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Abstract

In this paper, we examine the perturbed absolute value variational inequalities (PAVVI), a new class of variational
inequalities. For the (PAVVI), some new merit functions are established. We develop the error bounds for (PAVVI)
using these merit functions. The results presented here recapture a number of previously established findings in the
relevant fields because (PAVVI) include variational inequalities, the absolute value complementarity problem, and
systems of absolute value equations as special cases.
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1 Introduction

Variational inequalities (VI) theory was introduced and studied by Stampacchia [30], and now it is developed and
widely applied in the areas of management, economics, finance, transportation, optimization, pure and applied sciences,
see [1, 2, 3, 11, 14, 17, 20]. Since (VI) is an important tool to solve mathematical and scientific problems and
a number of numerical methods including the projection method, Wiener-Hopf equations, auxiliary principle, and
dynamical systems have been established for solving the (VI) and related optimization problems, see for example
[1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 17, 20] and the references therein.

Over the past few decades, the concept of convexity has been crucial to the generalizations and extensions of
inequality. Convexity and inequality theories are closely connected to one another. The integral inequalities have ap-
plications in information technology, statistics, stochastic processes, probability, integral operator theory, optimization
theory, and numerical integration. Over the past several decades, a large number of mathematicians and researchers
have concentrated their enormous efforts and contributions on the study of inequalities. The following articles on
various forms of inequality are available for interested readers to read. The Hermite-Hadamard inequalities and their
improvements for modified p-convex function utilizing a new identity with the help of power mean and Hölder inequal-
ities were explored by the authors in [29]. Using the Jensen-Mercer inequality, the authors in [26] construct several
enhanced generalizations of H-H-M type inequalities relevant to the Caputo-Fabrizio fractional integrals. They also
establish several new bounds for differentiable convex mappings using a recently established identity and various well-
known inequalities, including Holder’s, Young’s, Holder-Iscan, and Power-mean inequality. Some Hermite-Hadamard
type inequalities for integrals emerging in conformable fractional calculus are provided in [6].
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Absolute value variational inequalities (AVVI) include the (VI) as a special case. It is proved that if the underlying
set is the whole space, then (AVVI) transform into the absolute system of equations which are introduced and
studied by Mangasarian [15]. The (AVVI) is equivalent to the complementarity problem studied by Rohn [25] and
further examined by Mangasarian and Meyer [16] by applying a different approach. It has been shown through the
projection lemma that the (AVVI) and fixed point theorem are equivalent and by making use of the equivalence
relation between (AVVI) and fixed point problem, several iterative methods are established for solving (AVVI) and
the related optimization problems, see [3, 20].

A new outlook in the study of (VI) analyzes merit function through which the (VI) are reformulated into an opti-
mization problem. Merit functions play an important role in developing convergent iterative methods and evaluating
the rate of convergence for some iterative methods, see for example [9, 10, 12, 13, 15]. Various merit functions are
investigated and recommended for variational inequalities, absolute value variational inequalities, and complementar-
ity problems, see [4, 18, 19, 21, 23, 27, 28]. Error bounds also play an important role in (VI) as error bounds are
the functions that estimates the closeness of the arbitrary point to the solution set is an approximate computation of
iterates for solving (VI), see [19, 21, 22, 23]

Motivated and inspired by the aforementioned work, in this paper, we introduce a new class of absolute value vari-
ational inequalities with two perturbed operators known as perturbed absolute value variational inequalities (PAVVI).
Next, we consider merit functions for (PAVVI) under suitable conditions and we also analyze the error bounds for the
solution of (PAVVI).

The rest of the paper is organized as follows: In section 2, we present some definitions which will be used later.
In section 3, we prove Lemmas and developed some new merit functions for (PAVVI). Further, we develop the error
bounds for (PAVVI) using these merit functions.

2 Preliminaries

Let H be a Hilbert space, whose norm and inner product are denoted by ∥.∥ and ⟨., .⟩ , respectively. Let K be a
closed and convex set in H. For given operators T ,B : H → H, consider the problem of finding x ∈ K such that

⟨Tϵx+ Bϵ |x| , y − x⟩ ≥ 0, for all y ∈ H, (2.1)

where Tϵ = T + ϵI and Bϵ = B + ϵI are perturbed operators, I is the identity mapping and |x| contains the absolute
value of components of x ∈ H. The inequality (2.1) is called perturbed absolute value variational inequality (PAVVI).
This inequality (2.1) can be seen as a difference of two operators and contains previously known classes of (VI) as
special cases. In order to derive the main results of this paper, we recall some standard definitions and results.

Definition 2.1. An operator T : H → H is said to be strongly monotone, if there exists a constant α > 0 such that

⟨T x− T y, x− y⟩ ≥ α ∥x− y∥2 , for all x, y ∈ H.

Definition 2.2. An operator T : H → H is said to be Lipschitz continuous, if there exists a constant β > 0 such
that

∥T x− T y∥ ≤ β ∥x− y∥ , for all x, y ∈ H.

If T is strongly monotone and Lipschitz continuous operator, then from Definitions 2.1 and 2.2, we have α ≤ β.

Definition 2.3. An operator T : H → H is said to be monotone, if ⟨T x− T y, x− y⟩ ≥ 0, for all x, y ∈ H.

Definition 2.4. An operator T : H → H is said to be pseudomonotone, if ⟨T x, y − x⟩ ≥ 0, implies ⟨T y, y − x⟩ ≥
0, for all x, y ∈ H.

Definition 2.5. [28] A function M : H → R ∪ {+∞} is called a merit(gap) function for the inequality (2.1), if and
only if

(i) M(x) ≥ 0, for all x ∈ H, and

(ii) M(x) = 0, if and only if, x ∈ H solves inequality (2.1).



Perturbed absolute value variational inequalities 15

We now consider the well known projection lemma due to [11]. The variational inequalities can be reformulated
into a fixed point problem using this lemma.

