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Abstract

In this paper, a numerical method for finding the numerical solution of the Burgers-Fisher and Burgers’ nonlinear
equations is proposed. These equations are very important in many physical problems such as fluid dynamics, tur-
bulence, sound waves and etc. We describe a meshless method to solve the nonlinear Burgers’ equation as a stiff
equation. In the proposed method, we also use the exponential time differencing (ETD) method. In this method, the
moving least squares (MLS) method is used for the spatial part and the exponential time differencing (ETD) is used
for the time part. To solve these equations, we use the meshless method MLS to approximate the spatial derivatives,
and then use method ETDRK4 to obtain approximate solutions. In order to improve the possible instabilities of
method ETDRK4, Approaches have been stated. Method MLS provided good results for these equations due to its
high flexibility and high accuracy and having a moving window, and obtains the solution at the shock point without
any false oscillations. The method is described in detail, and a number of computational examples are presented. The
accuracy of the proposed method is demonstrated by several test simulation.

Keywords: Adaptive Numerical Analysis; Burgers’ nonlinear equation; Moving Least Squares(MLS); Exponential
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1 Introduction

In this article, we deal with the method of numerical solution of the Burgers Fisher and Burgers’ equations. For
the first time in 1915, Bateman [4] proposed a steady state solution to this equation, and then in 1948, the Burgers-
Fisher and Burger [6, 7]used it to show, some properties of turbulent fluid in a channel due to the interaction of
contrasting effects. Convection and diffusion provided this equation, because of wich, these equations were called the
”Burgers’ equation” which has three sentences: 1-convective, 2-viscosity and 3-time dependent. This equation is a
highly nonlinear equation whose behaviors are almost similar to the one-dimensional Navier-Stokes equation but differ
in one part, the pressure gradient.These equations usually have a hybrid state, meaning that whenever the viscosity
expression is predominant, it is a parabolic, and otherwise a hyperbola, in which case, severe discontinuities may occur
over a limited time due to the nonlinearity of the Burgers’ equation. Such discontinuities cause many problems in the
process of solving these equations. These features of the Burgers’ equation make it a great model for testing numerical
methods.
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This equation has many applications in various sciences and problems, including one-dimensional turbulence,
sound waves in a viscous environment, shock waves in a viscous environment, waves in liquid viscous elastic tubes,
and hydrodynamic magnetic waves in an environment with limited electrical conductivity. One of the reasons why
these equations are so popular in the scientific community is that they are widely used.

Solving the Burgers’ equation has been considered for many years, and numerical solving of this equation is still a
very active and popular issue. Many papers have been written for the numerical solution of these equations, and various
methods have been proposed to solve the Burgers’ equation, including automatic differentiation method [2], Galerkin
finite element method [15], spectral colocation method [31], Sinc differential quadratic method [32], polynomial-based
differential quadratic method [33], B-Splines quartz differential quadratic method [34], A new numerical scheme [66],
an implicit fourth-order compact finite difference scheme[36], some implicit methods [62], adomin-pade technique
[14], a hematopoietic analysis method [49], a differential transform method and a hematopoietic analysis method [50],
semi-implicit finite differences [51], modified cubic B-splines collocation method [44], Localized Differential Quadrature
method [5], Mixed Finite Volume Element Methods[67], The Lie-group method based on radial basis functions[24] and
etc.

In this paper, we also numerically solve the Burgers-Fisher equation. The Burgers-Fisher equation has many
applications in fluid dynamics models and is very useful for understanding the concept of physical flows. It has also
been widely used in fields such as gas dynamics, number theory, heat conduction, traction, and so on.

The Burgers-Fisher equation is a very nonlinear equation,which consists of the mechanisms of reaction, convection,
and diffusion. The particular Burgers Fisher equation is of special interest.

Many numerical solutions have been proposed to solve the Burgers-Fisher equations, including Adomin decompo-
sition method [64], The tanh method [65], Spectral collocation method and spectral domain decomposition method
[21], A numerical simulation and Explicit solutions [30], A restrictive Pade approximation [26], Analytic approximate
solutions [8], Numerical Treatment of Burgers-Fisher equation[13] and etc., which will be explained in more detail in
section 2.

This article proposes a adaptive numerical method based on the meshless method and ETD scheme. In recent
years, meshless methods have been used for diverse differential equations.

One of the numerical methods examined in this paper and used to discretize time is the ”exponential temporal
difference” method, which involves the correct integration of dominant equations and then the approximate integral
of nonlinear expressions.[53, 12]

In principle, this method was in the category of first order explicit methods. Regarding the stability of these
methods and more details, refer to the article [9].
To improve ETD methods, we consider new and more accurate ETD methods, combining ETD scheme with Runge-
Kutta 4 [12].

As Cox and Matthews (the originators of this method) recognized, they have a big problem with eigenvalues close
to zero, especially when the matrix for the linear part(L) is not diagonal. If these problems are not solved, ETD
schemes will have many errors and fail for PDE equations whose matrix is not diagonal. In this work, we use modified
ETD schemes to avoid these problems[35].

Low-order ETD methods are more suitable for application in computational electrodynamics [63]. They are often
taken independently [10, 12, 43]—In his article, Iserslie states that in 1928, Filon proposed ideas related to this method
in the field of ODE.[20, 27]—The best solution to the problems of this method is to use the fourth order Runge–Kutta
formula (ETDRK4) with exponential time difference[12]. Cox and Matthews argue that ETD schemes perform better
than Implicit-Explicit (IMEX) schemes, where linear expressions predominate, and perform better than Integration-
Factor (IF) schemes, where nonlinear expressions predominate. We will explain more about this method in Section
3.

In recent decades, meshless methods have been proposed to solve equations better[41]. These methods are used
to discretize the domain without using a predefined mesh by creating a system of algebraic equations for the entire
problem domain. How this method works is that a set of nodes diffuse across the domain of the problem is used to
indicate its domain, and a set of nodes is used at the domain boundaries to represent its boundaries. The set of these
diffuse nodes is called field nodes[60]. Mesh-free methods can be divided into three groups:

1. Mesh-free methods based on weak forms, such as the Element Free Galerkin method(EFG)[16],

2. Mesh-free methods based on strong forms, such as collocation method based on Radial Basis Functions(RBFs)[3,
59],
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3. Mesh-free methods based on a combination of weak forms and collocation method.[19, 18]

In the written works, several methods without weak mesh are stated:

1. Dispersed Elements Method(DEM)[47],

2. Smooth Particle Hydrodynamics(SPH)[11],

3. Reproducing Kernel Particle Method(RKPM)[42],

4. Boundary Node Method(BNM)[45],

5. Partition Unity Finite Element Method(PUFEM)[46],

6. Finite Sphere Method(FSM)[17],

7. Boundary Point Interpolation Method(BPIM)[22],

8. Border Radius Point Interpolation Method(BRPIM)[23],

9. Meshless Local Petrov Galerkin(MLPG)[61],

10. Meshless Local Radius Point Interpolation(MLRPI)[54, 55, 56, 1, 57, 58].

One of the meshless methods is Moving Least Squares(MLS) method, in which we use a local interpolation or
approximation to express an experimental function with unknown values at some node points[40]. In this paper, the
moving least squares (MLS) approximation is used, which will be discussed in detail in section 4. In section 5, we will
explain about our adaptive method. In Section 6, a number of examples are solved with these methods.

