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Abstract

In the presented paper, we investigate efficient solutions to optimization problems with multiple criteria and bounded
trade-offs. A nonlinear optimization problem to find the relationships between the upper bound for trade-offs and
objective functions is presented. Due to this problem, we determine some properly efficient points that are closer to
the ideal point. To this end, we apply the extended form of the generalized Tchebycheff norm. Note that all the
presented results work for general problems and no convexity assumption is needed.
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1 Introduction

Multiobjective programming is a branch of mathematical programming concerned with decision problems distin-
guished by several competing objective functions that are to be optimized over feasible points. In recent years, the
developed optimization problems are mostly multicriteria or multiobjective [13, 14, 18, 19, 20, 22, 23, 24, 25].

The Pareto concept of solutions (efficient solutions) is used in multiobjective optimization instead of optimality.
An optimal solution of a multiobjective optimization problem does not allow a better objective value while preserving
the same values on the others. Development of some objective function can only be gained at the expense of the
deterioration of at least one another objective function. These trade-offs between objective functions can be measured.

In some multiobjective optimization problems, optimal solutions will have unbounded trade-offs. Efficient solutions
with bounded trade-offs are called properly efficient solutions. Identification of such solutions is very important in
the theoretical development and the practical applications of multiobjective optimization problems. These solutions
are utilized in sketching interactive algorithms [17], approximating utility (value) functions [21], and creating effective
stock portfolios [12], for instance. The notion of proper efficiency was presented firstly by Kuhn and Tucker [16]. This
solution was more precisely introduced by Geoffrion [8] for multiobjective optimization problems. Thereafter, some
expands of proper efficiency were presented by Borwein [3], Benson [2], and Henig [9].

Most methods introduced for solving multiobjective optimization problems find efficient solutions, and concern
the elicitation of the decision-makers precedence [1, 10]. To support the decision-maker that the selected decisions
are the right ones, it is significant to realize the relationships between the trade-offs and different efficient solutions
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of multiobjective problems. Indeed, a trade-off is concerned with the construction of the problem and estimates the
varying in one objective function concerning the varying in another one, when changing from a feasible point to another
one. Eskelinen and Miettinen [7] presented a trade-off analysis method. This approach can be integrated into any
implementation of an interactive or a posteriori multiobjective optimization technique using an achievement scalarizing
function an equivalent scalarization formulation for creating efficient solutions. Khaledian and Soleimani-Damaneh
[15] investigated efficient solutions of multiobjective optimization problems with trade-offs. Hozzar et al. [11] proposed
some optimization problems to investigate trade-offs between criteria. By applying these problems, they introduced
several properly efficient solutions which are closer to the ideal solution and proposed these matter under convexity
by weighted sum scalarization.

In this paper, efficient solutions in which the trade-offs among criteria are not unbounded by the extended form of
the generalized Tchebycheff norm [4, 26], are studied without any convexity assumption. We introduce a new method
for getting properly efficient solutions. We would like to investigate the decision-maker preferences. For this purpose,
we utilize the developed form of the generalized Tchebycheff norm and Geoffrion’s definition of proper efficiency. Some
solutions which are close to the ideal point are important for practical applications because they imply the majority
of decision-maker preferences. Thus, we consider proper efficiency so that one can determine an upper bound for
bounded trade-offs. Also, one can obtain some solutions that the upper bound of those are the least value than others.
Moreover, these solutions are the closest solution to the ideal point.

The outline of this article is categorized as follows: We briefly review some necessary preliminaries that are used
throughout the paper, in Section 2. Then some notes about proper efficiency and trade-off are introduced in Section 3,
and we propose an optimization problem for determining an efficient properly efficient solution with the upper bound.
Finally, conclusions are given in Section 4.

2 Fundamental concepts and terminologies

First, we state some fundamental definitions to facilitate working with multiobjective optimization problems (MOP)
which are applied in the outline of the article. Consider the n-dimensional Euclidean space Rn. Let xi, yi ∈ R. xi ⩾ yi
if and only if xi − yi ⩾ 0. If x, y ∈ Rn, then we gain the following rules for all i = 1, 2, . . . , n

x ≧ y if and only if xi ⩾ yi for all i.

Essentially this means that the preorder ≧ in Rn denotes the canonical order.

x ≥ y if and only if x ≧ y and x ̸= y,

in fact, ≥ demonstrates that any component of x is larger than or equal to any component of y and x ̸= y.

x > y if and only if xi > yi for all i,

therefore > represents the standard strict inequality, component by component. Henceforth, it will be assumed that
X ⊆ Rm is a feasible set. Investigate a multiobjective optimization problem (MOP) in general, as follows:

MOP minx∈X f(x) = (f1(x), f2(x), · · · , fn(x)), (2.1)

with non-empty feasible set X ⊆ Rm and objective functions fi : X → R, for each i = 1, 2, . . . , n. Assume that all the
criteria fi for every i = 1, 2, . . . , n are bounded over the set X. A review of the definitions of efficiency for MOP (2.1)
is provided as follows.