Lemma 2.6. [11] Let K be a closed and convex set in H. Then for a given z ∈ H, x ∈ K satisfies ⟨x− z, y − x⟩ ≥
0, for all y ∈ K, if and only if x = PKz, where PK is the projection of H onto a closed and convex set K in H.

It is remarkable that the projection operator PK , is non-expansive operator, that is

∥PK [x]− PK [y]∥ ≤ ∥x− y∥ , for all x, y ∈ H.

3 Main Results

In this section, we propose some merit functions associated with (PAVVI) and get some error bounds for (PAVVI)
using these merit functions. To obtain this, we show that the (VI) is equivalent to the fixed point problem.

Lemma 3.1. [3, 17] Let K be a convex set in H. The function x ∈ K is a solution of perturbed absolute value
variational inequality (2.1), if and only if, x ∈ K satisfies the relation

x = PK [x− ρTϵx− ρBϵ |x|], (3.1)

where ρ > 0 is a constant.

It follows from the above lemma that (PAVVI) (2.1) and the fixed point problem (3.1) are equivalent. This
alternative equivalent formulation is very useful from the theoretical as well as from the numerical point of view and
is obtained by using projection technique. The projection methods are due to Lions and Stampacchia [14] which
provide several effective schemes to approximate the solution of (VI). The equivalence between (VI) and the fixed
point problem (FPP) plays a significant role in establishing the various results from problem (2.1) and its related
formulations.

Lemma 3.2. For all x, y ∈ H, we have ∥x∥2 + ⟨x, y⟩ ≥ −1
4 ∥y∥

2
.

Now we define the residue vector R(x) by the following relation

Rρ(x) ≡ R(x) = x− PK [x− ρTϵx− ρBϵ |x|]. (3.2)

From Lemma 2.6, it can also be concluded that x ∈ K is a solution of the perturbed absolute value variational
inequality (2.1) if and only if x ∈ K is a zero of the equation Rρ(x) ≡ R(x) = 0. Next, we show that the residue
vector Rρ(x) is strongly monotone and Lipschitz continuous.

Lemma 3.3. Let the operators Tϵ and Bϵ be Lipschitz continuous with constants (β + ϵ)T > 0 and (β + ϵ)B > 0,
respectively and Tϵ be strongly monotone with constant (α+ ϵ)T > 0. Then the residue vector Rρ(x) defined by (3.2)
is strongly monotone on H.

Proof . For all x, y ∈ H, consider

⟨Rρ(x)−Rρ(y), x− y⟩ = ⟨x− Pk [x− ρTϵx− ρBϵ |x|]− y + Pk [y − ρTϵy − ρBϵ |y|] , x− y⟩
= ⟨x− Pk [x− ρ (T + ϵI)x− ρ (B + ϵI) |x|]− y + Pk [y − ρ (T + ϵI) y − ρ (B + ϵI) |y|] , x− y⟩
= ⟨x− y − Pk [x− ρ (T + ϵI)x− ρ (B + ϵI) |x|] + Pk [y − ρ (T + ϵI) y − ρ (B + ϵI) |y|] , x− y⟩
= ⟨x− y, x− y⟩ − ⟨Pk [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]

−Pk [y − ρT y − ρϵIy − ρB |y| − ρϵI |y|] , x− y⟩

≥ ∥x− y∥2 − ∥Pk [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]
−Pk [y − ρT y − ρϵIy − ρB |y| − ρϵI |y|]∥ ∥x− y∥

≥∥x− y∥2 − ∥(x− ρT x− ρϵIx− ρB |x| − ρϵI |x|)
− (y − ρT y − ρϵIy − ρB |y| − ρϵI |y|)∥ ∥x− y∥

≥∥x− y∥2 − ∥x− ρT x− ρϵIx− ρB |x| − ρϵI |x| − y

+ρT y + ρϵIy + ρB |y|+ ρϵI |y|∥ ∥x− y∥

= ∥x− y∥2 − ∥(x− y)− ρ (T x− T y)− ρ (B |x| − B |y|)
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−ρϵ (Ix− Iy)− ρϵ (I |x| − I |y|)∥ ∥x− y∥

≥∥x− y∥2 − (∥x− y∥+ ρ ∥T x− T y∥+ ρ ∥B |x| − B |y|∥
+ρϵ ∥Ix− Iy∥+ ρϵ ∥I |x| − |I |y|∥) ∥x− y∥

≥∥x− y∥2 −
(
∥x− y∥2 + ρ (β + ϵ)T ∥x− y∥2 + ρ (β + ϵ)B ∥x− y∥2 + 2ρϵ ∥x− y∥2

)
≥∥x− y∥2 −

{√
(1 + ρ(β + ϵ)T )2 + ρ (β + ϵ)B + 2ρϵ

}
∥x− y∥2

= ∥x− y∥2 −
(√

1 + 2ρ(β + ϵ)T + ρ2(β + ϵ)2T + ρ (β + ϵ)B + 2ρϵ

)
× ∥x− y∥2

=

(
1−

√
1 + 2ρ(β + ϵ)T + ρ2(β + ϵ)2T + ρ (β + ϵ)B + 2ρϵ

)
∥x− y∥2

which implies that
⟨Rρ(x)−Rρ(y), x− y⟩ ≥ V ∥|x− y∥2

where V =
(
1−

√
1 + 2ρ(β + ϵ)T + ρ2(β + ϵ)2T + ρ (β + ϵ)B + 2ρϵ

)
> 0, which proves that the residue vector Rρ(x)

is strongly monotone with constant V > 0. □

Lemma 3.4. Let the operators Tϵ and Bϵ be Lipschitz continuous with constants (β + ϵ)T > 0 and (β + ϵ)B > 0,
respectively and Tϵ be strongly monotone with constant (α+ ϵ)T > 0. Then the residue vector Rρ(x) defined by (3.2)
is Lipschitz continuous on H.