2 the Burgers-Fisher and Burgers’ equations

This section provides additional explanations of the first-order Burgers’ equation and the Fisher Burgers equation.
Burgers’ equation is a nonlinear partial differential equation widely used and known in applied mathematics and
physical sciences such as gas dynamics, nonlinear acoustics and fluid mechanics. This equation was first studied by
Bateman[4]in 1915 and later by Burgers[6, 7] in 1948. Since then, it has been widely considered as the Burgers’
equation by the scientific community and attempts have been made to solve this equation in various ways. This
equation presents well the turbulence caused by two opposite phenomena, diffusion and convection, and it also has
a convection term, a viscosity term, and a time-dependent term. When the expression phrase or sticky sentence is
predominant, the answer form is parabolic, or otherwise hyperbolic. If the propagation sentence is not predominant
in contrast to the convection sentence, very strong shock waves or discontinuities may occur due to the nonlinearity of
the Burgers’ equation, even if the initial conditions are sufficiently smooth. Such discontinuities are one of the biggest
problems in obtaining the answer to these equations, so these features make the Burgers’ equation very suitable
for testing the numerical methods used to obtain the answer to these problems. Therefore, the Burgers’ equation
plays a very important role among the partial differential equations with analytical solutions along with a set of basic
functions and boundary constraints. Using nonlinear conversion, Hopf3 and Cole4 showed that it is possible to convert
the Burgers’ equation to a linear diffusion equation. Since its inception, this equation has been widely considered by
researchers due to its various practical applications, such as gas dynamics, shock theory, traffic flow, viscous flow and
turbulence, traffic. In this paper, we consider the one-dimensional equation of Burgers as follows:

∂u

∂t
+ αu

∂u

∂x
= ν

∂2u

∂x2
a ≤ x ≤ b t ≥ 0 (2.1)

with the initial conditions: u(x, 0) = h(x), a ≤ x ≤ b and with the boundary conditions: u(a, t) = f(x), u(b, t) = g(x),
t ≥ 0, where α is a constant and ν is a kinematic viscosity.

Benton and Platzman investigated exact solutions to equations similar to the next Bergrick. In recent years, many
attempts have been made to obtain numerical solutions with less error in the Burgers’ equation for small and large
quantities of kinematic viscosity, especially for small viscosities, because in this case the infinite series converges to the
exact answer slowly, and the numerical solutions have many errors. Many papers have been written for the numerical
solution of these equations and various methods have been proposed to solve the Burgers’ equation, including automatic
differentiation method [2], Galerkin finite element method [15], spectral colocation method [31], Sinc differential
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quadratic method [32], polynomial-based differential quadratic method [33], B-Splines quartz differential quadratic
method [34], The Lie-group method based on radial basis functions[24], etc. In this paper, several examples of this
type of equation with different initial and boundary conditions are solved, and the solution are compared with different
viscosity coefficients.

In this work, we also deal with the Burgers-Fisher equation. This equation is very important for explaining
different problems in science. Fischer first proposed the famous equation encountered in various disciplines as a model
for propagating a mutated gene in which u(x, t) represents the density of mean. In later years, this equation was
used as the basis for a variety of models for many problems in various sciences. The most general form of the Fisher
equation is called the Burgers-Fisher equation. Numerous interactions in physical problems that exist in models of
different systems and structures lead to the generalized Burgers-Fisher equation. The Burgers-Fisher equation is the
one whose nonlinearity is very high because it is a combination of reaction, convection, and diffusion mechanisms.
This equation is called Burgers-Fisher because of the properties of the convective phenomenon, the diffusion transfer,
and the type of reactions. Its high nonlinearity has attracted much attention from researchers, many of whom have
made great efforts to solve the Burgers Fisher equation and obtain a numerical answer to this equation. Adomian
decomposition method in [64] ,the tanh method by Wazwaz [65], spectral collocation method and spectral domain
decomposition method by Javidi and Golbabai [21], a non-standard finite difference scheme by Mickens. Kaya and
Sayed introduced a numerical simulation and Explicit Solutions [30], Ismail and Rabboh presented a restrictive Pade
approximation[26], Numerical Treatment of Burgers-Fisher equation[13], Analytic approximate solutions [8] and etc.

The following is a generalized one dimensional Burgers Fisher equation that has been developed in various fields
of science

∂u

∂t
+ αuδ ∂u

∂x
=

∂2u

∂x2
+ βu(1− uδ) a ≤ x ≤ b t ≥ 0 (2.2)

Where α, β and δ are parameters. In this work, the Burgers-Fisher generalized equation is solved by the proposed
method. Numerical results are compared with exact solutions to verify the current method.

3 The MLS approximation scheme

In this section, we explain one of the meshless methods called MLS for the approximation of the function v(x)
in the domain Λ. Assume that Λ is expressed by computational geometry techniques. In this supposed domain, we
assume the nodes xi, i = 1, .., N and denote the approximate value of the related with the MLS method at the point of
the assumed node i with vi. As explained in section one, meshless methods use local interpolation or approximation
to express an experimental function that is the value of unknown variable at several node points.

In this paper, among the meshless methods, we used the moving least square (MLS) because it seems to work better
for shock problems. We consider a subdomain Λs, In the neighborhood the point x, which exists within the principal
domain of the problem Λ, and is represented as the support domain of the MLS approximation for the experimental
function at the point x.

To approximate the function v in Λs, on random points of nodes xi, i = 1, .., N . We illustrate the approximation
of the v function by the method of moving least squares with vh(x) upon the domain Λs, and we can define ∀x ∈ Λs:

vh(x) = DT (x)q(x) ∀x ∈ Λs (3.1)

wherein DT (x) is a vector of order m as DT (x) = [d1(x), d2(x), ..., dm(x)]. DT (x) is a complete monomial basis, and
q(x) is a vector since q(x) = [q1(x), q2(x), ..., qm(x)]. qj(x), j = 1, 2, ...,m are function of the coordinates of space x.
dj(x) is monomial in the coordinates of space. m is the number of basic polynomial functions. To make dj(x), the
Pascal triangle is used, and a complete base is certainly preferred. The basic functions are ascertained by

DT (x) =


1, m = 1

{1,x}, m = 2

{1,x,x2}, m = 3

Here, if we want to shift the origin to a fixed point xe = (Xe
1 , X

e
2 , ..., X

e
n)

T , x in D(x) must be replaced by x−xe.
Point xe = (Xe

1 , X
e
2 , ..., X

e
n)

T is on R(x), where R(x) represents the influence domin of x. Then, a linear basis by

D(x) = [1, x1 − xe
1, x2 − xe

2, ..., xn − xe
n]

T , x ∈ Rn,m = 1
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and a quadratic basis by

D =

{
[1, x1 − xe

1, (x1 − xe
1)

2]T , x ∈ R,
[1, x1 − xe

1, x2 − xe
2, (x1 − xe

1)
2, (x2 − xe

2)
2, (x1 − xe

1)(x2 − xe
2)]

T , x ∈ R2,
m = 2.

The weight function used in the MLS method is as follows

wi(x) = φ

(
∥x− xi∥

h

)
, i = 1, ..., N (3.2)

where the function φ is 1.nonnegative, 2.γth times continuously differentiable, 3. its derivatives are bounded for a
higher order than γ, 4.compactly supported. Many weight functions used in meshless methods have these conditions,
such as Gaussian, exponential, cubic, and quartic splines. In this paper, the Gaussian weight function is used, which
is defined as follows:

wi(x) =


exp[−(

di
ci

)2]−exp[−( rs
ci

)2]

1−exp[−( rs
ci

)2]
, 0 ≤ di ≤ rs,

0, di ≥ rs,

where di = ∥x−xi∥, ci is a constant that controls the shape of the weight function wi and rs is the size of the support
domain. The support size of the weight function wi related to node i (rs) is very important. On the one hand, it
should be chosen so that it is large enough to cover the number of nodes required in the definition domain of each
sample point, and on the other hand, choosing a very small rs will cause a large error in the calculations. Care must
also be taken that the rs should be small enough, that is, not too small to preserve the local properties of the MLS
approximation.