Definition 2.1. [6] Suppose that x∗ ∈ X is a feasible point. Then, x∗ is said an efficient (a Pareto optimal) solution
of MOP (2.1) if there is no other x ∈ X such that f(x) ≤ f(x∗), i.e. there is no x ∈ X such that fi(x) ⩽ fi(x

∗) for
each i = 1, 2, . . . , n and fj(x) < fj(x

∗) for at least one index j ∈ {1, 2, . . . , n}.

Definition 2.2. [6, 8] A feasible point x∗ is said a properly efficient (properly Pareto optimal) solution of MOP (2.1)
if it is efficient and there is a real positive scalar M such that, for every i ∈ {1, 2, . . . , n} and every x ∈ X satisfying
fi(x) < fi(x

∗), there is an index j ∈ {1, 2, . . . , n} such that fj(x
∗) < fj(x) and (fi(x

∗)− fi(x))/(fj(x)− fj(x
∗)) ⩽ M.
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Definition 2.3. The point yI = (yI1 , y
I
2 , . . . , y

I
n) indicated by

yIi = min
x∈X

fi(x), i = 1, 2, . . . , n,

is called the ideal point of MOP (2.1).

In the presented problems it is necessary to have a utopia vector u = (u1, u2, . . . , un), that its components are
defined as

ui = min
x∈X

fi(x)− γi, i = 1, 2, . . . , n,

for a small scalar γi > 0. If minx∈X fi(x) for all i = 1, 2, . . . , n exist and are finite, then the utopia vector u is
well-defined.

Tchebycheff norms are utilized to optimize the distance between the current point and the ideal point. Rather than
being an L1 metric as applied in traditional linear programming, or an L2 metric applied in least-squares recurrence,
Tchebycheff norms minimize an L∞ metric.

Definition 2.4. [4] The generalized Tchebycheff norm ∥.∥αβ is a real-valued function on Rn described by ∥y∥αβ =

max1⩽i⩽n βi|(I−1
α y)i|, with α ∈ R, positive vector β ∈ Rn and n× n matrix Iα such that

(Iα)ij =

 1, i = j,

α, i ̸= j.

It is obvious that if we set α = 0 and βi = 1 for all i ∈ {1, 2, . . . , n}, then ∥y∥αβ reduces to ∥y∥∞.

Lemma 2.5. [4] Let −1
2n < α ⩽ 0. Then the matrix Iα is nonsingular and every element of I−1

α is nonnegative.
Specifically, if −1

2n < α < 0 then every element of I−1
α is positive.

Now, we recall an approach for solving multiobjective optimization problems which can generate properly Pareto
points. This technique was introduced by Choo and Atkins in [4] and is as follows:

min ∥f(x)− u∥αβ
s.t. x ∈ X.

(2.2)

Definition 2.6. [5] Consider the following problem:

min g(x, y)
min f(x)
s.t. x ∈ X1 = {x ∈ Rm : gi(x, y) ⩽ 0, i = 1, 2, . . . , t}
s.t. (x, y) ∈ X2 = {(x, y) ∈ Rm × Rn : hj(x, y) ⩽ 0, j = 1, 2, . . . , s}.

(2.3)

The problem (2.3) is said to be a bi-level optimization problem if it is shown as follows:

min g(x, y)
s.t. (x, y) ∈ X2

⋂
Xf

∗

where Xf
∗ is the optimal solution set of following problem:

min f(x)
s.t. x ∈ X1 = {x ∈ Rm : gi(x, y) ⩽ 0, i = 1, 2, . . . , t}.

Definition 2.7. [11] Suppose that x∗ and x̄ are two different efficient solutions of MOP (2.1) such that they satisfy
fi(x̄) < fi(x

∗) for index i ∈ {1, 2, . . . , n} and fj(x
∗) < fj(x̄) for index j ∈ {1, 2, . . . , n}\{i}. The following relation is

called a trade-off among criteria fi and fj at x∗ and x̄

fi(x
∗)− fi(x̄)

fj(x̄)− fj(x∗)
.
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3 Establishing upper bound for trade-offs

Definition 2.2 is proposed based on finite trade-offs. Therefore, according to this definition, properly efficient
solutions are those efficient solutions that have bounded trade-offs among the objective functions. In the following,
the relationships between the scalarized problem (2.2) and properly efficient solutions of MOP (2.1) are investigated.