Proof . For all x, y ∈ H, consider

∥Rρ(x)−Rρ(y)∥ = ∥x− Pk [x− ρTϵx− ρBϵ |x|]− y + Pk [y − ρTϵy − ρBϵ |y|]∥
= ∥x− Pk [x− ρ (T + ϵI)x− ρ (B + ϵI) |x|]− y + Pk [y − ρ (T + ϵI) y − ρ (B + ϵI) |y|]∥
= ∥x− Pk [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− y + Pk [y − ρT y − ρϵIy − ρB |y| − ρϵI |y|]∥
= ∥x− y − Pk [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|] + Pk [y − ρT y − ρϵIy − ρB |y| − ρϵI |y|]∥
≤∥x− y∥+ ∥Pk [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− Pk [y − ρT y − ρϵIy − ρB |y| − ρϵI |y|]∥
≤∥x− y∥+ ∥x− ρT x− ρϵIx− ρB |x| − ρϵI |x| − y + ρT y + ρϵIy + ρB |y|+ ρϵI |y|∥
≤ ∥x− y∥+ ∥(x− y)− ρ (T x− T y)− ρ (B |x| − B |y|)− ρϵ (Ix− Iy)− ρϵ (I |x| − |I |y|)∥
≤∥x− y∥+ (∥x− y∥+ ρ ∥T x− T y∥+ ρ ∥B |x| − B |y|∥+ ρϵ ∥Ix− Iy∥+ ρϵ ∥I |x| − |I |y|∥)
≤∥x− y∥+ (∥x− y∥+ ρ(β + ϵ)T ∥x− y∥+ ρ(β + ϵ)B ∥x− y∥+ ρϵ ∥x− y∥+ ρϵ ∥x− y∥)
≤∥x− y∥+ (1 + ρ(β + ϵ)T + ρ(β + ϵ)B + 2ρϵ) ∥x− y∥

=
(
1 +

√
(1− ρ(β + ϵ)T )2 + ρ(β + ϵ)B + 2ρϵ

)
∥x− y∥

=θ ∥x− y∥ ,

where θ = 1+
√

(1 + ρ(β + ϵ)T )2+ρ(β+ϵ)B+2ρϵ, which proves that the residue vector Rρ(x) is Lipschitz continuous
with constant θ > 0. □

We now use the residue vector Rρ(u) defined by (3.2) to derive the error bound for the solution of the problem
(2.1).

Theorem 3.5. Let x∗ ∈ H be a solution of the perturbed absolute variational inequality (2.1). If the operators Tϵ
and Bϵ are Lipschitz continuous with constants (β + ϵ)T > 0 and (β + ϵ)B > 0, and strongly monotone with constants
(α+ ϵ)T > 0 and (α+ ϵ)B > 0, respectively, then

1

s1
∥Rρ(x)∥ ≤ ∥x∗ − x∥ ≤ s2 ∥Rρ(x)∥ , for all x ∈ H.

Proof . Let x∗ ∈ H solves the perturbed absolute value variational inequality (2.1). Then, we have

⟨ρTϵx∗ + ρBϵ |x∗| , y − x∗⟩ ≥ 0, for all y ∈ H
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or ⟨ρ(T + ϵI)x∗ + ρ(B + ϵI) |x∗| , y − x∗⟩ ≥ 0, for all y ∈ H. (3.3)

Take y = PK [x− ρTϵx− ρBϵ |x|] in (3.3), we have

⟨ρ(T + ϵI)x∗ + ρ(B + ϵI) |x∗| , PK [x− ρTϵx− ρBϵ |x|]− x∗⟩ ≥ 0

or ⟨ρ(T + ϵI)x∗ + ρ(B + ϵI) |x∗| , PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]− x∗⟩ ≥ 0.

or ⟨ρT x∗ + ρϵIx∗ + ρB |x∗|+ ρϵI |x∗| , PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩ ≥ 0. (3.4)

Take x = PK [x− ρTϵx− ρBϵ |x|] , z = x− ρTϵx− ρBϵ |x| and y = x∗ in Lemma 2.6, we have

⟨PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]− [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|] ,
x∗ − PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]⟩ ≥ 0

or ⟨PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x+ ρT x+ ρϵIx

+ρB |x|+ ρϵI |x| , x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩ ≥ 0

which shows that

⟨−ρT x− ρϵIx− ρB |x| − ρϵI |x|+ x− PK [x− ρT x− ρϵIx

−ρB |x| − ρϵI |x|] , PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩ ≥ 0. (3.5)

Adding (3.4) and (3.5), we have

⟨ρ(T x∗ − T x) + ρ(B |x∗| − B |x|) + ρϵ(I |x∗| − I |x|) + ρϵ(Ix∗ − Ix) + x− PK [x− ρT x− ρϵIx− ρB |x|
−ρϵI |x|] , PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩ ≥ 0.

From (3.2), we have

⟨T x∗ − T x, x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩+ ⟨B |x∗| − B |x| , x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩
+ ϵ ⟨I |x∗| − I |x| , x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩
+ ϵ ⟨Ix∗ − Ix, x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩

≤1

ρ
⟨R(x), PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩

or

⟨T x∗ − T x, x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩

+ ⟨B |x∗| − B |x| , x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩+ ϵ ∥x∗ − x∥2 + ϵ ∥x∗ − x∥2

≤ 1

ρ
⟨R(x), PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩ . (3.6)

By the strong monotonicity of the operators Tϵ and Bϵ with constants (α+ ϵ)T > 0 and (α+ ϵ)B > 0, respectively,
we have

(α+ ϵ)T ∥x∗ − x∥2 ≤ ⟨Tϵx∗ − Tϵx, x∗ − x⟩
= ⟨(T + ϵI)x∗ − (T + ϵI)x, x∗ − x⟩
≤ ⟨T x∗ − T x, x∗ − x⟩+ ϵ ⟨Ix∗ − Ix, x∗ − x⟩
≤ ⟨T x∗ − T x, x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩

+ ⟨T x∗ − T x, PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x⟩+ ϵ ∥x∗ − x∥2 ,
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and

(α+ ϵ)B ∥x∗ − x∥2 ≤ ⟨Bx∗ − Bx, x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩
+ ⟨Bx∗ − Bx, PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x⟩+ ϵ ∥x∗ − x∥2 .