As mentioned: vh(x) = DT (x)q(x), which has already been explained about DT (x), and now we will examine
the coefficients of q(x) in detail. To define a coefficient vector q(x), we use the L2-norm in such a way that these
coefficients are determined by minimizing the weighted discrete L2-norm. As follows:

J(x) =

n∑
i=1

wi(x)[D
T (xi)q(x)− v̂i]

2 = [D.q(x)− v̂]T .W.[D.q(x)− v̂] (3.3)

Here wi(x) is defined as the weight function for node i. Note that for all points in the support domain of wi(x),
the value of the weight function at each point i.e. wi(x) is positive. xi actually represents the value of x in node i,
and n is the number of nodes in Λs for Each weight function is wi(x) > 0. The matrices D and W are defined as:

D =


dT (x1)
dT (x2)

...
dT (xn)

 , W = diag(w1(x),w2(x), ...,wn(x)), v̂T = [v̂1, v̂2, ..., v̂n]. (3.4)

Note that v̂i, i = 1, 2, ..., n are not node values of the unknown trial function vh(x), but are artificial node values.
There is a linear relationship between q(x) and v̂, which is expressed below. This relationship is derived from the
stationarity of J in Eq.(3.1) with respect to q(x).

Q(x)q(x) = S(x)v̂ (3.5)

To define the matrices Q(x) and S(x) :
Q(x) = DT .W.D (3.6)

S(x) = DT .W

Obtaining q(x) from the equation(3.5) and substituting it in Eq.(3.1) yields:

vh(x) = µT (x).v̂ =

n∑
i=1

µi(x)v̂i, x ∈ Λs (3.7)

µT (x) = DT (x)Q−1(x)S(x) (3.8)
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or

µi(x) =

m∑
j=1

dj(x)[Q
−1(x)S(x)]ji (3.9)

µi(x) is called a shape function of the MLS approximation dependent on the xi node. From Eqs.(3.9) and (3.7), it
can sometimes be concluded that µi(x) = 0 when wi(x) = 0. In practical applications, usually wi(x) is selected such
that over the support of xi node is non-zero. In fact, if µi(x) = 0, for x that is not in the support area of the node xi,
is to maintain the local character of the MLS approximation.

4 A modified ETD scheme

In Burgers’ equation, we have both linear and non-linear terms. To solve these problems and obtain low-error
numerical answers to these problems, high-order approximations for place and time must be used. But because we
have a non-linear and stiff combination in these problems, it has not been used much until the second order. The
general form of the stiff equations is as follows:

vt = Lv +N (v, t). (4.1)

In this equation, L and N represent the linear and nonlinear operator. First, the spatial part of the PDE equation
is discretized by related methods, and thus we obtain a system of ODEs.

vt = Lv + N(v, t). (4.2)

We begin by multiplying Eq.(4.2) through by 1/eLt , the term 1/eLt is the integrating factor. Then we take the
integral from the equation on a single time step of length h from t = tn to t = tn+1 = tn + h to give:

vn+1 = eLhvn + eLh
∫ h

0

e−LζN(v(tn + ζ), tn + ζ) dζ. (4.3)

In this equation, different orders of ETD schemes can be obtained from how the integrals are approximated. A
sequence of recursive formulas are presented that provide higher order approximations of a multistep type. Here is a
production formula:

vn+1 = eLhvn + h

s−1∑
m=0

ηm

m∑
k=0

(−1)k
(
m

k

)
Nn−k (4.4)

wherein s reperesent the order of the method. The coefficients ηm can be obtained from the following recursive relation

Lhη0 = eLh − I

Lhηm+1 + I = ηm +
1

2
ηm−1 +

1

3
ηm−2...+

1

m+ 1
η0 (4.5)

whenever we use Rung Kuta methods in the set of ETD methods and derive its time step with Rung Kutta, the
method is called ETDRK. In this paper, we use only the fourth order method and derive it with ETD methods. In
this case, the method is called ETDRK4. This is not entirely clear and needs to be explained in the form of a symbolic
manipulation system. Here are the formulas for the ETDRK4 method:

an = eLh/2vn +
(eLh/2 − I)

L
N(vn, tn),

bn = eLh/2vn +
(eLh/2 − I)

L
N(an, tn + h/2),

cn = eLh/2an +
(eLh/2 − I)

L
(2N(bn, tn + h/2)− N(vn, tn)),

ϖ = −4− Lh+ eLh(4− 3Lh+ (Lh)2

ϱ = 2 + Lh+ eLh(−2 + Lh)
ς = −4− 3Lh− (Lh)2 + eLh(4− Lh)

vn+1 = eLhvn +
ϖN(vn, tn) + 2ϱ(N(an, tn + h/2) + N(bn, tn + h/2)) + ςN(cn, tn + h)

h2L3

(4.6)
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The coefficients inside the bracket in the ETDRK4 formula can be rewritten as follows:

α =
ϖ

h2L3
, β =

ϱ

h2L3
, γ =

ς

h2L3
. (4.7)

As mentioned before, we tried to solve the Burgers’ equations with the methods described, and examples of these
equations are solved in the next section.

5 Adaptive method

In this section, an attempt has been made to solve the Burgers-Fisher and Burgers’ equations using the methods
described in Sections 3 and 4. The first part provides explanations about solving the Burgers’ equation and then the
second part provides explanations about solving the Burgers-Fisher equation with the mentioned method are given.

5.1 Adaptive method for Burgers’ equations

Consider the one-dimensional Burgers’ equation:

∂u

∂t
+ αu

∂u

∂x
= ν

∂2u

∂x2
a ≤ x ≤ b t ≥ 0 (5.1)

with the initial conditions: u(x, 0) = h(x), a ≤ x ≤ b and with the boundary conditions: u(a, t) = f(x), u(b, t) = g(x),
t ≥ 0 where α is a constant and ν is a kinematic viscosity.

In this section, we explain how to solve this equation according to MLS and ETDRK4. To solve the equation, we
first use MLS to approximate spatial derivatives and then ETDRK4 to approximate time derivatives.