Choo and Atkins in [4] showed that an optimal solution of the problem (2.2) with β > 0 and −1
2n < α < 0 is a

properly efficient solution. At first, the relation between the concept of trade-off and the scalarized problem (2.2) is
considered.

In the proof of Theorem 3.1 [4], Choo and Atkins showed that the parameter α is related to the uniform bound
of the marginal rates of substitution between criteria (M = −1/α). Suppose that x̃ is a properly efficient solution
of MOP (2.1) and assume −1

2n < α < 0, they showed that if for every i ∈ {1, 2, . . . , n} and every x ∈ X satisfying
fi(x) < fi(x̃), there is an index j ∈ {1, 2, . . . , n} such that fj(x̃) < fj(x) then

fi(x̃)− fi(x)

fj(x)− fj(x̃)
⩽

1

−α
.

The value 1
−α can be a good value for M in the original definition of Geoffrion proper efficiency. Therefore, this

value is an appropriate upper bound for trade-offs among objective functions. Now, assume that −1
2n < α ⩽ 0 and A

is an n× n matrix as follows

A =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 .

We have A2 = nA. According to Definition 2.4, we can write Iα = αA + (1 − α)I. Now, we obtain the inverse of
Iα. Suppose that I−1

α = dA+ 1
1−αI. We will find d. Note that we have

IαI
−1
α =

(
αA+ (1− α)I

)(
dA+

1

1− α
I
)
= I.

This implies d = −α
(1−α)(nα+1−α) . Hence, we have

(Iα)
−1
ij =


nα+ 1− 2α

(1− α)(nα+ 1− α)
, i = j,

−α

(1− α)(nα+ 1− α)
, i ̸= j.

(3.1)

Due to Lemma 2.5, (Iα)
−1
ij ⩾ 0. Let

∥f(x)− u∥αβ = max
1⩽i⩽n

βi(I
−1
α (f(x)− u))i = βk(I

−1
α (f(x)− u))k = βk

n∑
j=1

(I−1
α )kj(fj(x)− uj)

= βk

( nα+ 1− 2α

(1− α)(nα+ 1− α)
(fk(x)− uk) +

−α(n− 1)

(1− α)(nα+ 1− α)

∑
j ̸=k

(fj(x)− uj)
)
.

We have

nα+ 1− 2α

(1− α)(nα+ 1− α)
=

1− 1/n

1− α
+

1/n

nα+ 1− α
⩽

1

1− α
+

1

nα+ 1− α
⩽

1

1− α
+

1

−α
⩽

2

−α
, (3.2)

and
−αn+ α

(1− α)(nα+ 1− α)
⩽

−1 + 1/n

1− α
+

1− 1/n

nα+ 1− α
⩽

1− 1/n

nα+ 1− α
⩽

1

nα+ 1− α
⩽

1

−α
. (3.3)

Note that due to the above descriptions

∥f(x)− u∥αβ ⩽ βk

( 2

−α
(fk(x)− uk) +

1

−α

∑
j ̸=k

(fj(x)− uj)
)
,
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it is clear that if β is constant and −α is increased, then f(x) tends to u. Motivated by this discussion, it is clear
that if we are going to obtain some properly efficient solutions that are the closest properly efficient solutions to the
ideal point with the upper bound 1/(−α), the value −α must be increased. Hence, we present the following bi-level
optimization problem to generate the closest properly efficient solution to the ideal point:

min γ
min ∥f(x)− u∥αβ
s.t. x ∈ X,

−α ⩽ γ,
s.t. γ ⩾ 0.

(3.4)

Theorem 3.1. Assume that (x̃, α̃, γ̃) is an optimal solution of the bi-level optimization problem (3.4). The feasible
point x̃ ∈ X is a properly efficient solution of MOP (2.1) if and only if −α̃ > 0.

Proof . Suppose that x̃ is a properly efficient solution of MOP (2.1). By applying Theorem 3.1 in [4] and optimality
of x̃ for the problem (3.4), we have

x̃ = argmin ∥f(x)− u∥α̃β
s.t. x ∈ X,

thus 0 < −α̃ < γ. If 0 < −α̃, then due to Theorem 3.1 in [4], x̃ ∈ X is a properly efficient solution of MOP (2.1). The
proof is complete. □

We consider Xl = {x ∈ X : −α ⩽ γ}.

Theorem 3.2. If (x̃, α̃, γ̃) is an optimal solution of the bi-level optimization problem (3.4) with γ̃ > 0, then γ̃ is an
upper bound for any trade-off of properly efficient solutions.