From (3.2) and (3.6), we have

((α+ ϵ)T + (α+ ϵ)B) ∥x∗ − x∥2 ≤ 1

ρ
⟨R(x), PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩

+ ⟨T x∗ − T x,−R(x)⟩+ ⟨Bx∗ − Bx,−R(x)⟩ .

Using the Lipschitz continuity of operators Tϵ and Bϵ with constants (β + ϵ)T > 0 and (β + ϵ)B > 0, respectively,
we have

ρ ((α+ ϵ)T + (α+ ϵ)B) ∥x∗ − x∥2 ≤⟨R(x), PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x∗⟩
+ ρ ⟨T x∗ − T x,−R(x)⟩+ ρ ⟨Bx∗ − Bx,−R(x)⟩

≤ ⟨R(x),−R(x)⟩ − ⟨R(x), x∗ − x⟩+ ρ ⟨T x∗ − T x,−R(x)⟩+ ρ ⟨Bx∗ − Bx,−R(x)⟩

≤ − ∥R(x)∥2 + ∥x∗ − x∥ ∥R(x)∥+ ρ(β + ϵ)T ∥x∗ − x∥ ∥R(x)∥
+ ρ(β + ϵ)B ∥x∗ − x∥ ∥R(x)∥

=− ∥R(x)∥2 + (1 + ρ ((β + ϵ)T + (β + ϵ)B)) ∥x∗ − x∥ ∥R(x)∥
≤ (1 + ρ ((β + ϵ)T + (β + ϵ)B)) ∥x∗ − x∥ ∥R(x)∥ ,

which implies that

∥x∗ − x∥ ≤ (1 + ρ ((β + ϵ)T + (β + ϵ)B))

ρ ((α+ ϵ)T + (α+ ϵ)B))
∥R(x)∥ = s2 ∥R(x)∥ , (3.7)

where s2 = (1+ρ((β+ϵ)T +(β+ϵ)B))
ρ((α+ϵ)T +(α+ϵ)B)) . Now using the relation (3.2), we have

∥R(x)∥ = ∥x− PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]∥
≤ ∥x∗ − x∥+ ∥x∗ − PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]∥
= ∥x∗ − x∥+ ∥PK [x∗ − ρT x∗ − ρϵIx∗ − ρB |x∗| − ρϵI |x∗|]− PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]∥
≤ ∥x∗ − x∥+ ∥x∗ − ρT x∗ − ρϵIx∗ − ρB |x∗| − ρϵI |x∗| − x+ ρT x+ ρB |x|+ ρϵIx+ ρϵI |x|∥
≤ ∥x∗ − x∥+ ∥x∗ − x∥+ ρ ∥T x∗ − T x∥+ ρ ∥B |x∗| − B |x|∥+ ρϵ ∥I |x∗| − I |x|∥+ ρϵ ∥Ix∗ − Ix∥
≤ 2 ∥x∗ − x∥+ ρ(β + ϵ)T ∥x∗ − x∥+ ρ(β + ϵ)B ∥x∗ − x∥+ ρϵ ∥x∗ − x∥+ ρϵ ∥x∗ − x∥
= 2 ∥x∗ − x∥+ ρ(β + ϵ)T ∥x∗ − x∥+ ρ(β + ϵ)B ∥x∗ − x∥+ 2ρϵ ∥x∗ − x∥
= (2 + 2ρϵ+ ρ ((β + ϵ)T + (β + ϵ)B)) ∥x∗ − x∥
= (2(1 + ρϵ) + ρ ((β + ϵ)T + (β + ϵ)B)) ∥x∗ − x∥
= s1 ∥x∗ − x∥ ,

which shows that
1

s1
∥R(x)∥ ≤ ∥x∗ − x∥ , (3.8)

where s1 = (2(1 + ρϵ) + ρ ((β + ϵ)T + (β + ϵ)B)) . From (3.7) and (3.8), we have

1

s1
∥R(x)∥ ≤ ∥x∗ − x∥ ≤ s2 ∥R(x)∥ , for all x ∈ H. (3.9)

Now substituting x = 0 in (3.9), we have

1

s1
∥R(0)∥ ≤ ∥x∗∥ ≤ s2 ∥R(0)∥ , for all x ∈ H. (3.10)

Combining (3.9) and (3.10), we get a relative error bound for any x ∈ H. □
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Theorem 3.6. Suppose all the conditions of Theorem 3.5 hold. If 0 ̸= x ∈ H is a solution of the perturbed absolute
value variational inequality (2.1), then

t1
∥R(x)∥
∥R(0)∥

≤ ∥x− x∗∥
∥x∗∥

≤ t2
∥R(x)∥
∥R(0)∥

.

It is noted that the normal residue vectorR(x), defined in (3.2), is non differentiable. To resolve the non differentiability
which is a significant limitation of the regularized merit function, we examine another merit function associated with
the perturbed absolute value variational inequality (2.1). This merit function can be regarded as a regularized merit
function. For all x ∈ H, consider the function

Mρ(x) = ⟨Tϵx+ Bϵ |x| , x− PK [x− ρTϵx− ρBϵ |x|]⟩ −
1

2ρ
∥x− PK [x− ρTϵx− ρBϵ |x|]∥2 . (3.11)

It is clear from the above equation that Mρ(x) ≥ 0, for all x ∈ H.