We divide the main domain of the problem (Λ) into N parts so that the distance between the nodes is constant,
and for each point we consider a neighborhood (Λs)that is inside the main domain. To approximate the function u,
by MLS method, in Λs, on random points of nodes xi, i = 1, .., n. From relation 3.5,3.7:

uh(x, t) =

n∑
i=1

µi(x)ûi(t) (5.2)

By replacing in the equation we have:

∂u

∂t
+ αu

∂(
∑n

i=1 µi(x)ûi(t))

∂x
= ν

∂2(
∑n

i=1 µi(x)ûi(t))

∂x2
. (5.3)

Note that ûi(t) = û(xi, t) in equation 5.3 represent node values that are fictitious. On the other hand, for the
derivative µi(x), it can be explained as follows:

Let Cq(Λ) be the space of functions that are continuously qth differentiable on Λ. If wi(x) ∈ Cq(Λ) and dj(x) ∈
Cs(Λ), i = 1, 2, ..., n, j = 1, 2, ...,m, then µi(x) ∈ Cr(Λ) with r = min(q, s). The k derivatives of µi(x) as:

µi,k =

m∑
j=1

[dj,k(Q
−1S)ji + dj(Q

−1S,k +Q−1
,k S)ji] (5.4)

where we show the derivative inverse of the matrix Q, which depends on xk, with the symbols Q−1
,k = (Q−1),k, obtained

by the formula Q−1
,k = −Q−1Q,kQ

−1. Now, considering the spatial discretization and the use of the MLS method, we
have:

∂u(x, t)

∂t
= −αu(x, t)(

n∑
j=1

µ′
j(x)ûj(t)) + ν(

n∑
j=1

µ′′
j (x)ûj(t)). (5.5)

For xi ∈ Λ (Λ is the global domain of problem):

u̇i(t) = −αui(t)(

n∑
j=1

µ′
j(x)ûj(t)) + ν(

n∑
j=1

µ′′
j (x)ûj(t)). (5.6)
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Note that the derivative of u is relative to time, and the derivative of µ is defined in 5.4. When we disassemble the
PDE space partition, we get a system of ODEs:

u̇1(t)
u̇2(t)
...

u̇n(t)

 = −α


u1(t)
u2(t)
...

un(t)

 ◦


µ′
1(x1) µ′

2(x1) · · · µ′
n(x1)

µ′
1(x2) µ′

2(x2) · · · µ′
n(x2)

...
...

...
...

µ′
1(xn) µ′

2(xn) · · · µ′
n(xn)



û1(t)
û2(t)
...

ûn(t)

+ ν


µ′′
1(x1) µ′′

2(x1) · · · µ′′
n(x1)

µ′′
1(x2) µ′′

2(x2) · · · µ′′
n(x2)

...
...

...
...

µ′′
1(xn) µ′′

2(xn) · · · µ′′
n(xn)



û1(t)
û2(t)
...

ûn(t)


where ◦ is Hadamard product.

In this step, to approximate time derivatives by ETDRK4, we have to divide the flux function into two parts, linear
and non-linear:

L = ν


µ′′
1(x1) µ′′

2(x1) · · · µ′′
n(x1)

µ′′
1(x2) µ′′

2(x2) · · · µ′′
n(x2)

...
...

...
...

µ′′
1(xn) µ′′

2(xn) · · · µ′′
n(xn)


and

N(u, t) = −α


u1(t)
u2(t)
...

un(t)

 ◦


µ′
1(x1) µ′

2(x1) · · · µ′
n(x1)

µ′
1(x2) µ′

2(x2) · · · µ′
n(x2)

...
...

...
...

µ′
1(xn) µ′

2(xn) · · · µ′
n(xn)



û1(t)
û2(t)
...

ûn(t)


For time discretization, ETD, as previously described, is used.

Assuming that we divide the main domain into n parts with equal distances, u(xi, kt), i = 1, 2, ..., n is specified,
and our goal is to calculate u(xi, (k + 1)t), i = 1, 2, ..., n. Multiply the equation by e−Lt, then integrate the equation
into a single time step of length h, so:

uk+1
i = eLhuk

i + eLh
∫ h

0

e−Lζ(αui(tk + ζ)

n∑
j=1

µ′
j(xi)ûj(tk + ζ)) dζ (5.7)

where uk
i = u(xi, tk), and then we solve it using the formulas of ETDRK4 experessed in 4.6.

5.2 Adaptive method for Burgers-fisher equations

Consider the one-dimensional Burgers-fisher equation:

∂u

∂t
+ αuδ ∂u

∂x
=

∂2u

∂x2
+ βu(1− uδ) a ≤ x ≤ b t ≥ 0 (5.8)

where α, β, and δ are parameters. In this part, as in the previous part, we solve the equation according to methods
MLS and ETDRK4. As explained in the previous section, we first use MLS to approximate spatial derivatives and
then ETDRK4 to approximate time derivatives. We divide the main domain of the problem (Λ) into N parts so that
the distance between the nodes is constant, and for each point, we consider a neighborhood (Λs)that is inside the main
domain. To approximate the function u, by MLS, in Λs, on random points of nodes xi, i = 1, .., n. From relation 5.2
and replacing in the burgers-fisher equation, we have:

∂u

∂t
+ αuδ ∂(

∑n
i=1 µi(x)ûi(t))

∂x
=

∂2(
∑n

i=1 µi(x)ûi(t))

∂x2
+ β(

n∑
i=1

µi(x)ûi(t))(1− uδ) (5.9)

Note that ûi(t) = û(xi, t) in Equation 5.9 represent node values that are fictitious. Now, considering the spatial
discretization and the use of the MLS method, for xi ∈ Λ (Λ is the global domain of problem):

u̇i(t) = −αuδ
i (t)(

n∑
j=1

µ′
j(x)ûj(t)) +

n∑
j=1

µ′′
j (x)ûj(t) + β(

n∑
i=1

µi(x)ûi(t))(1− uδ
i (t)). (5.10)
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Note that the derivative of u is relative to time, and the derivative of µ is defined in 5.4. When we disassemble the
PDE space partition, we get a system of ODEs:

u̇1(t)
u̇2(t)
...

u̇n(t)

 = −α


uδ
1(t)

uδ
2(t)
...

uδ
n(t)

 ◦


µ′
1(x1) µ′

2(x1) · · · µ′
n(x1)

µ′
1(x2) µ′

2(x2) · · · µ′
n(x2)

...
...

...
...

µ′
1(xn) µ′

2(xn) · · · µ′
n(xn)



û1(t)
û2(t)
...

ûn(t)

 +


µ′′
1(x1) µ′′

2(x1) · · · µ′′
n(x1)

µ′′
1(x2) µ′′

2(x2) · · · µ′′
n(x2)

...
...

...
...

µ′′
1(xn) µ′′

2(xn) · · · µ′′
n(xn)



û1(t)
û2(t)
...

ûn(t)



+β


µ1(x1) µ2(x1) · · · µn(x1)
µ1(x2) µ2(x2) · · · µn(x2)

...
...

...
...

µ1(xn) µ2(xn) · · · µn(xn)



û1(t)
û2(t)
...

ûn(t)

− β


uδ+1
1 (t)

uδ+1
2 (t)
...

uδ+1
n (t)


where ◦ is Hadamard product. In this step, to approximate time derivatives by ETDRK4, we have to divide the flux
function into two parts, linear and non-linear:

L =


µ′′
1(x1) µ′′

2(x1) · · · µ′′
n(x1)

µ′′
1(x2) µ′′

2(x2) · · · µ′′
n(x2)

...
...

...
...

µ′′
1(xn) µ′′

2(xn) · · · µ′′
n(xn)


and

N(u, t) = −α


uδ
1(t)

uδ
2(t)
...

uδ
n(t)

 ◦


µ′
1(x1) µ′

2(x1) · · · µ′
n(x1)

µ′
1(x2) µ′

2(x2) · · · µ′
n(x2)

...
...

...
...

µ′
1(xn) µ′

2(xn) · · · µ′
n(xn)



û1(t)
û2(t)
...

ûn(t)



+β


µ1(x1) µ2(x1) · · · µn(x1)
µ1(x2) µ2(x2) · · · µn(x2)

...
...

...
...

µ1(xn) µ2(xn) · · · µn(xn)



û1(t)
û2(t)
...

