT ρ)d(u, x) ≥ 0

which implies that
(f+(Hu,x(0)) + ρd(u, x)) /∈ intK .

Further, f is arcwise ρ-K-pseudo connected at u ∈ X on X0, therefore f(u)− f(x) /∈ intK. □

Theorem 5.2 (Strong Duality). Let x̄ ∈ X0 be a weak minimum of the problem (VP) and suppose that hypotheses
of Theorem 3.3 are satisfied. Then there exist 0 ̸= α∗ ∈ K+, β∗ ∈ Q+ such that (x̄, α∗, β∗) is feasible solution of (MD).
Further if conditions of Weak Duality Theorem 5.1 are satisfied for each feasible solution x of (VP) and (u, α, β) of
(MD), then (x̄, α∗, β∗) is a weak maximum of (MD).

Proof . Since x̄ is a weak minimum of (VP), therefore proceeding on the same lines as in the proof of Theorem 4.2,
we get (x̄, α∗, β∗) is feasible for (MD).

Now, let if possible, (x̄, α∗, β∗) be not a weak maximum of (MD), then there exists a feasible solution (u, α, β) of
(MD) such that f(u)−f(x) ∈ intK which is a contradiction to the Weak Duality Theorem 5.1 for the feasible solution
x̄ for (VP) and (u, α, β) of (MD). Therefore, (x̄, α∗, β∗) is a weak maximum of (MD). □
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