Proof . By contradiction, assume that there is an x̂ ∈ Xl and an index q ∈ {1, 2, . . . , n} such that fq(x̃) > fq(x̂) and
for all j ̸= q with fj(x̃) < fj(x̂) we have

fq(x̃)− fq(x̂)

fj(x̂)− fj(x̃)
> γ̃.

Let

max
1⩽i⩽n

βi(I
−1
α̃ (f(x̂)− u))i = βl(I

−1
α̃ (f(x̂)− u))l = βl

n∑
j=1

(I−1
α̃ )lj(fj(x̂)− uj) (3.5)

and

max
1⩽i⩽n

βi(I
−1
α̃ (f(x̃)− u))i = βk(I

−1
α̃ (f(x̃)− u))k = βk

n∑
j=1

(I−1
α̃ )kj(fj(x̃)− uj). (3.6)

According to relations (3.2) and (3.3), we have∑
j ̸=q(I

−1
α̃ )lj

(I−1
α̃ )lq

⩽
1/(−α̃)

2/(−α̃)
⩽

1

2
⩽

1

−α̃
.

Due to Lemma 2.5, we have

fq(x̃)− fq(x̂)

fj(x̂)− fj(x̃)
> γ̃ =

1

−α̃
⩾

∑
j ̸=q(I

−1
α̃ )lj

(I−1
α̃ )lq

> 0. (3.7)

Since fq(x̃)− fq(x̂) is positive, the following relation is trivially true if fj(x̂) < fj(x̃),

fq(x̃)− fq(x̂) >
1

−α̃
(fj(x̂)− fj(x̃)).

Hence, by applying these inequalities and multiplying any of them by its corresponding (I−1
α̃ )lj for all j ̸= q and

summing them over j ̸= q, we have∑
j ̸=q

(I−1
α̃ )lj(fq(x̃)− fq(x̂)) >

1

−α̃

∑
j ̸=q

(I−1
α̃ )lj(fj(x̂)− fj(x̃)).
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From relation (3.7), it follows that (I−1
α̃ )lq ⩾ −α̃

∑
j ̸=q(I

−1
α̃ )lj . Therefore,

(I−1
α̃ )lq(fq(x̃)− fq(x̂)) ⩾ −α̃

∑
j ̸=q

(I−1
α̃ )lj(fq(x̃)− fq(x̂)) >

∑
j ̸=q

(I−1
α̃ )lj(fj(x̂)− fj(x̃)).

Hence
n∑

j=1

(I−1
α̃ )lj(fj(x̂)− fj(x̃)) < 0. (3.8)

Based on relations (3.5), (3.6) and (3.8), it follows that

βl

n∑
j=1

(I−1
α̃ )lj(fj(x̂)− uj) < βl

n∑
j=1

(I−1
α̃ )lj(fj(x̃)− uj) ⩽ βk

n∑
j=1

(I−1
α̃ )kj(fj(x̃)− uj).

Therefore, ∥f(x̂) − u∥α̃β < ∥f(x̃) − u∥α̃β , which is a contradiction to x̃ being an optimal solution of the bi-level
optimization problem (3.4). □

Example 3.3. Establish the following biobjective optimization problem.

min (−3x1 − 2x2 + 3,−x1 − 3x2 + 1)
s.t. (x1 − 1)3 + x2 ⩽ 0,

−x1 ⩽ 0, −x2 ⩽ 0, −x2 ⩽ −4.

The optimal solution of the bi-level optimization problem (3.4) with β = 0.78 is x̃1 = 0, x̃2 = 1, and α̃ = −0.001.
Due to Theorem 3.1, (x̃1, x̃2) = (0, 1) is a properly efficient solution. The point (x1, x2) = (1, 0) is also another
properly efficient solution, because the following inequality is satisfied:

f2(x
∗)− f2(x)

f1(x)− f1(x∗)
⩽

x1 + 3x2 − 1

−3x1 − 2x2 + 3
⩽

x1 + 3(1− x1)
3 − 1

−3x1 − 2(1− x1)3 + 3
=

3(1− x1)
2 − 1

−2(1− x1)2 + 3
⩽ 2.

This follows from (1 − x1)
3 ⩾ x2 ⩾ 0. Therefore, the problem (3.4) with α̃ = −0.001 implies the closest properly

efficient solution to the ideal point (u1, u2) = (0.1193,−2).

4 Conclusions

In the present research, we established an approach for finding properly efficient solutions with bounded trade-
offs, so that they imply the decision-maker preferences. Note that in multiobjective optimization, decision-makers
commonly would like to apply some solutions which are close to the ideal point. We investigate this approach by the
extended form of the generalized Tchebycheff norm. Unlike most scalarization techniques, this technique works for
general problems, without additional conditions, like the convexity assumption.
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