ûn(t)

− β


uδ+1
1 (t)

uδ+1
2 (t)
...

uδ+1
n (t)


For time discretization, ETD, as previously described, is used. Assuming that we divide the main domain into

n parts with equal distances, it is assumed that u(xi, kt), i = 1, 2, ..., n is specified, and our goal is to calculate
u(xi, (k+1)t), i = 1, 2, ..., n. Multiply the equation by e−Lt, and then integrate the equation into a single time step of
length h, so :

uk+1
i = eLhuk

i+eLh
∫ h

0

e−Lζ

αuδ
i (tk + ζ)

n∑
j=1

µ′
j(xi)ûj(tk + ζ) + β

n∑
j=1

µj(xi)ûj(tk + ζ)− βuδ+1
i (tk + ζ)

 dζ (5.11)

where uk
i = u(xi, tk), and then we solve it using the formulas of ETDRK4 experessed in 4.6. The problem that we

have wich with the ETDRK4 method for these equations (Burgers and Burgers-fisher) is that it becomes unstable for
some points. One way to solve this problem is to use a Taylor expansion with a cut-off point for small eigenvalues so if
the matrix is linear diagonal operator the Taylor expansion is used for the diagonal points the below cut-off. But one
of the serious problems of this method is that it is not possible to generalize this method to non-diagonal problems.

Another method that can be used to solve this problem is the contour integral of the idea of complex analysis.
In fact, we have a function to evaluate that has a singularity point and is analytical elsewhere. Near this singular
point, the function have numerically error. The suggested solution is to use a contour integral on a complex plane
that includes z and is separated from z = 0, by

f(z) = (2πi)(−1)

∫
Γ

f(s)(s− z)(−1)ds. (5.12)

Now instead of z-scalar, we use the matrix L and apply the same method again, in which only the expression
1/(s− z) becomes the matrix (sI − L)−1:

f(L) = (2πi)(−1)

∫
Γ

f(s)(sI − L)−1ds. (5.13)
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where the contour must contain the eigenvalues of L. The result of contour integrals of functions in the complex plane
is obtained using the trapezoidal rule, which converges exponentially.

The contour area can be considered as a circle, and we usually consider 32 points with equal distance in this circle.
There are many different choices for the contour region that work well, but the important thing is that the eigenvalues
are really restricted by Γ. When L is real, we use only the upper half of the circle for the contour area whose center
is the real axis, and then we get the real part of the result. The contour integral can be approximated by the mean
f(s) on Γ, so that we obtain the mean at points of equal distance along Γ, or again consider only the upper half of Γ,
and then consider only that real part.

To show the result in Table 1, we have calculated the coefficients inside the bracket by the Taylor expansion of
order 5 and the contour integral then their error compared to the real answer is presented in Table .1

Table 1: Calculate α(z), β(z), γ(z) of the contour integral with the average of more than 32 points on a semicircle in the upper half of the plane

and by Taylor of order 5. As is clear, the contour integral provides perfect accuracy for all of these z values.

coefficient z error for contour integral error for 5-term Taylor
1 0.000000000000021 0.001047783902218
1/e 0.000000000000013 0.000006367522118
1/e2 0.000000000000233 0.000000041380440

α 1/e3 0.000000000000486 0.000000002747111
1/e4 0.000000000020571 0.000000000224171
1 0.000000000000003 0.000170552493335
1/e 0.000000000000000 0.000001052574737
1/e2 0.000000000000084 0.000000068764081

β 1/e3 0.000000000001371 0.000000000471871
1/e4 0.000000000047107 0.000000000467991
1 0.000000000000005 0.000114832083180
1/e 0.000000000000004 0.000000704169700
1/e2 0.000000000000054 0.000000045899611

γ 1/e3 0.000000000002312 0.000000000328701
1/e4 0.000000000057995 0.000000000582001

As shown in the table, calculating the coefficients inside the bracket (i.e. α, β, γ in 4.7 ) with the contour integral
method is much less error. In the next section, examples are solved with this new method that acceptable answers are
obtained.

6 stability of method

As explained, a new method was used in this article to solve the Burgers-Fisher and Burgers equations, which is
a combination of methods 1 and 2. To check the stability of the method of this article, we have to check the stability
of the two stated methods. The sustainability of the linear system is effectively dependent on conditioning of the
coefficients matrix. The conditioning of the coefficients matrix can be measured using the condition number.

Theorem 6.1. If we consider the Q(x) matrix that is produced by the basis D(x) (i.e., Q(x) = DTW(x)D), then
there is a bounded and countable number Cd(x, n,m) which is independent of h and such that for determinate of
Q(x):

det(Q(x)) = Cd(x, n,m)h2
∑m

i=1 i, ∀x ∈ Λ. (6.1)

In addition, there is a constant h0 > 0, for h ≤ h0, such that a bounded and computable number Cc(x, n,m) which
is independent of h that the norm2 condition number of Q(x)

cond(Q(x)) = Cc(x, n,m)h−2m, ∀x ∈ Λ. (6.2)

Proof . Let xe ∈ R(x) be a fixed point. We assume bounded constant vectors ri such that ∀xi ∈ R(x) xi = xe+rih.
So, there are bounded constants such that the basis functions di(x) apply in:

di(xj) = rijh
i i = 1, 2, ...,m.
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then:

[Q(x)]ik =

m∑
j=1

wj(x)di(xj)dk(xj) = hi+kqik(x), i, k = 1, 2, ...,m (6.3)

where qik(x) =
∑m

j=1 wj(x)rijrkj . Due to the dagree of [Q(x)]ik, we can verify that Q(x) can be diagonalize:

QD(x) = diag[M0(x), h
2M1(x), h

4M2(x), ..., h
2mMm(x)]. (6.4)

where Mi(x), i = 0, 1, ...,m are diagonal matrices of order
(
i+n−1
n−1

)
and are independent of h thus the lth element

of Mi(x) on diagonal be dil where il =
∑i−1

k=1

(
k+n−1
n−1

)
+ l, l = 1, 2, ...,

(
i+n−1
n−1

)
. So the iith element of QD(x) is

h2idi, i = 1, 2, ...,m. Hence:

det(Q(x)) = det(QD(x)) =

m∏
i=1

h2idi(x, ) = Cd(x, n,m)h2
∑m

i=1 i

where Cd(x, n,m) =
∏m

i=1 di(x) is a bounded number. The Maximum value on the diagonal elements of matrix M0(x)
is called dmax(x) and the minimum value on the diagonal of matrix Mm(x) is denominated dmin(x). Now there is
h0 > 0 that for all h ≤ h0, the maximum and minimum eigenvalues of the matrix QD(x) are dmax(x) and dmin(x)h

2m,
respectively. On the other hand, according to (3.6), the matrix Q(x) is symmetric and positive definite. Therefore,
the 2-norm condition number Q(x) can be written as follows:

cond(Q(x)) = cond(QD(x)) =
| dmax(x) |

| dmin(x)h2m |
= Cc(x, n,m)h−2m

where Cc(x, n,m) = |dmax(x)|
|dmin(x)| is a bounded number. . □

Eq.6.1 states that
det(Q(x)) → 0 as h → 0.

From the above discussion we conclude that whenever a sufficiently small nodal distance h is selected, the instantaneous
matrix Q(x) obtained in MLS approximation is approximately a single matrix, which causes the errors to increase.
That is, when the instantaneous matrix Q(x) has ill conditions or is singular, the answers obtained for the vector of
coefficients q(x) have a large error, and therefore, the function of the shape µi(x) will have a large rounding error.