Now we prove that the function defined in (3.11) is a merit function, which is the primary goal of our following
results.

Theorem 3.7. For all x ∈ H, we have

Mρ(x) ≥
1

2ρ
∥Rρ(x)∥2 .

In particular, we have Mρ(x) = 0, if and only if x ∈ H is a solution of the perturbed absolute value variational
inequality (2.1).

Proof . By substituting x = PK [x− ρTϵx− ρBϵ |x|] , z = x− ρTϵx− ρBϵ |x| and y = x in Lemma 2.6, we have

⟨PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]− [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|] , x− x⟩ ≥ 0,

which implies that

⟨PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]− x+ ρT x+ ρϵIx+ ρB |x|+ ρϵI |x| , x− x⟩ ≥ 0

or ⟨ρT x+ ρϵIx+ ρB |x|+ ρϵI |x|+ PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]
−x, x− PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩ ≥ 0.

From (3.11) and Lemma 3.2, we have

0 ≤ ⟨ρT x+ ρϵIx+ ρB |x|+ ρϵI |x| − (x− PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]) , x
−PK [x− ρT x− ρϵIx− ρB |x| − ρϵI |x|]⟩

= ⟨ρT x+ ρϵIx+ ρB |x|+ ρϵI |x| − Rρ(x),Rρ(x)⟩

= ⟨T x+ ϵIx+ B |x|+ ϵI |x| ,Rρ(x)⟩ −
1

ρ
⟨Rρ(x),Rρ(x)⟩

= Mρ(x) +
1

2ρ
∥Rρ(x)∥2 −

1

ρ
∥Rρ(x)∥2

= Mρ(x)−
1

2ρ
∥Rρ(x)∥2

which shows that Mρ(x) ≥ 1
2ρ ∥Rρ(x)∥2 . □

It is clear from the above inequality that Mρ(x) ≥ 0, for all x ∈ H. Also, if Mρ(x) = 0, then from the above
inequality, we obtain Rρ(x) = 0. Hence, according to Lemma 3.1, it is clear that x ∈ H is the solution of the perturbed
absolute value variational inequality (2.1). Therefore from (3.11), we obtain Mρ(x) = 0, which is the required result.
It is observed from the Theorem 3.7 that Mρ(x) defined by (3.11), is a merit function for the perturbed absolute value
variational inequality (2.1). We also notice that the regularized merit function is differentiable, if the operators Tϵ and
Bϵ are differentiable. Now we obtain the error bounds for the perturbed absolute value variational inequality if both
the operators Tϵ and Bϵ are not Lipschitz continuous.
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Theorem 3.8. Let x∗ ∈ H be a solution of the perturbed absolute value variational inequality (2.1). Let the operators
Tϵ and Bϵ be strongly monotone with the constants (α+ ϵ)T > 0 and (α+ ϵ)B > 0, respectively. Then

∥x− x∗∥2 ≤ 4ρ

4ρ ((α+ ϵ)T + (α+ ϵ)B)− 3 + 8ρϵ

[
Mρ(x) +

1

ρ
∥ρT x∗ + ρB |x∗|+ ρ2ϵx∗∥2

]
,

for all x ∈ H.

Proof . Let x∗ ∈ H be a solution of the perturbed absolute value variational inequality (2.1) and by taking y = x,
we have ⟨ρTϵx∗ + ρBϵ |x∗| , x− x∗⟩ ≥ 0, which implies that

⟨ρ(T + ϵI)x∗ + ρ(B + ϵI) |x∗| , x− x∗⟩ ≥ 0.

Applying Lemma 3.2, we have

⟨T x∗ + B |x∗|+ 2ϵx∗, x− x∗⟩ ≥ − 1

4ρ
∥x− x∗∥2 − 1

ρ
∥Tx∗ + B |x∗|+ 2ϵx∗∥2 .

From (3.11) and strong monotonicity of the operators Tϵ and Bϵ, we have

Mρ(x) = ⟨Tϵx+ Bϵ |x| , x− x∗⟩ − 1

2ρ
∥x− x∗∥2

= ⟨Tϵx− Tϵx∗ + Tϵx∗ + Bϵ |x| − Bϵ |x∗|+ Bϵ |x∗| , x− x∗⟩ − 1

2ρ
∥x− x∗∥2

= ⟨Tϵx− Tϵx∗, x− x∗⟩+ ⟨Bϵ |x| − Bϵ |x∗| , x− x∗⟩+ ⟨Tϵx∗ + Bϵ |x∗| , x− x∗⟩ − 1

2ρ
∥x− x∗∥2

= ⟨(T + ϵI)x− (T + ϵI)x∗, x− x∗⟩+ ⟨(B + ϵI) |x| − (B + ϵI) |x∗| , x− x∗⟩

+ ⟨(T + ϵI)x∗ + (B + ϵI) |x∗| , x− x∗⟩ − 1

2ρ
∥x− x∗∥2

= ⟨T x− T x∗, x− x∗⟩+ ⟨B |x| − B |x∗| , x− x∗⟩+ 2ϵ ∥x− x∗∥2

+ ⟨T x∗ + B |x∗|+ 2ϵx∗, x− x∗⟩ − 1

2ρ
∥x− x∗∥2

≥ (α+ ϵ)T ∥x− x∗∥2 + (α+ ϵ)B ∥x− x∗∥2 + 2ϵ ∥x− x∗∥2

− 1

4ρ
∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2 − 1

2ρ
∥x− x∗∥2

=

(
(α+ ϵ)T + (α+ ϵ)B − 1

2ρ
− 1

4ρ
+ 2ϵ

)
∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2 ,

which shows that

∥x− x∗∥2 ≤ 4ρ

4ρ ((α+ ϵ)T + (α+ ϵ)B)− 3 + 8ρϵ

[
Mρ(x) +

1

ρ
∥ρT x∗ + ρB |x∗|+ ρ2ϵx∗∥2

]
.