Referring to Eq.(6.2), we find that the condition number Q(x) has an inverse relationship with factor h2m. That
is, as h2m decreases, the condition number increases, and as a result, the rounding error increases, it is very clear that
when the matrix conditioning number increases, the degree of ill conditioning of the matrix increases to the point that
for singular matrices the situation worsens and condition number tends to infinity. Therefore, we conclude that the
instability of the MLS method depends on h and m, so that by reducing the value of h too much and increasing the
value of m too much, the instability of the MLS method increases. Thes, we conclude that the MLS method achieves
good and low-error solutions to solve problems when matrix Q in (3.5) is non-singular, and this happens when the
rank D is equal to m.

In order not to have the problem of instability and MLS method is a well-defined method, a necessary condition
is that at least m weight functions are non-zero (ie n > m) for each point x ∈ Λ and the points in Λs do not follow
from a regular and special pattern.

Assumption1:there are positive numbers c1 and c2 independent of h such that m ≤ c1 ≤ n ≤ c2.

Assumption2:the rank D given by (3.4) is equal to m.

Assumption3:there is bounded numbers Cwi
(x) independent of h such that dνwi = Cwi

(x)h−|ν|, where 0 ≤| ν |≤
γ.

Note that the weight function is ν-th times continuously differentiable, i.e. wi(x) ∈ Cν(Λ)

Lemma 6.1. There are bounded numbers cik(x) independent of h such that

[Q−1(x)]ik = cik(x)h
−i−k, i, k = 1, 2, ...,m.

Lemma 6.2. For any x ∈ Λ, there are Cµi
(λ,x) independent of h such that

dλµi(x) = Cµi(λ,x)h
−|λ|, 0 ≤ |λ| ≤ ν, i = 1, 2, . . . , n.
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Besides, there are constants Cµ1
and Cµ2

independent of h such that

Cµ1
h−|λ| ≤ ∥dλµi(x)∥L∞(Λ) ≤ Cµ2

h−|λ|, 0 ⩽ |λ| ⩽ γ, i = 1, 2, . . . , n.

Proof . by (34) and Assumption 3:

dλ[Q(x)]jk =

n∑
i=1

dλwi(x)rjih
jrkih

k = hj+k−|λ|
n∑

i=1

Cwi(x)rjirki.

Applying di(xj) = rijh
i i = 1, 2, ...,m. and Eq.(3.6) yields

[S(x)]ki = wi(x)dk(xi) = wi(x)rkih
k.

Then using agin Assumption 3,

dλ[S(x)]ki = dλwi(x)rkih
k = hk−|λ|Cwi(x)rki.

Let
F(x) = Q−1(x)S(x).

From Leibniz’s formula and Lemma6.1:

dλ[F(x)]ji =

m∑
k=1

[
Q−1(x)

]
jk

dλ[S(x)]ki −
m∑
l=1

∑
α≤λ,α ̸=0

(λ
α

)
dα[Q(x)]kld

λ−α[F(x)]li


=

m∑
k=1

h−j−kcjk(x)×hk−|λ|Cwi (x)rki −
m∑
l=1

∑
α≤λ,α ̸=0

(λ
α

)
hk+l−|α|

n∑
I=1

CwI (x)rkIrlId
λ−α[F(x)]li


= b0j (x)h

−j−|λ| −
m∑
l=1

∑
α≤λ,α ̸=0

(λ
α

)
mjl(x)h

−j+l−|α|dλ−α[F(x)]li

where

b0j (x) =

m∑
k=1

cjk(x)rkiCwi
(x)

mjl(x) =

m∑
k=1

cjk(x)

n∑
I=1

CwI
(x)rkIrlI =

n∑
I=1

CwI
(x)rlI

m∑
k=1

rkIcjk(x).

So
dλ[F(x)]ji = bλj (x)h

−j−|λ|,

where

bλj (x) = b0j (x)−
m∑
l=1

∑
α≤λ,α̸=0

(
λ

α

)
mjl(x)b

λ−α
l (x).

Inasmuch as xe is an evaluation point fixed on the influence domin of x, there is a constant vector re such that
x− xe = reh. Then we have bounded constants rαj such that

dαdj(x) = rαj h
j−|α|, j = 1, 2, · · · ,m,

for j ≥ |α|. If j < |α|, it is obvious that dαdj(x) = 0. Hence, there exist Cµi(λ,x) independent of h such that

dλµi(x) =

m∑
j=1

∑
α≤λ,α̸=0

(
λ

α

)
dαdj(x)d

λ−α[F(x)]ji

=

m∑
j=1

∑
α≤λ,α̸=0

(
λ

α

)
rαj h

j−|α|bλ−α
j (x)h−j−|λ|+|α|

=

 ∑
α≤λ,α̸=0

(
λ

α

) m∑
j=1

rαj b
λ−α
j (x)

h−|λ|

:= Cµi(λ,x)h
−|λ|
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Now, we prove the second part of the lemma. Inasmuch as ajk(x), CwI
(x) and rki are bounded, we have b

0
j (x) and

mjl(x) are bounded. As a result, bλj (x) are bounded. It can be concluded from Assumption 1 that: rαj is bounded
and independent of h. Therefore, there are real numbers Cµ1 and Cµ2 independent of h such that

Cµ1h
−|λ| ≤

∣∣dλµi(x)
∣∣ ≤ Cµ2h

−|λ|, ∀x ∈ Λ.

□

For m ≥ 0 and n ∈ [1,∞], assume Wm,n(Λ) and Hm(Λ) ≜ Wm,2(Λ) be the usual Sobolev space .

Theorem 6.2. Let vh(x) be the MLS approximation of v(x) and v(x) ∈ W p+1,q(Λ) with p+ 1 > n/q. then there is
a constant C independent of h such that

∥v(x)− vh(x)∥Wk,q(Λ) ≤ Chp̃−k∥v(x)∥W p̃,q(Λ),

k = 0, 1, · · · ,min{p̃, γ}, p̃ = min{p+ 1,m+ 1}.

When v(x) ∈ Wm+1,q(Λ), we have

∥v(x)− vh(x)∥Wk,q(Λ) ≤ Chm+1−k∥v(x)∥Wm+1,q(Λ),

k = 0, 1, · · · ,min{m+ 1, γ}.

When v(x) ∈ Hm+1(Λ), we have

∥v(x)− vh(x)∥Hk(Λ) ≤ Chm+1−k∥v(x)∥Hm+1(Λ),

0 ≤ k ≤ min{m+ 1, γ}.

Proof . see [38] □

Now we investigate the stability of ETDRK4 scheme. By MLS, we made the system of ODE, the stability of this
method was checked so we examine the stability of the method that used to solve this system, i.e. method ETDRK4.
by linearizing the nonlinear autonomous system

dv(t)

dt
= Lv(t) +N(v(t)) (6.5)

with N(v(t)) the nonlinear part. We suppose that there exists a fixed point v0 such that Lv0 + N (v0) = 0. By
linearizing about this fixed point, we obtain

dv(t)

dt
= Lv(t) + ηv(t) (6.6)

where v(t) is now the perturbation of u0 and η = N ′ (v0) is a diagonal matrix and the eigenvalues of N are placed in
the diagonal of this matrix. For stablity, we require that Re(L+ η) < 0, for all η. the application of ETDRK4 method
to the linearized problem (6.6) leads to a recurrence relation

r =
vn+1

vn
= L0 + L1x+ L2x

2 + L3x
3 + L4x

4, (6.7)

where

L0 =ey

L1 =− 4

y3
+

8ey/2

y3
− 8e3y/2

y3
+

4e2y

y3
− 1

y2
+

4ey/2

y2
− 6ey

y2
+

4e3y/2

y2
− e2y

y2

L2 =− 8

y4
+

16ey/2

y4
− 16e3y/2

y4
+

8e2y

y4
− 5

y3
+

12ey/2

y3
− 10ey

y3
+

4e3y/2

y3
− e2y

y3
− 1

y2
+

4ey/2

y2
− ey/2

y2
,
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L3 =
4

y5
− 16ey/2

y5
+

16ey

y5
+

8e3y/2

y5
− 20e2y

y5
+

8e5y/2

y5
+

2

y4
− 10ey/2

y4

+
16ey

y4
− 12e3y/2

y4
+

6e2y

y4
− 2e5y/2

y4
− 2ey/2

y3
+

4ey

y3
− 2e3y/2

y3

L4 =
8

y6
− 24ey/2

y6
+

16ey

y6
+

16e3y/2

y6
− 24e2y

y6
+

8e5y/2

y6
+

6

y5
− 18ey/2

y5

+
20ey

y5
− 12e3y/2

y5
+

6e2y

y5
− 2e5y/2

y5
+

4

y4
− 6ey/2

y4
+

6ey

y4
− 2e3y/2

y4
,

where x = ηh, y = Lh. The amplification factor is defined for ETDRK4, r(x, y) for y > 0. If y = 0, the amplification
factor becomes 1 − x + x2/2 − x3/6 + x4/24 that the stability of ETDRK4 at y = 0 correspond with that of the
classical fourth-order Runge-Kutta method. On the other hand limx,y→0 ∂xr(x, y) = −1 and limx,y→0 ∂yr(x, y) = −1
thus the absolute value of the amplification factor is given as |r(x, y)| ≤ 1. In the areas where this method is unstable,
according to what was explained at the end of section 5 of this article, we use the contour integral of the idea of
complex analysis.

7 Numerical example

We have described the method implemented in this article in detail in the previous sections. In this section, we
will solve several examples and compare their numerical answer form with other methods.

7.1 Example1

In this example, we consider the Burgers’ equation 2.1 with α = 1:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
0 ≤ x ≤ 1 t ≥ 0

With the initial conditions:
u(x, 0) = sin(2πx) + 1/2sin(πx), 0 ≤ x ≤ 1

and with the boundary conditions:
u(0, t) = 0, u(1, t) = 0, t ≥ 0

see [25]. In this subsection,we obtain the answer to this equation with the method described in this article. In Figures
1,2 and 3, the solution of this equation can be seen with N = 40 and with ν = 1,ν = 0.01,ν = 0.0001. Figures a, b
show the physical behavior of the answer in 3D and Figure c shows the physical behavior of the answer in the contour,
which is similar to 2D.

7.2 Example2

In this example, we consider the Burgers’ equation 2.1 with α = 1:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
0 ≤ x ≤ 1 t ≥ 0

with the initial conditions: u(x, 0) = sin(πx), 0 ≤ x ≤ 1 and with the boundary conditions: u(0, t) = 0, u(1, t) = 0,
t ≥ 0. The exact solution of equation is

u(x, t) =
2πν

∑∞
i=1 nAnexp(−n2π2νt)sin(nπx)

A0 +
∑∞

i=1 Anexp(−n2π2νt)cos(nπx)

where

A0 =

∫ 1

i=0

exp

(
−1

2πν
(1− cos(πx))

)
dx, An = 2

∫ 1

i=0

exp

(
−1

2πν
(1− cos(πx))

)
cos(nπx)dx,

The numerical solutions of this equation are presented for ν = 0.1, 0.01, ν = 0.001 with N = 60 in Tables 2 and
Figs. 4,5 and 6. We compare the results of solving this equation using the method proposed in this paper with the
results obtained by other methods, and as showed in Table 2, better results were obtained. Figures 4, 5 and 6 show the
physical behavior of the answer up to t = 1 (it is three-dimensional (a,b), and the contour is similar to two-dimensional
shapes(c)).



Numerical solutions the nonlinear Burgers . . . 271

(a) a (b) b

(c) c

Figure 1: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.1 by the new method
expressed in this article with N = 40 and ν = 1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

Table 2: A comparison of the solution of equation of Example 7.2 using the article method with exact answer and other numerical methods.

ν = 0.01

x t [29]∆t = 0.01 [2]∆t = 0.0001 [28]∆t = 0.001 [5] ∆t = 0.0001 new method ∆t = 1/20 exact

0.25 0.4 0.34229 0.34193 0.34184 0.34191 0.34191 0.34191
0.6 0.26902 0.26898 0.26891 0.26896 0.26897 0.26896
0.8 ........... 0.22149 0.22143 0.22148 0.22148 0.22148
1 0.18817 0.18820 0.18815 0.18819 0.18819 0.18819

0.5 0.4 0.66797 0.66076 0.66060 0.66071 0.66071 0.66071
0.6 0.53211 0.52945 0.52931 0.52941 0.52942 0.52942
0.8 ........... 0.43916 0.43905 0.43913 0.43914 0.43914
1 0.37500 0.37443 0.37436 0.37442 0.37442 0.37442

0.75 0.4 0.93680 0.91046 0.91026 0.91026 0.91025 0.91026
0.6 0.77724 0.76733 0.76719 0.76724 0.76723 0.76724
0.8 ........... 0.64744 0.64745 0.64739 0.64744 0.64740
1 0.55833 0.55608 0.55608 0.55605 0.55605 0.55605

7.3 Example3

In this example, we consider the Burgers’ equation 2.1 with α = 1:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
0 ≤ x ≤ 1 t ≥ 0
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(a) a (b) b

(c) c

Figure 2: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.1 by the new method
expressed in this article with N = 40 and ν = 0.01 to time t = 10.
In Figure(c), the answer is shown at times t = 0, 2, 4, 6, 8, 10 with the symbols −, o,+, ∗,−−,□ respectively.

with the initial conditions: u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1 and with the boundary conditions: u(0, t) = 0, u(1, t) = 0,
t ≥ 0. The exact solution of equation is :

u(x, t) =
2πν

∑∞
i=1 nAnexp(−n2π2νt)sin(nπx)

A0 +
∑∞

i=1 Anexp(−n2π2νt)cos(nπx)

where

A0 =

∫ 1

i=0

exp

(
−1

3ν
(3x2 − 2x3)

)
dx, An = 2

∫ 1

i=0

exp

(
−1

2πν
(3x2 − 2x3)

)
cos(nπx)dx.

The numerical solutions of this equation are presented for ν = 0.1, 0.01, 0.001 with N = 60 in Tables 3 and Figs.
7,8 and 9. We compare the results of solving this equation using the method proposed in this paper with the results
obtained by another methods. As showed in Table 3 that better results were obtained. Figures 7,8,9 show the physical
behavior of the answer up to t = 1 (it is three-dimensional (a,b), and the contour is similar to two-dimensional
shapes(c)).
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(a) a (b) b

(c) c

Figure 3: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.1 by the new method
expressed in this article with N = 40 and ν = 0.0001 to time t = 10.
In Figure(c), the answer is shown at times t = 0, 2, 4, 6, 8, 10 with the symbols −, o,+, ∗,−−,□ respectively.

Table 3: A comparison of the solution of equation of Example 7.3 using the article method with exact answer and other numerical methods.