□

Next, we define the D-merit function for the (PAVVI), which is the difference of regularized merit functions (3.11).
We consider the following function

Dρ,δ(x) = Mρ(x)−Mδ(x)

= ⟨Tϵx+ Bϵ |x| , x− PK [x− ρTϵx− ρBϵ |x|]⟩ −
1

2ρ
∥x− PK [x− ρTϵx− ρBϵ |x|]∥2

−⟨Tϵx+ Bϵ |x| , x− PK [x− δTϵx− δBϵ |x|]⟩+
1

2δ
∥x− PK [x− δTϵx− δBϵ |x|]∥2

= ⟨(T + ϵI)x+ (B + ϵI) |x| , x− PK [x− ρTϵx− ρBϵ |x|]⟩ −
1

2ρ
∥x− PK [x− ρTϵx− ρBϵ |x|]∥2

−⟨(T + ϵI)x+ (B + ϵI) |x| , x− PK [x− δTϵx− δBϵ |x|]⟩+
1

2δ
∥x− PK [x− δTϵx− δBϵ |x|]∥2
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= ⟨T x+ B |x|+ 2ϵx,Rρ(x)⟩ −
1

2ρ
∥Rρ(x)∥2 − ⟨T x+ B |x|+ 2ϵx,Rδ(x)⟩+

1

2ρ
∥Rδ(x)∥2

= ⟨T x+ B |x|+ 2ϵx,Rρ(x)−Rδ(x)⟩ −
1

2ρ
∥Rρ(x)∥2 +

1

2δ
∥Rδ(x)∥2 . (3.12)

It is clear from (3.12) that Dρ,δ(x) is finite everywhere. We will now prove that Dρ,δ(x) is in fact a merit function
for the perturbed absolute value variational inequality which is the prime inspiration for the following result.

Theorem 3.9. For all x ∈ H and ρ ≥ δ, we have

(ρ− δ) ∥Rρ(x)∥2 ≥ 2ρδDρ,δ(x) ≥ (ρ− δ) ∥Rδ(x)∥2 .

Particularly, Dρ,δ(x) = 0, if and only if x ∈ H is the solution of the perturbed absolute value variational inequality
(2.1).

Proof . Take x = PK [x− ρTϵx− ρBϵ |x|] , y = PK [x− δTϵx− δBϵ |x|] and z = x− ρTϵx− ρBϵ |x| in Lemma 2.6, we
have

⟨PK [x− ρTϵx− ρBϵ |x|]− x+ ρTϵx+ ρBϵ |x| , PK [x− δTϵx− δBϵ |x|]− PK [x− ρTϵx− ρBϵ |x|]⟩ ≥ 0

or

⟨PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]− x+ ρ(T + ϵI)x+ ρ(B + ϵI) |x| , PK [x− δ(T + ϵI)x− δ(B + ϵI) |x|]
−PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]⟩ ≥ 0.

That is,

⟨PK [x− ρT x− ρB |x| − 2ρϵx]− x+ ρT x+ ρB |x|+ 2ρϵx, PK [x− δT x− δB |x| − 2δϵx]

−PK [x− ρT x− ρB |x| − 2ρϵx]⟩ ≥ 0,

which shows that

⟨T x+ B |x|+ 2ϵx,Rρ(x)−Rδ(x)⟩ ≥
1

ρ
⟨Rρ(x),Rρ(x)−Rδ(x)⟩ . (3.13)

From (3.12) and (3.13), we have

Dρ,δ(x) ≥ 1

2δ
∥Rδ(x)∥2 −

1

2ρ
∥Rρ(x)∥2 +

1

ρ
∥Rρ(x)∥2 −

1

ρ
⟨Rρ(x),Rδ(x)⟩

=
1

2δ
∥Rδ(x)∥2 −

1

2ρ
∥Rρ(x)∥2 +

1

ρ
∥Rρ(x)∥2 −

1

2ρ
∥Rδ(x)∥2 +

1

2ρ
∥Rδ(x)∥2 −

1

ρ
⟨Rρ(x),Rδ(x)⟩

=
1

2

(
1

δ
− 1

ρ

)
∥Rδ(x)∥2 +

1

2ρ
∥Rρ(x)∥2 +

1

2ρ
∥Rδ(x)∥2 −

1

ρ
⟨Rρ(x),Rδ(x)⟩

=
1

2

(
1

δ
− 1

ρ

)
∥Rδ(x)∥2 +

1

2ρ
∥Rδ(x)−Rρ(x)∥2

≥ 1

2

(
1

δ
− 1

ρ

)
∥Rδ(x)∥2 ,

which clearly shows that
2ρδDρ,δ(x) ≥ (ρ− δ) ∥Rδ(x)∥2 . (3.14)

Similarly by substituting x = PK [x− δTϵx− δBϵ |x|], y = PK [x− ρTϵx− ρBϵ |x|] and z = x − δTϵx − δBϵ |x| in
Lemma 2.6, we have

⟨PK [x− δTϵx− δBϵ |x|]− x+ δTϵx+ δBϵ |x| , PK [x− ρTϵx− ρBϵ |x|]− PK [x− δTϵx− δBϵ |x|]⟩ ≥ 0
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or

⟨PK [x− δ(T + ϵI)x− δ(B + ϵI) |x|]− x+ δ(T + ϵI)x+ δ(B + ϵI) |x| , PK [x− ρ(T + ϵI)x− ρ(B + ϵI) |x|]
−PK [x− δ(T + ϵI)x− δ(B + ϵI) |x|]⟩ ≥ 0.