ν = 0.01

x t [29]∆t = 0.01 [28]∆t = 0.001 [48]N = 180 new∆t = 1/20, N = 60 exact

0.25 0.4 0.36273 0.36217 0.36226 0.36226 0.36226
0.6 0.28212 0.28197 0.28204 0.28205 0.28204
0.8 ........... 0.23040 0.23045 0.23045 0.23045
1 0.19467 0.19465 0.19469 0.19469 0.19469

0.5 0.4 0.69186 0.68357 0.68368 0.68368 0.68368
0.6 0.55125 0.54822 0.54832 0.54832 0.54832
0.8 ........... 0.45363 0.45370 0.45371 0.45371
1 0.38627 0.38561 0.38568 0.38568 0.38568

0.75 0.4 0.94940 0.92050 0.92051 0.92050 0.92050
0.6 0.79399 0.78293 0.78302 0.78299 0.78299
0.8 ........... 0.66264 0.66272 0.66272 0.66272
1 0.57170 0.56924 0.56932 0.56932 0.56932

7.4 Example4

In this example, we consider the Burgers-fisher equation 2.2 with δ = 1:

∂u

∂t
+ αu

∂u

∂x
=

∂2u

∂x2
+ βu(1− u) 0 ≤ x ≤ 1 t ≥ 0

where α = a, β = 2ac−a2

4 , with the initial conditions:

u(x, 0) =
1

2
− 1

2
tanh(

a

4
x), 0 ≤ x ≤ 1
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(a) a (b) b

(c) c

Figure 4: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.2 by the new method
expressed in this article with N = 60 and ν = 0.1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

and with the boundary conditions:

u(0, t) =
1

2
− 1

2
tanh(

a

4
(−ct)), u(1, t) =

1

2
− 1

2
tanh(

a

4
(1− ct)), t ≥ 0

The exact solution of this equation:

u(x, t) =
1

2
− 1

2
tanh(

a

4
(x− ct)), 0 ≤ x ≤ 1

The numerical solutions of this equation are presented for a = 24, c = 8 with N = 40 in Tables 4 and Figs. 10.
We compare the results of solving this equation using the method proposed in this paper with the results obtained by
other methods, and as shown in Table 4 that better results were obtained. Figures 7,8,9 show the physical behavior
of the answer up to t = 0.5 (it is three-dimensional (a,b)and the contour is similar to two-dimensional shapes(c)).

Table 4: A comparison of L2-error for the solution of equation of Example 7.4 using the article method with L2-error of another method

t new methodN = 60 [52]N = 60

0.01 16.7e-006 ............
0.02 44.4e-006 ............
0.03 121e-006 2.5e-003
0.04 324e-006 2.4e-003
0.05 853e-006 2.4e-003
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(a) a (b) b

(c) c

Figure 5: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.2 by the new method
expressed in this article with N = 60 and ν = 0.01 to time t = 1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

7.5 Example5

In this example, we consider the Burgers-fisher equation 2.2 with δ = 1:

∂u

∂t
+ αu

∂u

∂x
=

∂2u

∂x2
+ βu(1− u) 0 ≤ x ≤ 1 t ≥ 0

With the initial conditions:

u(x, 0) =
1

2
+

1

2
tanh(a1x), 0 ≤ x ≤ 1

and with the boundary conditions:

u(0, t) =
1

2
− 1

2
tanh(a1a2t), u(1, t) =

1

2
+

1

2
tanh(a1(1− a2t)), t ≥ 0

The exact solution of this equation:

u(x, t) =
1

2
− 1

2
tanh(a1(x− a2t)), 0 ≤ x ≤ 1

where a1 = −αδ
2(1+δ) and a1 = α

1+δ + β(1+δ)
α . The numerical solutions of this equation are presented for α = 1, β = 1

with N = 40 in Tables 5,6 and Figs. 11. We compare the results of solving this equation using the method proposed
in this paper with exact solution. Figure11 shows the physical behavior of the answer up to t = 0.5
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(a) a (b) b

(c) c

Figure 6: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.2 by the new method
expressed in this article with N = 60 and ν = 0.001 to time t = 1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

Table 5: L2-error for the solution of equation of Example 7.5 by the article method

t new methodN = 60

0.02 3.3e-003
0.04 6.7e-003
0.06 10.1e-003
0.08 13.5e-003
0.1 661.4e-003

8 Conclusion

The current paper presented an efficient numerical method for solving the nonlinear Burgers-fishe and Burgers’
equations. The paper also presented a new method for identifying impact points and finding a better response without
vibration in these points. Accordingly, we first solved these equations from the meshless method and then using the
ETDRK4 method. We chose the MLS method from among the meshless methods. In this method, we used quadratic
basic functions. Then we used the ETDRK4 method to approximate the time derivative.

Due to the high flexibility and accuracy of MLS, it is considered to solve these equations. Because they discretize
the problem domain without using a predetermined grid, it seems to work well for equations that have shocks at
points in the domain. On the other hand, contour integral and other suitable approaches are used for controlling
the instability and challenges of ETDRK4. Now by combining these methods, we get good results for solving these
equations.In MLS, parameter c can be changed, and with it, the shape of the weight function can be controlled, and
the type of weight function can be different. In ETDRK4, as mentioned, we used contour integral to control instability,
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(a) a (b) b

(c) c

Figure 7: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.3 by the new method
expressed in this article with N = 60 and ν = 0.1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

Table 6: A comparison between the solution of equation of Example 7.5 using the article method with exact answer and other numerical methods

x exact new methodN = 60 [13]N = 100

0.1 0.490626 0.490633 0.490633
0.2 0.478138 0.478146 0.478148
0.3 0.465679 0.465685 0.465690
0.4 0.453261 0.453268 0.453273
0.5 0.440902 0.440907 0.440914
0.6 0.428616 0.428620 0.428627
0.7 0.416416 0.416419 0.416428
0.8 0.404319 0.404320 0.404329
0.9 0.392336 0.392337 0.392344

but contour integrals are not the only solutions offered for this problem, but the contour integral method attracts us
due to its generality for dealing with arbitrary functions. There is considerable flexibility with this procedure.

The method mentioned in this paper has been tested on 5 examples at the end, leading to quite satisfactory
resultsy. The numerical results obtained after solving the Burgers-Fisher and Burgers’ equations are compared with
the existing numerical solutions as well as with the exact answers to the problems. It is concluded that the method
described in this article offers better accuracy than other existing numerical techniques.

The main advantage of the design is that it can depict the behavior of numerical solutions at a small kinematic
viscosity coefficient ν = 0.1, 0.01, 0.001, 0.0001, up to the times when most numerical methods fail. It is possible that
this method could also be used to solve model equations, including more mechanical, physical, or biophysical effects,
such as nonlinear convection, reaction, linear propagation, and scattering.
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(a) a (b) b

(c) c

Figure 8: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.3 by the new method
expressed in this article with N = 60 and ν = 0.01 to time t = 1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.

(a) a (b) b

(c) c

Figure 9: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.3 by the new method
expressed in this article with N = 60 and ν = 0.001 to time t = 1.
In Figure(c), the answer is shown at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 with the symbols −, o,+, ∗,−−,□ respectively.
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(a) a (b) b

(c) c

Figure 10: Figures (a),(b),(c) show different views of the answer to the Burgers’ equation of example 7.4 by the new method
expressed in this article with N = 60.
In Figure(c), the answer is shown at times t = 0, 0.1, 0.2, 0.3, 0.4 with the symbols −−, o, ∗, ..,+,□ respectively.

(a) a (b) b

Figure 11: Figure (a) shows the answer to the Burgers’ equation of example 7.5 by the new method expressed in this article
with N = 40, α = 1, β = 1.
Figure(b) shows the exact solution of example 7.5
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