That is,

⟨PK [x− δT x− δB |x| − 2δϵx]− x+ δT x+ δB |x|+ 2δϵx, PK [x− ρT x− ρB |x| − 2ρϵx]

−PK [x− δT x− δB |x| − 2δϵx]⟩ ≥ 0,

which shows that

⟨T x+ B |x|+ 2ϵx,Rρ(x)−Rδ(x)⟩ ≤
1

δ
⟨Rδ(x),Rρ(x)−Rδ(x)⟩ . (3.15)

From (3.12) and (3.15), we have

Dρ,δ(x) ≤ − 1

2ρ
∥Rρ(x)∥2 +

1

2δ
∥Rδ(x)∥2 +

1

δ
⟨Rδ(x),Rρ(x)−Rδ(x)⟩

=
1

2δ
∥Rδ(x)∥2 −

1

2ρ
∥Rρ(x)∥2 −

1

δ
∥Rδ(x)∥2 +

1

δ
⟨Rδ(x),Rρ(x)⟩

= − 1

2δ
∥Rδ(x)∥2 −

1

2ρ
∥Rρ(x)∥2 +

1

δ
⟨Rδ(x),Rρ(x)⟩

= − 1

2δ
∥Rδ(x)∥2 −

1

2ρ
∥Rρ(x)∥2 +

1

2δ
∥Rρ(x)∥2 −

1

2δ
∥Rρ(x)∥2 +

1

δ
⟨Rδ(x),Rρ(x)⟩

=
1

2

(
1

δ
− 1

ρ

)
∥Rρ(x)∥2 −

1

2δ
∥Rρ(x)∥2 −

1

2δ
∥Rδ(x)∥2 +

1

δ
⟨Rδ(x),Rρ(x)⟩

=
1

2

(
1

δ
− 1

ρ

)
∥Rρ(x)∥2 −

1

2δ
∥Rρ(x)−Rδ(x)∥2

≤ 1

2

(
1

δ
− 1

ρ

)
∥Rρ(x)∥2 ,

which proves the left most inequality of the required result.

That is, (ρ− δ) ∥Rρ(x)∥2 ≥ 2ρδDρ,δ(x). (3.16)

From (3.14) and (3.16), we have (ρ− δ) ∥Rρ(x)∥2 ≥ 2ρδDρ,δ(x) ≥ (ρ− δ) ∥Rδ(x)∥2 .. □

Theorem 3.10. Suppose x∗ ∈ H be a solution of the perturbed absolute value variational inequality (2.1). If the
operators Tϵ and Bϵ are strongly monotone with constants (α+ ϵ)T > 0 and (α+ ϵ)B > 0, respectively, then

∥x− x∗∥2 ≤ 4ρδ

4ρδ ((α+ ϵ)T + (α+ ϵ)B)− 3δ + 2ρ+ 8ρδϵ
[Dρ,δ(x) +

1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2].

Proof . Since x∗ ∈ H be a solution of the perturbed absolute value variational inequality (2.1) and by substituting
y = x in (2.1), we have ⟨ρTϵx∗ + ρBϵ |x∗| , x− x∗⟩ ≥ 0. In view of Lemma 3.2, we have

⟨Tϵx∗ + Bϵ |x∗| , x− x∗⟩ ≥ −1

ρ
∥Tϵx∗ + Bϵ |x∗|∥2 − 1

4ρ
∥x− x∗∥2

or ⟨(T + ϵI)x∗ + (B + ϵI) |x∗| , x− x∗⟩ ≥ −1

ρ
∥(T + ϵI)x∗ + (B + ϵI) |x∗|∥2 − 1

4ρ
∥x− x∗∥2

or ⟨T x∗ + B |x∗|+ 2ϵx∗, x− x∗⟩ ≥ −1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2 − 1

4ρ
∥x− x∗∥2 . (3.17)
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From (3.12), using the strong monotonicity of the operators Tϵ and Bϵ with constants (α+ϵ)T > 0 and (α+ϵ)B > 0,
respectively and (3.17), we have

Dρ,δ(x) = ⟨Tϵx+ Bϵ |x| ,Rρ(x)−Rδ(x)⟩ −
1

2ρ
∥Rρ(x)∥2 +

1

2δ
∥Rδ(x)∥2

= ⟨T x+ B |x|+ 2ϵx,Rρ(x)−Rδ(x)⟩ −
1

2ρ
∥Rρ(x)∥2 +

1

2δ
∥Rδ(x)∥2

= ⟨T x+ B |x|+ 2ϵx, x− x∗⟩ − 1

2ρ
∥x− x∗∥2 + 1

2δ
∥x− x∗∥2

= ⟨T x+ B |x| − T x∗ + T x∗ − B |x∗|+ B |x∗|+ 2ϵx− 2ϵx∗ + 2ϵx∗, x− x∗⟩ − 1

2ρ
∥x− x∗∥2 + 1

2δ
∥x− x∗∥2

= ⟨T x− T x∗, x− x∗⟩+ ⟨B |x| − B |x∗| , x− x∗⟩+ ⟨T x∗ + B |x∗|+ 2ϵx∗, x− x∗⟩

+ ⟨2ϵx− 2ϵx∗, x− x∗⟩ − 1

2ρ
∥x− x∗∥2 + 1

2δ
∥x− x∗∥2

≥(α+ ϵ)T ∥x− x∗∥2 + (α+ ϵ)B ∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2

− 1

4ρ
∥x− x∗∥2 + 2ϵ ∥x− x∗∥2 − 1

2ρ
∥x− x∗∥2 + 1

2δ
∥x− x∗∥2

=

(
(α+ ϵ)T + (α+ ϵ)B − 1

4ρ
− 1

2ρ
+

1

2δ
+ 2ϵ

)
∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2

=

(
(α+ ϵ)T + (α+ ϵ)B −

(
3δ − 2ρ− 8ρδϵ

4ρδ

))
∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2

=
4ρδ ((α+ ϵ)T + (α+ ϵ)B)− 3δ + 2ρ+ 8ρδϵ

4ρδ
∥x− x∗∥2 − 1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2 .

Therefore

∥x− x∗∥2 ≤ 4ρδ

4ρδ ((α+ ϵ)T + (α+ ϵ)B)− 3δ + 2ρ+ 8ρδϵ
[Dρ,δ(x) +

1

ρ
∥T x∗ + B |x∗|+ 2ϵx∗∥2].

□

Conclusions

We introduced and studied numerous merit functions for a new type of variational inequalities, namely perturbed
absolute value variational inequalities, in this study. These merit functions are used to calculate error bounds for
the estimated solution of absolute value variational inequalities and the related optimization problems. The results
presented in this paper may be regarded as a primary contribution in this fascinating domain. Interested researchers
are encouraged to investigate the applications of perturbed absolute value variational inequalities in a wide range of
pure and applied areas. The suggestions in this paper might be applied in future research.

References

[1] D. Aussel, R. Correa, and M. Marechal, Gap functions for quasi variational inequalities and generalized Nash
equilibrium problems, J. Optim. Theory Appl. 151 (2011), 474–488.

[2] D. Aussel, R. Gupta, and A. Mehra, Gap functions and error bounds for inverse quasi-variational inequality
problems, J. Math. Anal. Appl. 407 (2013), 270–280.

[3] S. Batool, M.A. Noor, and K.I. Noor, Absolute value variational inequalities and dynamical systems, Int. J. Anal.
Appl. 18 (2020), 337–355.

[4] S. Batool, M.A. Noor, and K.I. Noor, Merit functions for absolute value variational inequalities, AIMS Math. 6
(2021), 12133–12147.

[5] M.I. Bloach and M.A. Noor, Perturbed mixed variational-like inequalities, AIMS Mathematics 5 (2020) 2153-2162.



24 Ram, Iqbal, Kour

[6] M. Bohner, A. Kashuri, P. Mohammed, and J.E.N. Valdes, Hermite-Hadamard-type inequalities for conformable
integrals, Hacet. J. Math. Stat. 51 (2022), no. 3, 775–786.

[7] S.S. Chang, S. Salahuddin, M. Liu, X.R. Wang, and J.F. Tang, Error bounds for generalized vector inverse
quasi-variational inequality problems with point to set mappings, AIMS Math. 6 (2020), 1800–1815.

[8] J. Dutta, Gap functions and error bounds for variational and generalized variational inequalities, Vietnam J.
Math. 40 (2012), 231–253.

[9] R. Gupta and A. Mehra, Gap functions and error bounds for quasi variational inequalities, J. Glob. Optim. 53
(2012), 737–748.

[10] S.L. Hu and Z.H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010), 417–424.

[11] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM
Publishing Co., Philadelphia, USA, 2000.

[12] T. Kouichi, On gap functions for quasi-variational inequalities, Abstr. Appl. Anal. 2008 (2008), 531361.

[13] G.Y. Li and K.F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational
inequality problems, SIAM J. Optim. 20 (2009) 667-690.

[14] J.L. Lions and G. Stampacchia, Variational inequalities, Commun. Pur. Appl. Math. 20 (1967), 493–519.

[15] O.L. Mangasarian, The linear complementarity problem as a separable bilinear program, J. Glob. Optim. 6 (1995),
153–161.

[16] O.L. Mangasarian and R.R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006), 359-,367.

[17] M.A. Noor, On variational inequalities, Ph.D Thesis, Brunel University, London, UK, 1975.

[18] M.A. Noor, Merit functions for general variational inequalities, J. Math. Anal. Appl. 316 (2006), 736–752.

[19] M.A. Noor, On merit functions for quasi variational inequalities, J. Math. Inequal. 1 (2007), 259–268.

[20] M.A. Noor and K.I. Noor, From representation theorems to variational inequalities, Computational Mathematics
and Variational Analysis, Springer 2020, pp. 261–277.

[21] M.A. Noor, K.I. Noor, and S. Batool, On generalized absolute value equations, UPB Sci. Bull. Series A 80 (2018),
63–70.

[22] B. Qu, C.Y. Wang, and Z.J. Hang, Convergence and error bound of a method for solving variational inequality
problems via the generalized D-gap function, J. Optim. Theory App. 119 (2003), 535–552.

[23] O. Prokopyev, On equivalent reformulation for absolute value equations, Comput. Optim. Appl. 44 (2009), 363.

[24] T. Ram and R. Kour, Mixed variational like inequalities involving perturbed operator, J. Math. Comput. Sci. 12
(2022), 1–10.

[25] J. Rohn, A theorem of the alternatives for the equation Ax+B—x—=b, Linear Multilinear. A. 52 (2004), 421–426.

[26] S.K. Sahoo, Y.S. Hamed, P.O. Mohammed, B. Kodamasingh, and K. Nonlaopon, New midpoint type Hermite-
Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, Alexandria Engin. J. 65 (2023),
689–698.

[27] M.V. Solodov, Merit functions and error bounds for generalized variational inequalities, J. Math. Anal. Appl. 287
(2003), 405–414.

[28] M.V. Solodov and P. Tseng, Some methods based on the D-gap function for solving monotone variational inequal-
ities, Comput. Optim. Appl. 17 (2000), 255–277.

[29] H.M. Srivastava, M. Tariq, P.O. Mohammed, H. Alrweili, E. Al-Sarairah, and M. De La Sen, On modified integral
inequalities for a generalized class of convexity and applications, Axioms 12 (2023), no. 2, 162.

[30] G. Stampacchia, Formes bilineaires coercivities sur less ensembles convexes, C.R. Acad. Sci. Paris 258 (1964),
4413–4416.


	Introduction
	Preliminaries
	Main Results

